STA 302f20 Assignment Three¹

Please do these review questions in preparation for Quiz Three; they are not to be handed in. Use the current formula sheet on the course website. Questions 1-12 are based on material in Chapter 2. Questions 13-25 are based on material in Chapter 3.

- 1. Recall that the *trace* of a square matrix is the sum of diagonal elements. So if $\mathbf{C} = (c_{ij})$ is a $p \times p$ matrix, $tr(\mathbf{C}) = \sum_{j=1}^{p} c_{jj}$. Let \mathbf{A} be a $p \times q$ constant matrix, and let \mathbf{B} be a $q \times p$ constant matrix, so that \mathbf{AB} and \mathbf{BA} are both defined. Prove $tr(\mathbf{AB}) = tr(\mathbf{BA})$.
- 2. Let **A** and **B** be square matrices of constants, with AB = I. Using |AB| = |A| |B|, prove BA = I. Thus when you are showing that a matrix is the inverse of another matrix, you only need to multiply them in one direction and get the identity.
- 3. In the textbook, do Problems 2.28, 2.35 and 2.36.
- 4. In the textbook, do Problem 2.38. It is asking you to show that if the symmetric matrix **A** is positive definite, then $\mathbf{A} = \mathbf{P'P}$ for some non-singular **P**.
- 5. In the textbook, do Problems 2.53 and 2.76.

6. Let
$$\mathbf{A} = \begin{pmatrix} 1.00 & 0.75 & 0.75 & 0.75 \\ 0.75 & 1.00 & 0.75 & 0.75 \\ 0.75 & 0.75 & 1.00 & 0.75 \\ 0.75 & 0.75 & 0.75 & 1.00 \end{pmatrix}$$
. Enter \mathbf{A} into \mathbf{R} using rbind.

- (a) Calculate $|\mathbf{A}^{-1}|$ and $1/|\mathbf{A}|$, verifying that they are equal.
- (b) Calculate $|\mathbf{A}^2|$ and $|\mathbf{A}|^2$, verifying that they are equal.
- (c) Calculate the eigenvalues and eigenvectors of **A**.
- (d) Calculate $\mathbf{A}^{1/2}$. Multiply the matrix by itself to get \mathbf{A} .
- (e) Calculate $\mathbf{A}^{-1/2}$. Multiply the matrix by $\mathbf{A}^{1/2}$ to get the identity.

Display the creation of \mathbf{A} , and also the input and output for each part. Label the output with comments. Be ready to hand in a pdf with the quiz if requested.

- 7. Let A be a square matrix. Show that if the columns of A are linearly dependent, A^{-1} cannot exist. Hint: v cannot be both zero and not zero at the same time.
- 8. Let **a** be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}'\mathbf{a} \ge 0$?

¹This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f20

- 9. Recall the *spectral decomposition* of a square symmetric matrix (For example, a variancecovariance matrix). Any such matrix Σ can be written as $\Sigma = \mathbf{CDC'}$, where \mathbf{C} is a matrix whose columns are the (orthonormal) eigenvectors of Σ , \mathbf{D} is a diagonal matrix of the corresponding eigenvalues, and $\mathbf{C'C} = \mathbf{CC'} = \mathbf{I}$.
 - (a) Let Σ be a square symmetric matrix with eigenvalues that are all strictly positive.
 - i. What is \mathbf{D}^{-1} ?
 - ii. Show $\Sigma^{-1} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$
 - (b) Let Σ be a square symmetric matrix, and this time some of the eigenvalues might be zero.
 - i. What do you think $\mathbf{D}^{1/2}$ might be?
 - ii. Define $\Sigma^{1/2}$ as $\mathbf{CD}^{1/2}\mathbf{C'}$. Show $\Sigma^{1/2}$ is symmetric.
 - iii. Show $\Sigma^{1/2}\Sigma^{1/2} = \Sigma$.
 - (c) Now return to the situation where the eigenvalues of the square symmetric matrix Σ are all strictly positive. Define $\Sigma^{-1/2}$ as $\mathbf{CD}^{-1/2}\mathbf{C}'$, where the elements of the diagonal matrix $\mathbf{D}^{-1/2}$ are the reciprocals of the corresponding elements of $\mathbf{D}^{1/2}$.
 - i. Show that the inverse of $\Sigma^{1/2}$ is $\Sigma^{-1/2}$, justifying the notation. ii. Show $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^{-1}$.
 - (d) The (square) matrix Σ is said to be *positive definite* if $\mathbf{v}' \Sigma \mathbf{v} > 0$ for all vectors $\mathbf{v} \neq \mathbf{0}$. Show that the eigenvalues of a positive definite matrix are all strictly positive.
 - (e) Let Σ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that Σ^{-1} exists.
- 10. Using the Spectral Decomposition Theorem and $tr(\mathbf{AB}) = tr(\mathbf{BA})$, prove that the trace is the sum of the eigenvalues for a symmetric matrix.
- 11. Using the Spectral Decomposition Theorem and $|\mathbf{AB}| = |\mathbf{BA}|$, prove that the determinant of a symmetric matrix is the product of its eigenvalues.
- 12. Prove that the diagonal elements of a positive definite matrix must be positive. Hint: Can you describe a vector \mathbf{v} such that $\mathbf{v}' \mathbf{A} \mathbf{v}$ picks out the *j*th diagonal element?
- 13. Let **X** be a random matrix, and **B** be a matrix of constants. Show $E(\mathbf{XB}) = E(\mathbf{X})\mathbf{B}$.
- 14. Do Problem 3.10 in the text.
- 15. Let the $p \times 1$ random vector **x** have expected value μ and variance-covariance matrix Σ , and let **A** be an $m \times p$ matrix of constants. Prove that the variance-covariance matrix of **Ax** is either
 - $\mathbf{A}\Sigma\mathbf{A}'$, or
 - $\mathbf{A}^2 \mathbf{\Sigma}$..

