STA 302f15 Assignment Eight¹

In the general linear model, assume that $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ Also assume that the columns of the **X** matrix are linearly independent, so that the formulas for $\hat{\boldsymbol{\beta}}$ and related quantities apply. You may use anything from the formula sheet unless you are explicitly asked to prove it, or are instructed otherwise. Use moment-generating functions *only* if the question directly asks you to do it.

- 1. Label each of the following statements True (meaning always true) or False (meaning not always true), and show your work or explain.
 - (a) $\widehat{\mathbf{y}} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$
 - (b) $\mathbf{y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \widehat{\boldsymbol{\epsilon}}.$
 - (c) $\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \widehat{\boldsymbol{\epsilon}}$
 - (d) $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$
 - (e) $\mathbf{X}' \boldsymbol{\epsilon} = \mathbf{0}$
 - (f) $(\mathbf{y} \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} \mathbf{X}\boldsymbol{\beta}) = \boldsymbol{\epsilon}'\boldsymbol{\epsilon}.$
 - (g) $\hat{\boldsymbol{\epsilon}}' \hat{\boldsymbol{\epsilon}} = \mathbf{0}$
 - (h) $\widehat{\boldsymbol{\epsilon}}' \widehat{\boldsymbol{\epsilon}} = \mathbf{y}' \widehat{\boldsymbol{\epsilon}}.$
 - (i) $W = \frac{\epsilon' \epsilon}{\sigma^2}$ has a chi-squared distribution.
 - (j) $E(\boldsymbol{\epsilon}'\boldsymbol{\epsilon}) = 0$
 - (k) $E(\widehat{\boldsymbol{\epsilon}}' \widehat{\boldsymbol{\epsilon}}) = 0$
- 2. What is the distribution of $\mathbf{s}_1 = \mathbf{X}' \boldsymbol{\epsilon}$? Show the calculation of expected value and variance-covariance matrix.
- 3. What is the distribution of $\mathbf{s}_2 = \mathbf{X}' \hat{\boldsymbol{\epsilon}}$?
 - (a) Answer the question.
 - (b) Show the calculation of expected value and variance-covariance matrix.
 - (c) Is this a surprise? Answer Yes or No.
 - (d) What is the probability that $s_2 = 0$? The answer is a single number.

¹Copyright information is at the end of the last page.

- 4. The following are some distribution facts you are expected to know. Just give the answers. Only re-derive them if you can't remember.
 - (a) Let $X \sim N(\mu, \sigma^2)$ and Y = aX + b, where a and b are constants. What is the distribution of Y?
 - (b) Let $X \sim N(\mu, \sigma^2)$ and $Z = \frac{X-\mu}{\sigma}$. What is the distribution of Z?
 - (c) Let $Z \sim N(0, 1)$. What is the distribution of $Y = Z^2$?
 - (d) Let X_1, \ldots, X_n independent $N(\mu, \sigma^2)$ random variables. What is the distribution of the sample mean \overline{X} ?
 - (e) Let X_1, \ldots, X_n independent $N(\mu, \sigma^2)$ random variables. What is the distribution of $Z = \frac{\sqrt{n}(\overline{X} \mu)}{\sigma}$?
 - (f) Let W_1, \ldots, W_n be independent $\chi^2(1)$ random variables. What is the distribution of $Y = \sum_{i=1}^n W_i$?
 - (g) Let X_1, \ldots, X_n independent $N(\mu, \sigma^2)$ random variables. What is the distribution of $Y = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu)^2$?
 - (h) Let $Y = X_1 + X_2$, where X_1 and X_2 are independent, $X_1 \sim \chi^2(\nu_1)$ and $Y \sim \chi^2(\nu_1 + \nu_2)$, where ν_1 and ν_2 are both positive. What is the distribution of X_2 ?
- 5. In an earlier Assignment, you proved that

$$(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = \widehat{\boldsymbol{\epsilon}}' \, \widehat{\boldsymbol{\epsilon}} + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

Starting with this expression, show that $SSE/\sigma^2 \sim \chi^2(n-k-1)$. Use the formula sheet.

6. The *t* distribution is defined as follows. Let $Z \sim N(0, 1)$ and $W \sim \chi^2(\nu)$, with *Z* and *W* independent. Then $T = \frac{Z}{\sqrt{W/\nu}}$ is said to have a *t* distribution with ν degrees of freedom, and we write $T \sim t(\nu)$.

For the general fixed effects linear regression model, tests and confidence intervals for linear combinations of regression coefficients are very useful. Derive the appropriate t distribution and some applications by following these steps. Let **a** be a $p \times 1$ vector of constants.

- (a) What is the distribution of $\mathbf{a}'\widehat{\boldsymbol{\beta}}$? Show a little work. Your answer includes both the expected value and the variance.
- (b) Now standardize the difference (subtract off the mean and divide by the standard deviation) to obtain a standard normal.
- (c) Divide by the square root of a well-chosen chi-squared random variable, divided by its degrees of freedom, and simplify. Call the result T.
- (d) How do you know numerator and denominator are independent?

- (e) Suppose you wanted to test H_0 : $\mathbf{a}'\boldsymbol{\beta} = c$. Write down a formula for the test statistic.
- (f) For a regression model with four independent variables, suppose you wanted to test $H_0: \beta_2 = 0$. Give the vector **a**.
- (g) For a regression model with four independent variables, suppose you wanted to test $H_0: \beta_1 = \beta_2$. Give the vector **a**.
- (h) Letting $t_{\alpha/2}$ denote the point cutting off the top $\alpha/2$ of the *t* distribution with n k 1 degrees of freedom, derive the $(1 \alpha) \times 100\%$ confidence interval for $\mathbf{a}'\boldsymbol{\beta}$. "Derive" means show the High School algebra.
- 7. For a multiple regression model with an intercept, let $SST = \sum_{i=1}^{n} (Y_i \overline{Y})^2$, $SSE = \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$ and $SSR = \sum_{i=1}^{n} (\widehat{Y}_i \overline{Y})^2$, show SST = SSR + SSE.
- 8. Still for a multiple regression model with an intercept, show that \overline{Y} is a function of $\hat{\beta}$. Why does this establish that SSR and SSE are independent?
- 9. Continue assuming that the regression model has an intercept. If $H_0: \beta_1 = \cdots = \beta_k = 0$ is true,
 - (a) What is the distribution of Y_i ?
 - (b) What is the distribution of $\frac{SST}{\sigma^2}$? Just write down the answer. You already did it in Assignment 2, and again in Assignment 5.
- 10. Still assuming $H_0: \beta_1 = \cdots = \beta_k = 0$ is true, what is the distribution of SSR/σ^2 ? Use the formula sheet and show your work.
- 11. Recall the definition of the F distribution. If $W_1 \sim \chi^2(\nu_1)$ and $W_2 \sim \chi^2(\nu_2)$ are independent, $F = \frac{W_1/\nu_1}{W_2/\nu_2} \sim F(\nu_1, \nu_2)$. Show that $F = \frac{SSR/k}{SSE/(n-k-1)}$ has an F distribution under $H_0: \beta_1 = \cdots = \beta_k = 0$? Refer to the results of questions above as you use them.
- 12. The null hypothesis $H_0: \beta_1 = \cdots = \beta_k = 0$ is less and less believable as \mathbb{R}^2 becomes larger. Show that the F statistic of Question 11 is an increasing function of \mathbb{R}^2 for fixed n and k. This mean it makes sense to reject H_0 for large values of F.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f15