Name Jerry

Student Number

STA 302 f2014 Quiz 1A

$$\begin{split} E(g(X)) &= \int_{-\infty}^{\infty} g(x) f_X(x) dx \quad E(g(\mathbf{X})) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) f_{\mathbf{X}}(x_1, \dots, x_p) dx_1 \dots dx_p \\ Var(Y) &= E[(Y - \mu_Y)^2] \qquad \quad Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] \end{split}$$

1. (5 points) Let Y_1, \ldots, Y_n be independent random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$ for $i = 1, \ldots, n$. Let a_1, \ldots, a_n be constants and define the linear combination L by $L = \sum_{i=1}^{n} a_i Y_i$. Recall that a statistic T is an *unbiased estimator* of a parameter θ if $E(T) = \theta$ for all θ . Suppose that $\sum_{i=1}^{n} a_i = 2$. Is L an unbiased estimator of μ ? Answer Yes or No and show your work. Use familiar properties of expected value, not integrals.

$$E(L) = E(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{n} a_i E(Y_i)$$

= $\sum_{i=1}^{n} a_i \mu = \mu \sum_{i=1}^{n} a_i = \lambda \mu \neq \mu$
in general

- 2. (3 points) Circle the correct answer in each multiple choice question below. You must get at least 4 out of 5 right to get any marks on this part. Quantities in boldface are matrices of constants, while letters like a are real numbers.
 - (a) Which statement is true?

i.
$$A(B+C) = AB + AC$$

ii. $A(B+C) = BA + CA$
iii. Both i and by
iv. Neither g nor by

(b) Which statement is true?

i.
$$a(\mathbf{B} + \mathbf{C}) = a\mathbf{B} + a\mathbf{C}$$

ii. $a(\mathbf{B} + \mathbf{C}) = \mathbf{B}a + \mathbf{C}a$
iii. Both a and b (iv. Neither a nor b

(c) Which statement is true?

i.
$$(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

ii. $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$
iii. Both \mathbf{A} and \mathbf{A}
iv. Neither a nor b

(d) Which statement is true?

i.
$$(\mathbf{AB})' = \mathbf{A'B'}$$

ii. $(\mathbf{AB})' = \mathbf{B'A'}$
iii. Both a and $\frac{\mathbf{B'}}{\mathbf{A'}}$
iv. Neither a nor b

(e) Which statement is true?

i.
$$\mathbf{A}'' = \mathbf{A}$$

ii. $\mathbf{A}''' = \mathbf{A}'$
iii. Both \mathbf{A} and \mathbf{b}_{ℓ}
iv. Neither \mathbf{a} nor \mathbf{b}_{ℓ}

3. (2 points) Let X be an n by p matrix with $n \neq p$. Why is it incorrect to say that $(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{X}^{-1}\mathbf{X}'^{-1}$?

X is not a square matrix, so the inverse is not defined.

Page 2 of 2

Name	Jenny	
Student Number		

STA 302 f2014 Quiz 1B

 $E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx \quad E(g(\mathbf{X})) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) f_{\mathbf{X}}(x_1, \dots, x_p) dx_1 \dots dx_p$ $Var(Y) = E[(Y - \mu_Y)^2] \qquad Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$

1. (5 points) Let X and Y be random variables with E(X) = E(Y) = 0. Circle one of the statements below and prove it is true. Use properties of expected value, not integrals. No marks if you assume independence.

(a)
$$Var(X + Y) = Var(X)Var(Y)$$

(b) $Var(X + Y) = 0$
(c) $Var(X + Y) = Var(X) + Var(Y) + Cov(X, Y)$
(d) $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$
(e) $Var(X + Y) = Var(X) + Var(Y)$
(f) $Var(X + Y) = Var(X) + Var(Y)$
(g) $Var(X + Y) = Var(X) + Var(Y)$
(h) $Var(X + Y) = Var$

V

- 2. (3 points) Label each statement below True or False. Write "T" or "F" beside each statement. Assume the $\alpha = 0.05$ significance level. You must get at least 4 out of 5 right to get any marks on this part.
 - (a) The *p*-value is the probability that the null hypothesis is true.
 - (b) $_$ The *p*-value is the probability that the null hypothesis is false.
 - (c) \underline{F} In a study comparing a new drug to the current standard treatment, the null hypothesis is rejected. This means the new drug is ineffective.
 - (d) $\underbrace{\vdash}_{\text{second independent random sample of the same size.}}$
 - (e) $\boxed{}$ If p > .05 we reject the null hypothesis at the .05 level.
- 3. (2 points) Let **X** be an *n* by *p* matrix with $n \neq p$. Why is it incorrect to say that $(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{X}^{-1}\mathbf{X}'^{-1}$? You have more room than you need.

X is not a square matrix, so the inverse is not defined.