Chapter One of *Regression Analysis*: Overview¹ STA302 Fall 2016

¹See last slide for copyright information.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where

 x_1, \ldots, x_n are observed, known constants. $\epsilon_1, \ldots, \epsilon_n$ are random variables satisfying the *Gauss-Markov conditions*.

$$\begin{split} E(\epsilon_i) &= 0\\ Var(\epsilon_i) &= \sigma^2\\ Cov(\epsilon_i,\epsilon_j) &= 0 \text{ for } i \neq j. \end{split}$$
 $\beta_0, \ \beta_1 \text{ and } \sigma^2 \text{ are unknown constants with } \sigma^2 > 0. \end{split}$

- The random variable y has a distribution that depends on the parameter θ .
- How can we estimate θ from data y_1, \ldots, y_n ?
- The expected value E(y) is a function of θ .
- Write it $E_{\theta}(y)$.
- Estimate θ by the value that gets the observed data values as close as possible to their expected values.
- Minimize

$$S = \sum_{i=1}^{n} \left(y_i - E_{\theta}(y_i) \right)^2$$

over all θ .

• The value of θ that minimizes S is the *least squares* estimate.

- Model equation is $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- $E(y_i) = \beta_0 + \beta_1 x_i$
- Minimize $\mathcal{S} = \sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i)^2$ over $\theta = (\beta_0, \beta_1)$.
- Take partial derivatives, set to zero, solve two equations in two unknowns.
- Least squares estimate of β_0 is b_0 . Least squares estimate of β_1 is b_1 .

Vocabulary and concepts A preview of almost the entire course

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

- Linear regresson means linear in the β parameters.
- Polynomial regression $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$, etc.
- Centered model $y_i = (\beta_0 + \beta_1 \overline{x}) + \beta_1 (x_i \overline{x}) + \epsilon_i$
- Predicted value $\hat{y}_i = b_0 + b_1 x_i$
- Residual $e_i = y_i \hat{y}_i$
- Plotting residuals (p.5) to diagnose problems with the model.
- Gauss-Markov conditions.
- Measure of model fit \mathbb{R}^2
- Mean and variance of b_0 and b_1 .
- Confidence intervals and tests.
- Predicting future observations.

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f16