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Normal Model

The Normal Model
Section 7.6 in the text

y = Xβ + ε

where

X is an n× (k + 1) matrix of observed constants with linearly
independent columns.

β is a (k + 1)× 1 matrix of unknown constants.

ε ∼ N(0, σ2In).
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Normal Model

Using facts about the multivariate normal

For the multivariate normal, zero covariance implies independence.

If v ∼ Np(µ,Σ), then

Av + c ∼ Nq(Aµ + c,AΣA′).
If Σ is positive definite, w = (v − µ)′Σ−1(v − µ) ∼ χ2(p).
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Normal Model

Distribution of β̂

For y = Xβ + ε with ε ∼ N(0, σ2In),

y ∼ N(Xβ, σ2In).

β̂ = (X′X)−1X′y = Ay.

Earlier calculations yielded
E(β̂) = β and cov(β̂) = σ2(X′X)−1, so

β̂ ∼ Nk+1

(
β, σ2(X′X)−1

)
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Normal Model

Independence of β̂ and ε̂
Like the independence of x and s2

(
(X′X)−1X′

I−H

)
y =

(
β̂

ε̂

)

So β̂ and ε̂ are jointly multivariate normal.

Independence will follow from zero covariance.

Use cov(Ay,By) = Acov(y)B′.
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Normal Model

Independence of β̂ and ε̂, continued
Using cov(Ay,By) = Acov(y)B′

cov
(
β̂, ε̂

)
= cov

(
(X′X)−1X′y, (I−H)y

)
= (X′X)−1X′ σ2In (I−H)′

= σ2(X′X)−1X′(I−H)

= σ2
(
(X′X)−1X′ − (X′X)−1X′H

)
= σ2

(
(X′X)−1X′ − (X′X)−1X′X(X′X)−1X′

)
= σ2

(
(X′X)−1X′ − (X′X)−1X′

)
= O

So β̂ and ε̂ are independent.
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Normal Model

Distribution of SSE/σ2

Using (v − µ)′Σ−1(v − µ) ∼ χ2(p).

Earlier, we found (y −Xβ)′(y −Xβ) = ε̂ ′ε̂ + (β̂ − β)′X′X(β̂ − β).

1
σ2 (y −Xβ)′(y −Xβ) = SSE

σ2 + (β̂ − β)′ 1
σ2 X′X(β̂ − β)

w = w1 + w2

y ∼ Nn(Xβ, σ2In), so

w = (y −Xβ)′
(
σ2In

)−1
(y −Xβ) ∼ χ2(n).

β̂ ∼ Nk+1

(
β, σ2(X′X)−1

)
, so

w2 = (β̂ − β)′
(
σ2(X′X)−1

)−1
(β̂ − β) ∼ χ2(k + 1)

w1 and w2 are independent because β̂ and ε̂ are independent.

So w1 = SSE
σ2 is chi-squared, with degrees of freedom

n− (k + 1) = n− k − 1. �

This result does not depend on the model having an intercept, and it
does not depend on the truth of any null hypothesis.

8 / 37



t distribution

Tests and confidence intervals for a′β
For Gauss-Markov Theorem, it was called `′β.
See Section 8.6 in the text.

Single linear combination of the βj values.

Including any individual βj .

Use the t distribution:

t =
z√
w/ν

∼ t(ν)
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t distribution

Choosing z and w in t = z√
w/ν
∼ t(ν)

β̂ ∼ Nk+1

(
β, σ2(X′X)−1

)
So a′β̂ ∼ N(a′β, . . .)

cov
(
a′β̂
)

= cov
(
a′(X′X)−1X′y

)
= a′(X′X)−1X′cov(y)

(
a′(X′X)−1X′

)′
= a′(X′X)−1X′ σ2In X(X′X)−1a

= σ2 a′(X′X)−1X′X(X′X)−1a

= σ2 a′(X′X)−1a

And a′β̂ ∼ N(a′β , σ2a′(X′X)−1a).

Standardize a′β̂, subtracting off mean and dividing by the
standard deviation.
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t distribution

t = z√
w/ν
∼ t(ν)

a′β̂ ∼ N(a′β , σ2a′(X′X)−1a).

Center and scale:

z =
a′β̂ − a′β√
σ2a′(X′X)−1a)

∼ N(0, 1)

For the denominator, use

w =
SSE

σ2
=

∑n
i=1(yi − ŷi)2

σ2
∼ χ2(n− k − 1)

With z and w independent.
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t distribution

t = z√
w/(n−k−1)

∼ t(n− k − 1)

With z = a′β̂−a′β√
σ2a′(X′X)−1a)

∼ N(0, 1) and w = SSE
σ2 ∼ χ2(n− k − 1),

t =
z√
w/ν

=
a′β̂ − a′β√

σ2a′(X′X)−1a)

/√
SSE

σ2
/(n− k − 1)

=
a′β̂ − a′β√

MSEa′(X′X)−1a)
∼ t(n− k − 1)
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t distribution

The t density

− tα 2 tα 2

α 2 α 2

1 −α

If t ∼ t(df), then P{t > tα/2,df} = α
2 .
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t distribution

Confidence Interval for a′β

− tα 2 tα 2

α 2 α 2

1 −α

1− α = P{−tα/2 < t < tα/2}

= P

{
−tα/2 <

a′β̂ − a′β√
MSE a′(X′X)−1a)

< tα/2

}
...

