
STA 302f16 Assignment Three1

Please bring your R printout from Question 3 to the quiz; you may be asked to hand it in,
or maybe not. The other problems are preparation for the quiz in tutorial, and are not to
be handed in.

This exercise set has an unusual feature. Some of the questions ask you to prove things
that are false. That is, they are not true in general. In such cases, just write “The statement
is false,” and give a brief explanation to make it clear that you are not just guessing. The
explanation is essential for full marks. Sometimes a small counter-example is desirable.

1. Please read pages 11-19 in the textbook. In Section 1.7, the measure of model fit R2

is presented without much explanation. The idea is that
∑n

i=1(yi − y)2 represents the
sum of squared vertical distances of the points on a scatterplot from a horizontal line
with slope zero and intercept y. Mathematically this could be the best fitting line,
but in practice the line y = b0 + b1x is going to do better. That is,

∑n
i=1(yi − ŷi)2 =∑n

i=1 e
2
i ≤

∑n
i=1(yi − y)2, so that 0 ≤

∑n
i=1 e

2
i∑n

i=1(yi−y)2
≤ 1. Small values of this ratio

represent good performance of the least squares line relative to the horizontal line. It
could be described as an index of “lack of fit,” because big values indicate relatively

poor performance. Thus, R2 = 1 −
∑n

i=1 e
2
i∑n

i=1(yi−y)2
is a measure of good fit. Why it’s

something squared will be taken up later.

(a) Prove that the least squares line must always pass through the point (x, y), re-
gardless of the data.

(b) Show the work leading to (1.28). Use the formula sheet.

(c) Do Exercise 1.2.

(d) Do Exercise 1.4, but only the expected value, not the variance. The variance is
much easier with matrices.

(e) Do Exercise 1.5. Answer all three parts of the question.

(f) Do both parts of Exercise 1.8. You don’t have to do all the work of differentiating
and solving again. Start with (1.11) and (1.14), and keep simplifying.

2. Let A =

(
1 2
2 4

)
B =

(
0 2
2 1

)
C =

(
2 0
1 2

)
(a) Calculate AB and AC

(b) Do we have AB = AC? Answer Yes or No.

(c) Prove B = C.. Show your work.

1Copyright information is at the end of the last page.
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3. Make up a your own 4× 4 symmetric matrix that is not singular (that is, the inverse
exists), and is not a diagonal matrix. If your first try is singular, try again. Call it A.
Enter it into R using rbind (see lecture slides). Make sure to display the input. Then,

(a) Calculate |A−1| and 1/|A|, verifying that they are equal.

(b) Calculate |A2| and |A|2, verifying that they are equal.

(c) Calculate the eigenvalues and eigenvectors of A.

(d) Calculate A1/2.

(e) Calculate A−1/2.

Display both input and output for each part. Label the output with comments. Bring
the printout to the quiz.

4. Recall the definition of linear independence. The columns of X are said to be linearly
dependent if there exists a p × 1 vector v 6= 0 with Xv = 0. We will say that the
columns of X are linearly independent if Xv = 0 implies v = 0. Let A be a square
matrix. Show that if the columns of A are linearly dependent, A−1 cannot exist. Hint:
v cannot be both zero and not zero at the same time.

5. Let a be an n× 1 matrix of real constants. How do you know a′a ≥ 0?

6. Recall the spectral decomposition of a square symmetric matrix (For example, a variance-
covariance matrix). Any such matrix Σ can be written as Σ = CDC′, where C is a
matrix whose columns are the (orthonormal) eigenvectors of Σ, D is a diagonal matrix
of the corresponding eigenvalues, and C′C = CC′ = I.

(a) Let Σ be a square symmetric matrix with eigenvalues that are all strictly positive.

i. What is D−1?

ii. Show Σ−1 = CD−1C′

(b) Let Σ be a square symmetric matrix, and this time some of the eigenvalues might
be zero.

i. What do you think D1/2 might be?

ii. Define Σ1/2 as CD1/2C′. Show Σ1/2 is symmetric.

iii. Show Σ1/2Σ1/2 = Σ.

