STA 302f15 Assignment Three¹

For this assignment, Chapter 2 in the text contains material on matrix algebra. You are responsible for what is in this assignment, not everything that's in the text. Questions 2 and 3 are to be done with R. Please print the two sets of R output on separate pieces of paper. You may be asked to hand one of them in, but not the other. Except for the R parts, these problems are preparation for the quiz in tutorial on Friday October 1st, and are not to be handed in.

Remember that the R parts are **not group projects**. Do the work yourself. Don't help anybody until you are finished. Don't help anybody who has not started yet. <u>Never</u> look at anyone else's code or let anyone look at yours.

- In the textbook, do Problems 2.27, 2.28, 2.35, 2.36, 2.37, 2,38 (Prove the "if" part too), 2.53, 2.76.
- 2. In the textbook, do 2.14 a, e, g, and m using R. Show both input (creation of the matrices) and output. Label the output (give letters) using comments. Bring the printout to the quiz.
- 3. Make up a your own 4×4 symmetric matrix that is not singular (that is, the inverse exists), and is *not a diagonal matrix*. If your first try is singular, try again. Call it **A**. Enter it into R using **rbind** (see lecture slides). Make sure to display the input. Then,
 - (a) Calculate $|\mathbf{A}^{-1}|$ and $1/|\mathbf{A}|$, verifying that they are equal.
 - (b) Calculate $|\mathbf{A}^2|$ and $|\mathbf{A}|^2$, verifying that they are equal.
 - (c) Calculate the eigenvalues and eigenvectors of **A**.
 - (d) Calculate $\mathbf{A}^{1/2}$.
 - (e) Calculate $\mathbf{A}^{-1/2}$.

Display both input and output for each part. Label the output with comments. Bring the printout to the quiz.

- 4. Recall the definition of linear independence. The columns of **X** are said to be *linearly dependent* if there exists a $p \times 1$ vector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X}\mathbf{v} = \mathbf{0}$. We will say that the columns of **X** are linearly *independent* if $\mathbf{X}\mathbf{v} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$. Let **A** be a square matrix. Show that if the columns of **A** are linearly dependent, \mathbf{A}^{-1} cannot exist. Hint: **v** cannot be both zero and not zero at the same time.
- 5. Let **a** be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}'\mathbf{a} \ge 0$?
- 6. Recall the spectral decomposition of a square symmetric matrix (For example, a variancecovariance matrix). Any such matrix Σ can be written as $\Sigma = \mathbf{CDC'}$, where \mathbf{C} is a matrix whose columns are the (orthonormal) eigenvectors of Σ , \mathbf{D} is a diagonal matrix of the corresponding eigenvalues, and $\mathbf{C'C} = \mathbf{CC'} = \mathbf{I}$.
 - (a) Let Σ be a square symmetric matrix with eigenvalues that are all strictly positive.
 - i. What is \mathbf{D}^{-1} ?
 - ii. Show $\Sigma^{-1} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$

¹Copyright information is at the end of the last page.

- (b) Let Σ be a square symmetric matrix, and this time some of the eigenvalues might be zero.
 - i. What do you think $\mathbf{D}^{1/2}$ might be?
 - ii. Define $\Sigma^{1/2}$ as $\mathbf{CD}^{1/2}\mathbf{C'}$. Show $\Sigma^{1/2}$ is symmetric.
 - iii. Show $\Sigma^{1/2}\Sigma^{1/2} = \Sigma$.
- (c) Now return to the situation where the eigenvalues of the square symmetric matrix Σ are all strictly positive. Define $\Sigma^{-1/2}$ as $\mathbf{CD}^{-1/2}\mathbf{C}'$, where the elements of the diagonal matrix $\mathbf{D}^{-1/2}$ are the reciprocals of the corresponding elements of $\mathbf{D}^{1/2}$.
 - i. Show that the inverse of $\Sigma^{1/2}$ is $\Sigma^{-1/2}$, justifying the notation.
 - ii. Show $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^{-1}$.
- (d) The (square) matrix Σ is said to be *positive definite* if $\mathbf{v}'\Sigma\mathbf{v} > 0$ for all vectors $\mathbf{v} \neq \mathbf{0}$. Show that the eigenvalues of a positive definite matrix are all strictly positive.
- (e) Let Σ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that Σ^{-1} exists.
- 7. Using the Spectral Decomposition Theorem and $tr(\mathbf{AB}) = tr(\mathbf{BA})$, prove that the trace is the sum of the eigenvalues for a symmetric matrix.
- 8. Using the Spectral Decomposition Theorem and $|\mathbf{AB}| = |\mathbf{BA}|$, prove that the determinant of a symmetric matrix is the product of its eigenvalues.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f15