= P
{

a′β̂ − tα/2
√

MSE a′(X′X)−1a) < a′β

< a′β̂ + tα/2
√

MSE a′(X′X)−1a)
}

Or, a′β̂ ± tα/2
√

MSE a′(X′X)−1a.
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t distribution

Testing H0 : a′β = t0

Controlling (allowing) for High School GPA, does score on the
OSSLT (Ontario Secondary School Literacy Test) predict success
in university?

yi = β0 + β1xi,1 + β2xi,2 + εi
xi,1 = HS GPA
xi,2 = OSSLT
yi = First year university GPA

yi = (β0 + β1xi,1) + β2xi,2 + εi

H0 : β2 = 0.

H0 :
(

0 0 1
) β0

β1
β2

 = 0.
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t distribution

Test Statistic for H0 : a′β = t0

t = a′β̂−a′β√
MSE a′(X′X)−1a)

∼ t(n− k − 1)

If H0 : a′β = t0 is true,

t∗ = a′β̂−t0√
MSE a′(X′X)−1a)

∼ t(n− k − 1).

The most common example is H0 : βj = 0.

Or something like H0 : β1 − β2 = 0, if it makes sense.
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F distribution

Testing several linear combinations simultaneously
Sections 8.2-8.4 in the text, especially 8.4.

Question: Does HS GPA in the first two years help predict university
GPA if you know the HS GPA in years 3 and 4?

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + εi

We are considering two competing models.

The first model has HS GPA for all four years.

The second model has HS GPA for only years 3 and 4.

The second model is obtained from the first, by setting
β1 = β2 = 0.

That’s the null hypothesis.
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F distribution

H0 : β1 = β2 = 0 in matrix form

(
0 1 0 0 0
0 0 1 0 0

) 
β0

β1

β2

β3

β4

 =

(
0
0

)

C β = t

Where C is q × (k + 1), with q ≤ k + 1 and linearly independent rows.
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F distribution

The F Distribution

If w1 ∼ χ2(ν1) and w2 ∼ χ2(ν2) are independent, then

F =
w1/ν1

w2/ν2
∼ F (ν1, ν2)
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F distribution

The general linear test of H0 : Cβ = t

From the formula sheet, If v ∼ Np(µ,Σ), then
Av + c ∼ Nq(Aµ + c,AΣA′), and w = (v − µ)′Σ−1(v − µ) ∼ χ2(p).

β̂ ∼ Nk+1

(
β, σ2(X′X)−1

)
, so Cβ̂ ∼ Nq(Cβ, σ2C(X′X)−1C′), and if

H0 : Cβ = t is true,

w1 = (Cβ̂ − t)′(σ2C(X′X)−1C′)−1(Cβ̂ − t) ∼ χ2(q)

=
1

σ2
(Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)

w2 =
SSE

σ2
∼ χ2(n− k − 1)

F ∗ =
w1/q

w2/(n− k − 1)
∼ F (q, n− k − 1)

This result does not depend on the model having an intercept.
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F distribution

Formula for F ∗

F ∗ =
w1/q

w2/(n− k − 1)

=
1
σ2 (Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)/q

SSE
σ2

/
(n− k − 1)

=
(Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)

q MSE
H0∼ F (q, n− k − 1)
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F distribution

F ∗ = (Cβ̂−t)′(C(X′X)−1C′)−1(Cβ̂−t)
q MSE

H0∼ F (q, n− k − 1)

0

α

Fα
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F distribution

p-value

0 F*
p-value
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F distribution

Logically equivalent null hypotheses

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + εi

H0 : β1 − β2 = 0, β2 − β3 = 0, β3 = 0

⇔ β1 = β2 = β3 = 0

Better hope it does not matter how you state H0!

Theorem: Let A be a q × q non-singular matrix, so that
Cβ = t⇔ ACβ = At. The F ∗ statistic for testing H0 : (AC)β = (At)
is the same as the statistic for testing H0 : Cβ = t.
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F distribution

Proof

Test statistic for H0 : (AC)β = (At) is

F ∗ =
(ACβ̂ −At)′

(
AC(X′X)−1(AC)′

)−1
(ACβ̂ −At)

q MSE

=

(
A(Cβ̂ − t)

)′ (
AC(X′X)−1C′A′

)−1
A(Cβ̂ − t)

q MSE

=
(Cβ̂ − t)′A′

(
AC(X′X)−1C′A′

)−1
A(Cβ̂ − t)

q MSE

=
(Cβ̂ − t)′A′A′−1

(
C(X′X)−1C′

)−1
A−1A(Cβ̂ − t)

q MSE

=
(Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)

q MSE

which is the test statistic for H0 : Cβ = t. �
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F distribution

Does the example fit the pattern H0 : (AC)β = (At) ?
H0 : β1 − β2 = 0, β2 − β3 = 0, β3 = 0⇔ β1 = β2 = β3 = 0

H0 :

 0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0




β0
β1
β2
β3
β4

 =

 0
0
0



Want A

 0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0

 =

 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



Yes:

 1 1 1
0 1 1
0 0 1

 0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0

 =

 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


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F distribution

Linearly equivalent null hypotheses

Two null hypotheses are linearly equivalent if their C matrices are
row equivalent.

