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Overview

@ Normal Model
© ¢ distribution
@ F distribution

@ Multiple Testing
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The Normal Model

Section 7.6 in the text

y = X3+ €

where

X is an n X (k + 1) matrix of observed constants with linearly
independent columns.

Bis a (k+ 1) x 1 matrix of unknown constants.
e ~ N(0,0%1,).



Normal Model

Using facts about the multivariate normal

e For the multivariate normal, zero covariance implies independence.
o If v ~ Ny(p,3), then

o Av+c~ Ny(Ap+c, AXA’).

o If 3 is positive definite, w = (v — p)'E " (v — p) ~ x2(p).



Normal Model

Distribution of B

For y = X3 + € with € ~ N(0,021,),
°YNN(X/3> o*I).
o B=(X'X)"'X'y = Ay.

e Earlier calculations yielded

E(B) = B and cov(B) = 02(X'X)L, so

B ~ Nii1 (/67 02<X/X)_1>



Normal Model

Independence of B and €

Like the independence of  and s>

()= (2)

e So B and € are jointly multivariate normal.

@ Independence will follow from zero covariance.

e Use cov(Ay,By) = Acov(y)B’.



Normal Model

Independence of 8 and €, continued
Using cov(Ay, By) = Acov(y)B’

cov <B,€> = cov ((X’X)_lX’y7 (I-H)y)
= X'X)"'X' 0?1, (I-H)
o2(X'X)"IX/(I - H)
o (X'X)7'X' — (X'X)"'X'H)
o (X'X)7!IX/ — (X'X) ' X'X(X'X) "' X)
o ((X'X)'X' — (X'X)"'X)
=0

So ,@ and € are independent.



Distribution of SSE/c?
Using (v — p)'S7H (v — p) ~ x*(p)-
Earlier, we found (y — X8)'(y — X3) =€'e + (B\ - B)’X’X(E -0).

Ly-Xp)(y-X8) = 5E + (B-pyLX'X(B-8)
w =  w + w2
y ~ N,(X83, azln), SO
w=(y - XB) (0°L,) " (y — XB) ~ x*(n).
B ~ N1 (B,03(X'X)71), s0
= (B-B) (*(XX)") " (B-B) ~ 3k +1)
@ w; and wy are independent because 3 and € are independent.

@ So wy =5 SE is chi-squared, with degrees of freedom
n—(k+1)—n—k—l. [ ]

@ This result does not depend on the model having an intercept, and it
does not depend on the truth of any null hypothesis.




t distribution

Tests and confidence intervals for a’3

For Gauss-Markov Theorem, it was called £'3.
See Section 8.6 in the text.

e Single linear combination of the §; values.
e Including any individual f;.
e Use the t distribution:



t distribution

Choosing z and w in t = Z/ ~ t(v)
w/v

o B~ N1 (8,02(X'X)1)
o So a8~ N(@'g,...)
cov (a'B) = cov (a/(X'X)"'X'y)
= a/(X'X)"'Xcov(y) (a/(X'X)"1X")’
a'(X'X) X' o°I, X(X'X)ta
o?a'(X'X) IX'X(X'X) ta
= o?a/(X'X) 'a

o And a'3 ~ N(a’8, 0%a/(X'X) 1a).
e Standardize a’ ,[Ai, subtracting off mean and dividing by the
standard deviation.
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t=—F—= ~t(v)

I

aB~ N@B, oc%a (X'X) a).

@ Center and scale:

B a’,@ —a's N
o Vola (X'X) la) N, 1)

For the denominator, use

_ SSE _ Z?ﬂ(?ﬁ — i)

02 o2

2
w ~x*(n—k—1)

e With z and w independent.



t distribution

f=— 2 tn—k—1)
w/(n—k—1)
Withz:\/%wl\f(o,l)andwzsf—zENXQ(n—k:—l),
. 2
/ —
_ B a'g \/SSE (n— k1)
Vo2a (X'X) la)

lﬁ_a
VMSEa/(X'X)1a)

~tn—k—1)



The t density

/2 af2

—to/2 ta/2

Ift ~ t(df), then P{t > ta/Z,df} = %.



t distribution

Confidence Interval for a’3

~taj2 oz

l—-a = P{—ta/2<t<ﬁa/2}

3 A
= P —ta/g < 316 aﬁ < ta/2
V/MSE a’(X'X)~1a)

= P {a’,CA'}' —tas2V/MSE @' (X'X)"1a) < a'3

< aB+ tasa/ MSE a’(X’X)*la)}

Or, a8 + tas2 v/ MSE a'(X'X)"la.



