Name	Jerry	
-	1	
Student Number		

STA 302 f2014 Quiz 4A

The $n \times 1$ matrix $\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}}$ is a point in \mathbb{R}^n . Geometrically, it is the *projection* (shadow) of \mathbf{Y} onto the subset of vectors spanned by the columns of the \mathbf{X} matrix. This means the vector of differences $\widehat{\boldsymbol{\epsilon}} = \mathbf{Y} - \widehat{\mathbf{Y}}$ should be perpendicular (at right angles) to each and every vector of the form $\mathbf{X}\mathbf{b}$, where $\mathbf{b} \in \mathbb{R}^{k+1}$. Prove it, by calculating the inner product $(\mathbf{X}\mathbf{b})'\widehat{\boldsymbol{\epsilon}}$ for general \mathbf{b} . You don't have to fill two page. You have $\mathbf{b} \in \mathbb{R}^{k+1}$. $(\mathbf{Y} - \mathbf{b})' = \mathbf{b} = \mathbf{b} \times (\mathbf{Y} - \mathbf{b})' = \mathbf{b} \times (\mathbf{b} \times (\mathbf{y} - \mathbf{b})' = \mathbf{b} \times (\mathbf{b} \times (\mathbf{b})' = \mathbf{b} \times (\mathbf{b} \times (\mathbf{b} + \mathbf{b})' = \mathbf{b} \times (\mathbf{b} \times$

Name _	Jerry	
Student Number		

STA 302 f2014 Quiz 4B

(5 points) In Part (vii) of homework question (2g), you were asked to compute a simple regression with R. What is the slope of the least squares line? Copy the answer into the space below. Attach the R printout, and Circle the answer on the printout, Make sure your name is on the printout.
and waits Greating L best low the curst were.

$$\beta = -1.41$$

- 2. In simple regression through the origin, the model is $Y_i = \beta x_i + \epsilon_i$. Writing this in matrix form as $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$,
 - (a) (1 point) What is the **X** matrix?

$$\chi = \begin{pmatrix} \chi_{1} \\ \vdots \\ \chi_{n} \end{pmatrix}$$

- (b) (1 point) What is $\mathbf{X}'\mathbf{X}$? $\sum_{i=1}^{n} \chi_{i}^{2}$
- (c) (1 point) What is $\mathbf{X'Y}$? $\sum_{i=1}^{n} \chi_i \varphi_i$
- (d) (2 points) What is $\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}?$

$$n = \frac{\sum_{i=1}^{n} \chi_i Y_i}{\sum_{i=1}^{n} \chi_i^2}$$