Since elementary row operations correspond to multiplication by
invertible matrices, all linearly equivalent null hypotheses yield the
same F statistic for a given set of data.
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F distribution

Full versus Reduced Model Approach
Also sometimes called ‘Extra sum of squares”

Divide the explanatory variables into two subsets, A and B. Want
to test B controlling for A.

For example, A is HS GPA in years 3 and 4; B is HS GPA in years
1 and 2.

Fit a model with both A and B: Call it the Full Model, or the
Unrestricted Model.

Fit a model with just A: Call it the Reduced Model or Restricted
Model.

The restricted model is restricted by the null hypothesis. H0 says
the variables in set B do not matter.

The F -test is an exact likelihood ratio test for comparing the two
models.
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F distribution

When you add the q additional explanatory variables in
set B, R2 can only go up: R2(full) ≥ R2(reduced)

By how much? Basis of the F test.

F ∗ =

(
R2(full)−R2(reduced)

)
/q

(1−R2(full)) /(n− k − 1)

=
SSR(full)−SSR(reduced)

qMSE(full)
H0∼ F (q, n− k − 1)
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F distribution

Theorem 8.4d, page 201

F ∗ =
SSR(full)−SSR(reduced)

qMSE

=
(Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)

qMSE

Proved using matrix-valued Lagrange multipliers. Proof omitted.
This result does not depend on the model having an intercept.
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F distribution

Strength of Relationship: Change in R2 is not enough

F ∗ =

(
R2(full)−R2(reduced)

)
/q

(1−R2(full)) /(n− k − 1)

=

(
n− k − 1

q

)(
p

1− p

)
Where

p =
R2(full)−R2(reduced)

1−R2(reduced)
=

qF ∗

qF ∗ + n− k − 1

Call p the “proportion of remaining variation.”
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Multiple Testing

Multiple Testing

The primary function of hypothesis testing in science is to screen
out random garbage.

Hold probability of Type I error to a low value; α = 0.05 is
traditional.

The distribution theory considers each test in isolation.

But in practice, we carry out lots of tests on a given data set.

If the data are complete random noise, the chance of getting at
least one statistically significant result is quite high.

For ten independent tests, 1− 0.9510 ≈ 0.40. But the tests are
usually not independent.
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Multiple Testing

Bonferroni Correction for Multiple Tests

The curse of a thousand t-tests.

If the null hypotheses of a collection of tests are all true, hold the
probability of rejecting one or more to less than α = 0.05.

Based on Bonferroni’s inequality:

Pr


r⋃
j=1

Aj

 ≤
r∑
j=1

Pr{Aj}

Applies to any collection of r tests.

Assume all r null hypotheses are true.

Event Aj is that null hypothesis j is rejected.

Do the tests as usual, obtaining r test statistics.

For each test, use the significance level α/r instead of α.
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Multiple Testing

Use the significance level α/r instead of α
Bonferroni Correction for r Tests

Assuming all r null hypotheses are true, probability of rejecting at
least one is

Pr


r⋃
j=1

Aj

 ≤
r∑
j=1

Pr{Aj}

=

r∑
j=1

α/r

= α

Just use critical value(s) for α/r instead of α.

Or equivalently, multiply the p-values by r and compare to
α = 0.05.

Call α = 0.05 the joint significance level.
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Multiple Testing

Example

Most (all?) regression software produces

Overall F -test for all the explanatory variables at once:
H0 : β1 = β2 = · · · = βk = 0

t-tests for each regression coefficient, with H0 : βj = 0 for j = 1, . . . , k.

Analysis strategy: First look at the F -test.

If H0 is rejected, it means at least one of the βj are not zero, but which
one(s)?

Now look at the t-tests.

But protect them with a Bonferroni correction for k tests.

With six predictor variables and n = 53, so n− k − 1 = 53− 6− 1 = 46,

> alpha = 0.05

> qt(1-alpha/2,46) # Unprotected critical value.

[1] 2.012896

> a = alpha/6 # Protect for 6 tests

> qt(1-a/2,46) # Bonferroni protected critical value.

[1] 2.757175
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Multiple Testing

Advantages and disadvantages of the Bonferroni
correction

Advantage: Flexibility — Applies to any collection of hypothesis
tests.

Advantage: Easy to do.

Disadvantage: Must know what all the tests are before seeing the
data.

Disadvantage: A little conservative; the true joint significance level
is less than α.
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Multiple Testing

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/302f20
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