Pick one and prove it. Start with the definition of a variance-covariance matrix on the formula sheet. If the two expressions are equal, say so.

- 16. Let the $p \times 1$ random vector **y** have expected value μ and variance-covariance matrix Σ . Find $cov(\mathbf{Ay}, \mathbf{By})$, where A and B are matrices of constants.
- 17. Let **x** be a $p \times 1$ random vector. Starting with the definition on the formula sheet, prove $cov(\mathbf{x}) = \mathbf{0}$..
- 18. Let the $p \times 1$ random vector **x** have mean μ and variance-covariance matrix Σ , let **A** be an $r \times p$ matrix of constants, and let **c** be an $r \times 1$ vector of constants. Find $cov(\mathbf{Ax} + \mathbf{c})$. Show your work.
- 19. Comparing the definitions, one can see that viewing a scalar random variable as a 1×1 random vector, the variance-covariance matrix is just the ordinary variance. Accordingly, let the scalar random variable $Y = \mathbf{v}'\mathbf{x}$, where \mathbf{x} is a $p \times 1$ random vector with covariance matrix $\mathbf{\Sigma}$, and \mathbf{v} is a $p \times 1$ vector of constants. What is Var(Y)? Why does this tell you that any variance-covariance matrix must be positive semi-definite?
- 20. Using definitions on the formula sheet and other material from this assignment,
 - (a) Show that the eigenvalues of a variance-covariance matrix cannot be negative.
 - (b) How do you know that the determinant of a variance-covariance matrix must be greater than or equal to zero? The answer is one short sentence.
 - (c) Let X and Y be scalar random variables. Recall $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$. Using what you have shown about the determinant, show $-1 \leq Corr(X,Y) \leq 1$. You have just proved the Cauchy-Schwarz inequality.
- 21. Let **x** be a $p \times 1$ random vector with mean μ_x and variance-covariance matrix Σ_x , and let **y** be a $q \times 1$ random vector with mean μ_y and variance-covariance matrix Σ_y .
 - (a) What is the (i, j) element of $\Sigma_{xy} = cov(\mathbf{x}, \mathbf{y})$?
 - (b) Find an expression for $cov(\mathbf{x} + \mathbf{y})$ in terms of Σ_x , Σ_y and Σ_{xy} . Show your work.
 - (c) Simplify further for the special case where $Cov(X_i, Y_i) = 0$ for all i and j.
 - (d) Let **c** be a $p \times 1$ vector of constants and **d** be a $q \times 1$ vector of constants. Find $cov(\mathbf{x} + \mathbf{c}, \mathbf{y} + \mathbf{d})$. Show your work.
- 22. Let the random vectors \mathbf{x}_1 and \mathbf{x}_2 be $p \times 1$, and the random vectors \mathbf{y}_1 and \mathbf{y}_2 be $p \times 1$, with $E(\mathbf{x}_1) = \boldsymbol{\mu}_1$, $E(\mathbf{x}_2) = \boldsymbol{\mu}_2$, $E(\mathbf{y}_1) = \boldsymbol{\mu}_3$, $E(\mathbf{y}_2) = \boldsymbol{\mu}_4$. Show that the $p \times q$ matrix of covariances $cov(\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}_1 + \mathbf{y}_2) = cov(\mathbf{x}_1, \mathbf{y}_1) + cov(\mathbf{x}_1, \mathbf{y}_2) + cov(\mathbf{x}_2, \mathbf{y}_1) + cov(\mathbf{x}_2, \mathbf{y}_2)$.
- 23. Starting with the definition on the formula sheet, show $cov(\mathbf{x}, \mathbf{y}) = cov(\mathbf{y}, \mathbf{x})$.
- 24. Starting with the definition on the formula sheet, show $cov(\mathbf{x}, \mathbf{y}) = \mathbf{0}$.
- 25. Do problem 3.20 in the text. The answer is in the back of the book.