Testing Hy : 8’8 =t

Controlling (allowing) for High School GPA, does score on the
OSSLT (Ontario Secondary School Literacy Test) predict success
in university?
yi = Bo + Brxi1 + Boxi2 + €

e Tij1 = HS GPA

e T2 = OSSLT

e y; = First year university GPA
yi = (Bo + Brxin) + Pozia + €
H@ : 52 =0.

Bo
Ho: (0 0 1)| B | =0.
B2



Test Statistic for Hy : a’'8 = t

_ a'B—a'B T
Ot_\/MSEa’(X’X)—la) tn—k—1)

If Hy:a'B =ty is true,

* __ a’ﬁ*to ~ 1.
°t - /MSE a/(X'X)"1a) tn—k—1).

The most common example is Hy : 5; = 0.

Or something like Hy : 81 — B2 = 0, if it makes sense.



F distribution

Testing several linear combinations simultaneously
Sections 8.2-8.4 in the text, especially 8.4.

Question: Does HS GPA in the first two years help predict university
GPA if you know the HS GPA in years 3 and 47

Yi = Bo + Brxig + Powio + B3wi3 + Bazia + €

o We are considering two competing models.
The first model has HS GPA for all four years.
The second model has HS GPA for only years 3 and 4.

The second model is obtained from the first, by setting
p1=pP2=0.
@ That’s the null hypothesis.



Hy : 81 = B2 = 0 in matrix form

Bo
<01000> gl _(0)
, | =
00100 5 0
B
C B = t

Where C is ¢ x (k+ 1), with ¢ < k + 1 and linearly independent rows.



The F' Distribution

If wy ~ x%(v1) and wy ~ x?(1) are independent, then

_’LUl/I/l

F =
wz/Vg

~ F(Vl, VQ)



The general linear test of Hy : CO =t

From the formula sheet, If v ~ N,(p,3), then
Av+c~ Ny (Ap+c,AZA"), and w = (v — p)E7 (v — p) ~ x%(p).

B ~ Njy1 (8,0%(X'X)™1), s0 CB ~ Ny(CB,0?C(X'X)~1C’), and if
Hy: CB =t is true,

w; = (CB—t)(c?C(X'X)1C)HCB - t) ~ x2(q)
= (CB- v/ (CxXX) ) (CB - b)

SSE

wy = 72~X2(n—k:—1)
o

oo -k —1)
wy/(n—k—1) ’

This result does not depend on the model having an intercept.



Formula for F™*

_wifg
we/(n—Fk—1)

£(CB —)/(CX'X)~'C))"{(CB - t)/q
%E/ (n—k-1)
(CB—t)(C(X'X)~'C)(CB-t)
q MSE
Flgn—k—1)




. CB—t)(C(X'X)-1C) 1 (CB—t) H
o — (CB=t)( (qﬂ;SE )~'(CB t)ﬂF(q,n—kz—l)




F distribution

p-value

p-value




Logically equivalent null hypotheses

Yi = Bo + Brain + Powio + B3wi3 + Bazia + €

Hy:B1—B2=0,8,—83=0,83=0
& Pr=p2=p=0

Better hope it does not matter how you state Hg!

Theorem: Let A be a g X g non-singular matrix, so that
CB =t < ACB = At. The F* statistic for testing Hp : (AC)3 = (At)
is the same as the statistic for testing Hyp : C3 = t.
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Proof

Test statistic for Hp : (AC)B8 = (At) is

(ACB — At) (AC(X'X)"1(AC)) ™" (ACJ — At)
q MSE
(A(cfa - t))/ (AC(X'X)1C’A") ' A(CB - t)
q MSE
(CB—t)A’ (AC(X'X)"'C’A') ' A(CB —t)
q MSE
(CB—t)A’A~ (C(X'X)IC) ' AIA(CB - t)

F* =

q MSE
(CB—t)(C(X'X)"'C') " (CB — t)
q MSE

which is the test statistic for Hy : C3 = t. |



Does the example fit the pattern Hy : (AC)8 = (At) ?

Ho:$1—B2=0,2—03=0,83=0& 1 =P2=03=0

Bo
0 1 -1 0 O 51 0
Hy ( 00 1 -1 0 ) B, | = ( 0 )
0 0 0 1 0 B3 0
B



F distribution

Linearly equivalent null hypotheses

e Two null hypotheses are linearly equivalent if their C matrices are
row equivalent.

