More Linear Algebra¹ STA 302: Fall 2014

¹See Chapter 2 of *Linear models in statistics* for more detail. This slide show is an open-source document. See last slide for copyright information.

Overview

- 1 Things you already know
- 2 Spectral decomposition
- **3** Positive definite matrices
- **4** Square root matrices

You already know about

- Matrices $\mathbf{A} = [a_{ij}]$
- Matrix addition and subtraction $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$
- Scalar multiplication $a\mathbf{B} = [a b_{ij}]$
- Matrix multiplication $\mathbf{AB} = \left[\sum_{k} a_{ik} b_{kj}\right]$
- Inverse $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- Transpose $\mathbf{A}' = [a_{ji}]$
- Symmetric matrices $\mathbf{A} = \mathbf{A}'$
- Determinants
- Linear independence

Linear independence

X be an $n \times p$ matrix of constants. The columns of **X** are said to be *linearly dependent* if there exists $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X}\mathbf{v} = \mathbf{0}$. We will say that the columns of **X** are linearly *independent* if $\mathbf{X}\mathbf{v} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$.

For example, show that \mathbf{A}^{-1} exists implies that the columns of \mathbf{A} are linearly independent.

$$Av = 0 \Rightarrow A^{-1}Av = A^{-1}0 \Rightarrow v = 0$$

How to show $\mathbf{A}^{-1\prime} = \mathbf{A}^{\prime-1}$

Suppose $\mathbf{B} = \mathbf{A}^{-1}$, meaning $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$. Must show two things: $\mathbf{B'A'} = \mathbf{I}$ and $\mathbf{A'B'} = \mathbf{I}$.

$$\mathbf{AB} = \mathbf{I} \quad \Rightarrow \quad \mathbf{B'A'} = \mathbf{I'} = \mathbf{I} \\ \mathbf{BA} = \mathbf{I} \quad \Rightarrow \quad \mathbf{A'B'} = \mathbf{I'} = \mathbf{I}$$

Extras You may not know about these, but we may use them occasionally

- Trace
- Rank
- Partitioned matrices

Trace of a square matrix

- Sum of diagonal elements
- Obvious: $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$
- Not obvious: $tr(\mathbf{AB}) = tr(\mathbf{BA})$

Rank

- Row rank is the number of linearly independent rows
- Column rank is the number of linearly independent columns
- Rank of a matrix is the minimum of row rank and column rank
- $rank(\mathbf{AB}) = \min(rank(\mathbf{A}), rank(\mathbf{B}))$

Partitioned matrix

• A matrix of matrices

• Row by column (matrix) multiplication works, provided the matrices are the right sizes.

Eigenvalues and eigenvectors

Let $\mathbf{A} = [a_{i,j}]$ be an $n \times n$ matrix, so that the following applies to square matrices. \mathbf{A} is said to have an *eigenvalue* λ and (non-zero) *eigenvector* \mathbf{x} corresponding to λ if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

- Eigenvalues are the λ values that solve the determinantal equation $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- The determinant is the product of the eigenvalues: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $\mathbf{A} = [a_{i,j}]$ may be written

$$\mathbf{A} = \mathbf{C}\mathbf{D}\mathbf{C}',$$

where the columns of **C** (which may also be denoted $\mathbf{x}_1, \ldots, \mathbf{x}_n$) are the eigenvectors of **A**, and the diagonal matrix **D** contains the corresponding eigenvalues.

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

The eigenvectors may be chosen to be orthonormal, so that \mathbf{C} is an orthogonal matrix. That is, $\mathbf{CC}' = \mathbf{C}'\mathbf{C} = \mathbf{I}$.

Positive definite matrices

The $n \times n$ matrix **A** is said to be *positive definite* if

$\mathbf{y}'\mathbf{A}\mathbf{y} > 0$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called *non-negative definite* (or sometimes positive semi-definite) if $\mathbf{y}' \mathbf{A} \mathbf{y} \ge 0$.

Example: Show $\mathbf{X}'\mathbf{X}$ non-negative definite

Let **X** be an $n \times p$ matrix of real constants and **y** be $p \times 1$. Then **Z** = **Xy** is $n \times 1$, and

 $\mathbf{y}' (\mathbf{X}'\mathbf{X}) \mathbf{y}$ $= (\mathbf{X}\mathbf{y})'(\mathbf{X}\mathbf{y})$ $= \mathbf{Z}'\mathbf{Z}$ $= \sum_{i=1}^{n} Z_i^2 \ge 0$

Some properties of symmetric positive definite matrices Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

```
Positive definite

\downarrow

All eigenvalues positive

\downarrow

Inverse exists \Leftrightarrow Columns (rows) linearly independent
```

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix *must* be, Inverse exists \Rightarrow Positive definite

Showing Positive definite \Rightarrow Eigenvalues positive For example

Let ${\bf A}$ be square and symmetric as well as positive definite.