(c) Now return to the situation where the eigenvalues of the square symmetric matrix
Σ are all strictly positive. Define Σ−1/2 as CD−1/2C′, where the elements of the
diagonal matrix D−1/2 are the reciprocals of the corresponding elements of D1/2.

i. Show that the inverse of Σ1/2 is Σ−1/2, justifying the notation.

ii. Show Σ−1/2Σ−1/2 = Σ−1.
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(d) The (square) matrix Σ is said to be positive definite if v′Σv > 0 for all vectors
v 6= 0. Show that the eigenvalues of a positive definite matrix are all strictly
positive.

(e) Let Σ be a symmetric, positive definite matrix. Putting together a couple of
results you have proved above, establish that Σ−1 exists.

7. Prove that the diagonal elements of a positive definite matrix must be positive.

8. Using the Spectral Decomposition Theorem and tr(AB) = tr(BA), prove that the
trace is the sum of the eigenvalues for a symmetric matrix.

9. Using the Spectral Decomposition Theorem and |AB| = |BA|, prove that the deter-
minant of a symmetric matrix is the product of its eigenvalues.

10. Let X = [Xij] be a random matrix. Show E(X′) = E(X)′.

11. Let X be a random matrix, and B be a matrix of constants. Show E(XB) = E(X)B.
Recall the definition AB = [

∑
k ai,kbk,j].

12. Let the p× 1 random vector x have expected value µ and variance-covariance matrix
Σ, and let A be an m × p matrix of constants. Prove that the variance-covariance
matrix of Ax is either

• AΣA′, or

• A2Σ..

Pick one and prove it. Start with the definition of a variance-covariance matrix on the
formula sheet.

13. If the p × 1 random vector x has mean µ and variance-covariance matrix Σ, show
Σ = E(XX′)− µµ′.

14. Let x be a p × 1 random vector. Starting with the definition on the formula sheet,
prove cov(x) = 0..

15. Let the p × 1 random vector x have mean µ and variance-covariance matrix Σ, let
A be an r × p matrix of constants, and let c be an r × 1 vector of constants. Find
cov(Ax + c). Show your work.

16. Let the scalar random variable y = v′x, where x is a p × 1 random vector. What
is V ar(y)? Use this to prove that any variance-covariance matrix must be positive
semi-definite.
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17. The square matrix A has an eigenvalue equal to λ with corresponding eigenvector
x 6= 0 if Ax = λx.

(a) Show that the eigenvalues of a variance-covariance matrix cannot be negative.

(b) How do you know that the determinant of a variance-covariance matrix must be
greater than or equal to zero? The answer is one short sentence.

(c) Let x and y be scalar random variables. Recall Corr(x, y) = Cov(x,y)√
V ar(x)V ar(y)

. Using

what you have shown about the determinant, show −1 ≤ Corr(x, y) ≤ 1. You
have just proved the Cauchy-Schwarz inequality using probability tools.

18. Let x be a p× 1 random vector with mean µx and variance-covariance matrix Σx, and
let y be a q × 1 random vector with mean µy and variance-covariance matrix Σy.

(a) What is the (i, j) element of cov(x,y)? See the definition on the formula sheet.

(b) Find an expression for cov(x + y) in terms of Σx, Σy and cov(x,y). Show your
work.

(c) Simplify further for the special case where Cov(xi, yj) = 0 for all i and j.

(d) Let c be a p × 1 vector of constants and d be a q × 1 vector of constants. Find
cov(x + c,y + d). Show your work.

(e) Starting with the definition on the formula sheet, show cov(x,y) = cov(y,x)..

(f) Starting with the definition on the formula sheet, show cov(x,y) = 0..

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, Uni-
versity of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0
Unported License. Use any part of it as you like and share the result freely. The LATEX source
code is available from the course website: http://www.utstat.toronto.edu/∼brunner/oldclass/302f16
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