@ Since elementary row operations correspond to multiplication by

invertible matrices, all linearly equivalent null hypotheses yield the
same F' statistic for a given set of data.



Full versus Reduced Model Approach

Also sometimes called ‘Extra sum of squares”

e Divide the explanatory variables into two subsets, A and B. Want
to test B controlling for A.

e For example, A is HS GPA in years 3 and 4; B is HS GPA in years
1 and 2.

e Fit a model with both A and B: Call it the Full Model, or the
Unrestricted Model.

e Fit a model with just A: Call it the Reduced Model or Restricted
Model.

@ The restricted model is restricted by the null hypothesis. Hy says
the variables in set B do not matter.

e The F-test is an exact likelihood ratio test for comparing the two
models.



When you add the ¢ additional explanatory variables in
set B, R? can only go up: R?(full) > R*(reduced)

By how much? Basis of the F' test.

(R2(full) — R*(reduced)) /q

B= (1— R2(full)) /(n — k — 1)
~ SSR(full)—-SSR (reduced)
- g MSE(full)
Hy



Theorem 8.4d, page 201

SSR(full)—SSR (reduced)
q MSE

(CB —t)(C(X'X)'C') (CB - t)

F* =

q MSE

Proved using matrix-valued Lagrange multipliers. Proof omitted.
This result does not depend on the model having an intercept.



Strength of Relationship: Change in R? is not enough

(R*(full) — R*(reduced)) /q

B = TRy jm—F -1
_ (n—k—1 P
- (=) )
Where
_ R*(full) — R*(reduced) qF*
P= 1 — R?(reduced) g +n—k—1

Call p the “proportion of remaining variation.”



Multiple Testing

Multiple Testing

@ The primary function of hypothesis testing in science is to screen
out random garbage.

e Hold probability of Type I error to a low value; o = 0.05 is
traditional.

e The distribution theory considers each test in isolation.
e But in practice, we carry out lots of tests on a given data set.

o If the data are complete random noise, the chance of getting at
least one statistically significant result is quite high.

e For ten independent tests, 1 — 0.95'0 ~ 0.40. But the tests are
usually not independent.

¥



Multiple Testing

Bonferroni Correction for Multiple Tests

@ The curse of a thousand t-tests.

o If the null hypotheses of a collection of tests are all true, hold the
probability of rejecting one or more to less than o = 0.05.

e Based on Bonferroni’s inequality:

Pr LTJAJ S ET:PT{AJ}
Jj=1

J=1

e Applies to any collection of r tests.

@ Assume all r null hypotheses are true.

e Event A; is that null hypothesis j is rejected.

@ Do the tests as usual, obtaining r test statistics.

e For each test, use the significance level o/r instead of a.



Multiple Testing

Use the significance level a/r instead of «

Bonferroni Correction for r Tests

Assuming all r null hypotheses are true, probability of rejecting at
least one is

Pr LTJ Aj S iPT’{AJ}
=1 j=1
= ia/r
j=1
=

e Just use critical value(s) for a/r instead of a.

e Or equivalently, multiply the p-values by r and compare to
a = 0.05.

e Call a = 0.05 the joint significance level.



Example

Most (all?) regression software produces
@ Overall F-test for all the explanatory variables at once:
Hy:51=p2="-=pB=0
@ t-tests for each regression coefficient, with Hy : 8; =0 for j =1,... k.
Analysis strategy: First look at the F-test.
o If Hy is rejected, it means at least one of the 3; are not zero, but which
one(s)?
@ Now look at the t-tests.
@ But protect them with a Bonferroni correction for & tests.
@ With six predictor variables and n =53, son —k—1=53 -6 — 1 = 46,
> alpha = 0.05
> qt(l-alpha/2,46) # Unprotected critical value.
[1] 2.012896

> a = alpha/6 # Protect for 6 tests

> qt(1-a/2,46) # Bonferroni protected critical value.
[1] 2.757175



Multiple Testing

Advantages and disadvantages of the Bonferroni
correction

o Advantage: Flexibility — Applies to any collection of hypothesis
tests.

o Advantage: Easy to do.

e Disadvantage: Must know what all the tests are before seeing the
data.

o Disadvantage: A little conservative; the true joint significance level
is less than a.



Multiple Testing

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The IXTEX source
code is available from the course website:

http://www.utstat.toronto.edu/ ~brunner/oldclass/302£20
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