
Weighted Least Squares and Generalized Least
Squares1

STA302 Fall 2020

1See last slide for copyright information.
1 / 16



Weighted and Generalized Least Squares
An antidote to unequal variance (of a certain kind)

Example: Aggregated data.Teaching evaluations. Have

Mean ratings y1, . . . , ym

Number of students n1, . . . , nm

Lots of predictor variables.

V ar(yi) =
σ2

ni

2 / 16
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Model: y = Xβ + ε

cov(ε) =


σ2

n1
0 · · · 0

0 σ2

n2
· · · 0

...
...

. . .
...

0 0 · · · σ2

nm



= σ2


1
n1

0 · · · 0

0 1
n2
· · · 0

...
...

. . .
...

0 0 · · · 1
nm


Unknown σ2 times a known matrix.
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Generalize

y = Xβ + ε

cov(ε) = σ2V

V is a known symmetric positive definite matrix.

A good estimate of V can be substituted and everything
works out for large samples.
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Generalized Least Squares
Transform the data.

y = Xβ + ε, with cov(ε) = σ2V

=⇒ V−
1
2y = V−

1
2Xβ + V−

1
2 ε

y∗ = X∗β + ε∗

Same β.

cov(ε∗) = cov(V−
1
2 ε)

= V−
1
2 cov(ε)V−

1
2
′

= V−
1
2 (σ2V)V−

1
2

= σ2I
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Least Squares Estimate for the * Model is B.L.U.E.
y∗ = X∗β + ε∗

By Gauss-Markov, β̂
∗

will beat any other linear
combination of the y∗.

y∗ = V−1/2y.

So any linear combination of the y is a linear combination
of the y∗.

c′y = c′V1/2V−1/2y

= c′V1/2y∗

= c′2y
∗

And β̂
∗

beats it. It’s B.L.U.E. for the original problem.
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Generalized Least Squares
y∗ = X∗β + ε∗

β̂
∗

= (X∗′X∗)−1X∗′y∗

=
(
(V−

1
2X)′(V−

1
2X)

)−1

(V−
1
2X)′V−

1
2y∗

= (X′V−
1
2 ′V−

1
2X)−1X′V−

1
2 ′V−

1
2y

= (X′V−1X)−1X′V−1y

So it is not necessary to literally transform the data.

Convenient expressions for tests and confidence intervals
are only a homework problem away.

β̂
∗

is called the “generalized least squares” estimate of β.

If V is diagonal, it’s called “weighted least squares.”
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Variance Proportional to xi
yi = β0 + β1xi + εi

cov(ε) = σ2


x1 0 · · · 0

0 x2 · · · 0
... ... . . . ...

0 0 · · · xn


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First-order Autoregressive Time Series
Estimate ρ with the first-order sample autocorrelation

cov(ε) = σ2



1 ρ ρ2 ρ3 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

ρ2 ρ 1 ρ · · · ρn−3

ρ3 ρ2 ρ 1 · · · ρn−4

...
...

...
... . . . ...

ρn−1 ρn−2 ρn−3 ρn−4 · · · 1


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An amazing scalar example with no independent
variables

yij
i.i.d.∼ ?(µ, σ2).

Have y1, . . . , ym based on n1, . . . , nm.

yj
·∼ N(µ, σ

2

nj
) by the Central Limit Theorem.

Want to estimate µ.

A natural estimator is the mean of means: µ̂1 = 1
m

∑m
j=1 yj .

E(µ̂1) = µ, so it’s unbiased.

V ar(µ̂1) = σ2

m2

∑m
j=1

1
nj

. Can we do better?

Noting that µ̂1 =
∑m

j=1
1
myj is a linear combination of the

yj with the weights adding to one . . .
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Try Weighted Least Squares

yj = µ+ εj with E(εj) = 0 and V ar(εj) = σ2

nj

It’s a regression with β0 = µ and no explanatory variables.

cov(ε) = σ2


1
n1

0 · · · 0

0 1
n2
· · · 0

...
...

. . .
...

0 0 · · · 1
nm

 = σ2V
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Scalar Calculation

yj = µ+ εj

=⇒ √nj yj =
√
nj µ+

√
nj εj

y∗j = x∗jβ
∗
1 + ε∗j

It’s another regression model.
This time there is no intercept, and µ is the slope.

V ar(ε∗j ) = V ar(
√
nj εj)

= njV ar(εj)

= nj
σ2

nj

= σ2
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Least Squares for Simple Regression through the Origin
y∗j = x∗jβ

∗
1 + ε∗j , with β∗

1 = µ, y∗j =
√
nj yj and x∗j =

√
nj

β̂1
∗

=

∑m
j=1 x

∗
jy
∗
j∑m

j=1 x
∗2
j

=

∑m
j=1
√
nj
√
nj yj∑m

j=1
√
nj

2

=

∑m
j=1 njyj∑m
j=1 nj

=

m∑
j=1

(
nj∑m
`=1 n`

)
yj

A linear combination of the yj ; the weights add to one.

B.L.U.E.
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And not only that, but . . .

β̂1
∗

=

∑m
j=1 njyj∑m
j=1 nj

=

∑m
j=1 nj

∑nj
i=1 yij
nj∑m

j=1 nj

=

∑m
j=1

∑nj

i=1 yij∑m
j=1 nj

=

∑m
j=1

∑nj

i=1 yij

n

So the B.L.U.E. of µ is just the sample mean of all the data.

One more comment is that β̂
∗

= (X′V−1X)−1X′V−1y
yields the same expression.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/302f20
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