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Moment-generating Functions

Joint moment-generating function

Of a p-dimensional random vector x

o My(t)=F (et/x)

— x1t1+x2ta+x3t
o For example, M(;cl,xg,xg)(tl»t%ts) = F (e 1t1+aata a3 3)

Section 4.3 of Linear models in statistics has some material on
moment-generating functions (optional).
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Moment-generating Functions

Two big theorems
Proof omitted

@ Joint moment-generating functions correspond uniquely to
joint probability distributions.

© Two random vectors x; and xo are independent if and only
if the moment-generating function of their joint distribution
is the product of their moment-generating functions.

These results assume only that the moment-generating

functions exist in a neighborhood of t = 0. Nothing else is
required.



Mome ng Functions

&

A helpful distinction

o If 1 and zo are independent,

M., (t)=M, ()M, (t)

z1+wg z1 z2

e x1 and x9 are independent if and only if

M, ., (t1,t2) = M, (t1)M,, (t2)

Tq,T9



Moment-generating Functions

Theorem: Functions of independent random vectors are

independent

Show x; and x3 independent implies that y; = ¢1(x1) and
y2 = g2(x2) are independent.

1) 2 (9609 oo () i
My(t) = (a’)
B (e
B (

Let

1y1+t2y2) - E (etllyletIQyZ)

e 191(x1)et292(x2))

= // etllg1 (xl)etégz (x2)fx1 (Xl)fxg (Xz) d(Xl)d(Xz)

Mgl(xl) (tl)M92<x2) (t2)
= My, (tl)My2 (t2)

So y1 and y2 are independent. 6 / 3¢



g Functions

Mo(t) = My(A't)

Analogue of My (t) = M, (at)

Me(t) = E(et’AX)
_ B (G(A’t)/X)
= My (A't)

Note that t is the same length as y = Ax: The number of rows
in A.



ing Functions

Myie(t) = et My (t)

Analogue of M, .(t) = e M, (t)

Mx+c<t> — E(et/(x—i—c))
_ £ ( et’x+t’c>

_ tep ( 6t’x)

= VM (t)



Definition

Distributions may be defined in terms of

moment-generating functions

Build up the multivariate normal from univariate normals.
o If y ~ N(u,0?), then M, (t) = eht+30%t

o Moment-generating functions correspond uniquely to
probability distributions.

@ So define a normal random variable with expected value p

and variance o2 as a random variable with
. . ut+10'2t2
moment-generating function e**" 2 .

o This has one surprising consequence . ..
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Definition

Degenerate random variables

A degenerate random variable has all the probability

concentrated at a single value, say Pr{y = yo} = 1. Then
M (t) = E(e')

=) eply)

= e - p(yp)
= e .1

eyot
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Definition

If Pr{y =y} = 1, then M (t) = e%’

o This is of the form e®+37°t" with p =1 and 0% = 0.
So y ~ N(yo,0).

That is, degenerate random variables are “normal” with
variance zero.

Call them singular normals.

This will be surprisingly handy later.



Definition

Independent standard normals




Definition

Moment-generating function of z
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Definition

Transform z to get a general multivariate normal
Remember: A non-negative definite means v/ Av > 0

Let X be a p x p symmetric non-negative definite matrix and
peRP. Let y = X2z + p.
@ The elements of y are linear combinations of independent
standard normals.
o Linear combinations of normals should be normal.
e y has a multivariate distribution.

o We'd like to call y a multivariate normal.



Definition

Moment-generating function of y = %12z + p
Remember: Max(t) = Mx(A't) and Mxyc(t) = etlcl\[x(t) and M, (t) = et

My(t) = M21/2z+u(t)
= etqul/Qz(t)
= MM (BY?')
= MM (Y2

et/p‘ e%(ZI/Qt)/(EI/Qt)
_ et/N eétlzl/Qzl/Qt

ot H B%t/zt

/ 14/

So define a multivariate normal random Var}able y as one with
moment-generating function M (t) = ettt ezt’>t,



Definition

Compare univariate and multivariate normal

moment-generating functions

. . 1 242
Univariate M, (t) = et +277"

Multivariate M, (t) = et 1 o3t St

So the univariate normal is a special case of the multivariate
normal with p = 1.

16 / 36



Mean and covariance matrix

For a univariate normal, E(y) = p and Var(y) = o

2]

Recall y = 12z + p.

Ey) = n
covly) = $Y%cov(z)sV/?
$1/2 [ y1/2
= X

We will say y is multivariate normal with expected value p and
variance-covariance matrix X, and write y ~ Np(u, X).

Note that because M, (t) = et'H ezt St p and X completely
determine the distribution.
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Properties

Probability density function of y ~ N,(u, X)

Remember, ¥ is only positive semi-definite.

It is easy to write down the density of z ~ N,(0,I) as a product
of standard normals.

If 3 is strictly positive definite (and not otherwise), the density
of y = ¥1/2z + p can be obtained using the Jacobian Theorem
as

SRS G VRN
0= g g wS )

This is usually how the multivariate normal is defined.
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Y. positive definite?

o Positive definite means that for any non-zero p x 1 vector
a, we have a’Ya > 0.

e Since the one-dimensional random variable w = >"Y_; a;y;
may be written as W = a’y and
Var(w) = cov(a’y) = a’Xa, it is natural to require that X
be positive definite.

o All it means is that every non-zero linear combination of y
values has a positive variance. Often, this is what you want.
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Properties

Singular normal: X is positive semi-definite.

Suppose there is a # 0 with a’Ya = 0. Let w = a'y.

e Then Var(w) = Var(a'y) = a’¥a = 0. That is, w has a
degenerate distribution (but it’s still still normal).

o In this case we describe the distribution of y as a singular
multivariate normal.

o Including the singular case saves a lot of extra work in later
proofs.

o We will insist that a singular multivariate normal is still
multivariate normal, even though it has no density.



Properties

Distribution of Ay

Recall y ~ Np(p, X) means M, (t) = et/ H ot/

Let y ~ Np(p, %), and w = Ay, where A is an 7 X p matrix.

M, (t) = M, (t)
= M (A't)

oAt 3 (A't)T(A'L)

_ ot(An) e%t’(AEA’)t

_ et’(Au)Jr%t’(AZA’)t

Recognize moment-generating function and conclude

w ~ N, (Ap, ASA)
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Exercise

Use moment-generating functions, of course.

Let y ~ Ny(p, X).

Show y + ¢ ~ N,(p + ¢, X).



Properties

Zero covariance implies independence for the

multivariate normal.

o Independence always implies zero covariance.

o For the multivariate normal, zero covariance also implies
independence.

@ The multivariate normal is the only continuous distribution
with this property.



Properties

Show zero covariance implies independence
By showing My (t) = My, (t1) My, (t2)

Let y ~ N(u,X), with
yi [ 1|0 t1>
() w-() -G

My(t) = E ()

V]



. . . y / 14/
Continuing the calculation: M, (t) = et#Tat>t

y

) »-( o) -

1 5./ 0 b
_ t/ t/ Hq 1 1:/ t/ 1
exp { #1160) () e { le2) () (2
/ / 1 t
— tip+Htopg - t'Z t/Z 1
[ exp{2 ( 1 1| 2 2) 71:2

t] 4 1
= e S Ra T exp {5 (tllzlfq =+ t/222t2)}
etii gtaka o3 (E1T1t1) L3 (65%0t2)

thpy+3(E15161) Jthpat 3 (85 ata)
e e

= My, (tl)Myz (t2)

So y1 and y» are independent.

)
w
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An easy example
If you do it the easy way

Let y1 ~ N(1,2), y2 ~ N(2,4) and y3 ~ N(6,3) be independent,
with w; = y1 + y2 and ws = ys + y3. Find the joint distribution
of w1 and ws.

w\ (110 a
wy ) L0 11 Y2
Y3

w=Ay ~ N(Au, AXA")
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w = Ay ~ N(Ap, ALA)

y1 ~ N(1,2), y2 ~ N(2,4) and y3 ~ N(6,3) are independent

1
110 3
A“_<011> 2 _<8>
6
2.0 0 10
AYA = (1)1(1)>040 11
00 3 0 1
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Properties

Marginal distributions are multivariate normal
v~ Np(p,X), sow = Ay ~ N(Ap, ATA")

Find the distribution of

U1
0100 Y2 1 [ Y
0001 ys |\ v
Ya

Bivariate normal. The expected value is easy.

28 /36



Properties

Covariance matrix

cov(Ay) = AXA

2
o] 012 013 014 0 0
(0100 o192 03 023 024 10
0001 013 023 03 O34 0 0
2
014 024 034 Of 0 1
0 0
2
B O12 05 023 024 1 0
= 2
014 024 034 Of 0 0
01

2
_ O3 024
- 2
0'274 0'4

Marginal distributions of a multivariate normal are multivariate
normal, with the original means, variances and covariances.



Summary

e If ¢ is a vector of constants, x + ¢ ~ N(c+ u,X)
e If A is a matrix of constants, Ax ~ N(Au, ALA")

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of x are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.



\‘~ and t distr

Showing (x — p)'Y 7 1(x — p) ~ x2(p)

Y has to be positive definite this time

x ~ N(pX)
y=x ~ N (0, %)
z2=Y"1y ~ N(o,z—%zz—%)
_ N(O,E’%E% 2%2*%>
— N(0,1)

So z is a vector of p independent standard normals, and
1 1 P
ySly = (S 2y) (S 2y) =22=) 27 ~x*(p) n
j=1
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\‘~ and t distributions

7 and s? independent

T1,...,%n e N (u, crz)

1 —X
T

Tn

Note A is (n + 1) x n, so cov(Ax) = 02AA’ is (n +1) x (n+1),
singular.
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\‘~ and t distributions

The argument

@ y is multivariate normal.
e Cov(Z,(x; — 7)) =0 (Exercise)
e So T and ys are independent.

e So 7 and S? = g(y2) are independent. W



Leads to the ¢ distribution

If
e 2~ N(0,1) and
o y~ x%(v) and

e z and y are independent, then




\‘~ and t distr

Random sample from a normal distribution

Let z1,..., %, b N(u,0?). Then
° @ ~ N(0,1) and
° %712)52 ~ x?(n —1) and

o These quantities are independent, so
V(@ —p)/o
Y [C=TET

A
= th(n—l)

T —




\‘~ and t distributions

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:

http://www.utstat.toronto.edu/ ~brunner/oldclass/302f16
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