- Spectral decomposition says $\mathbf{A} = \mathbf{CDC'}$.
- Using $\mathbf{y}' \mathbf{A} \mathbf{y} > 0$, let \mathbf{y} be an eigenvector, say the third one.
- Because eigenvectors are orthonormal,

$$\mathbf{y}' \mathbf{A} \mathbf{y} = \mathbf{y}' \mathbf{C} \mathbf{D} \mathbf{C}' \mathbf{y}$$

= $(0 \ 0 \ 1 \ \cdots \ 0) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$
= λ_3
> 0

Inverse of a diagonal matrix

Suppose $\mathbf{D} = [d_{i,j}]$ is a diagonal matrix with non-zero diagonal elements. It is easy to verify that

$$\begin{pmatrix} d_{1,1} & 0 & \cdots & 0 \\ 0 & d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n,n} \end{pmatrix} \begin{pmatrix} 1/d_{1,1} & 0 & \cdots & 0 \\ 0 & 1/d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/d_{n,n} \end{pmatrix} = \mathbf{I}$$

And

$$\begin{pmatrix} 1/d_{1,1} & 0 & \cdots & 0\\ 0 & 1/d_{2,2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1/d_{n,n} \end{pmatrix} \begin{pmatrix} d_{1,1} & 0 & \cdots & 0\\ 0 & d_{2,2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & d_{n,n} \end{pmatrix} = \mathbf{I}$$

Showing Eigenvalues positive \Rightarrow Inverse exists For a symmetric, positive definite matrix

Let \mathbf{A} be symmetric and positive definite. Then $\mathbf{A} = \mathbf{CDC'}$ and its eigenvalues are positive.

Let $\mathbf{B} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$

Showing $\mathbf{B} = \mathbf{A}^{-1}$:

 $\begin{aligned} \mathbf{AB} &= \mathbf{CDC'} \mathbf{CD}^{-1} \mathbf{C'} = \mathbf{I} \\ \mathbf{BA} &= \mathbf{CD}^{-1} \mathbf{C'} \mathbf{CDC'} = \mathbf{I} \end{aligned}$

 \mathbf{So}

$$\mathbf{A}^{-1} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$$

Square root matrices For symmetric, non-negative definite matrices

Define

$$\mathbf{D}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0\\ 0 & \sqrt{\lambda_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

So that

$$\mathbf{D}^{1/2}\mathbf{D}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \mathbf{D}$$

For a non-negative definite, symmetric matrix A

Define

$$\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'$$

So that

 $A^{1/2}A^{1/2} = CD^{1/2}C'CD^{1/2}C'$

$$= \mathbf{C}\mathbf{D}^{1/2}\mathbf{I}\mathbf{D}^{1/2}\mathbf{C}'$$

$$= \mathbf{C}\mathbf{D}^{1/2}\mathbf{D}^{1/2}\mathbf{C}'$$

- = CDC'
- = A

The square root of the inverse is the inverse of the square root

Let **A** be symmetric and positive definite, with $\mathbf{A} = \mathbf{CDC'}$. Let $\mathbf{B} = \mathbf{CD}^{-1/2}\mathbf{C'}$. What is $\mathbf{D}^{-1/2}$? Show $\mathbf{B} = (\mathbf{A}^{-1})^{1/2}$

$$BB = CD^{-1/2}C'CD^{-1/2}C'$$
$$= CD^{-1}C' = A^{-1}$$

Show $\mathbf{B} = (\mathbf{A}^{1/2})^{-1}$ $\mathbf{A}^{1/2}\mathbf{B} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'\mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}' = \mathbf{I}$ $\mathbf{B}\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}'\mathbf{C}\mathbf{D}^{1/2}\mathbf{C}' = \mathbf{I}$ Just write $\mathbf{A}^{-1/2} = \mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}'$

20/32

Matrix calculation with R

> is.matrix(3) # Is the number 3 a 1x1 matrix?

[1] FALSE

> treecorr = cor(trees); treecorr

Girth Height Volume Girth 1.000000 0.5192801 0.9671194 Height 0.5192801 1.000000 0.5982497 Volume 0.9671194 0.5982497 1.000000

> is.matrix(treecorr)

[1] TRUE

Creating matrices Bind rows into a matrix

```
> # Bind rows of a matrix together
> A = rbind(c(3, 2, 6, 8)),
            c(2,10,-7,4),
+
+
            c(6, 6, 9,1) ); A
    [,1] [,2] [,3] [,4]
[1,]
    3 2 6
                    8
[2,] 2 10 -7 4
                    1
[3,]
      6
           6 9
> # Transpose
> t(A)
    [,1] [,2] [,3]
[1,]
      3 2
               6
      2 10
[2,]
               6
[3,] 6 -7
               9
               1
[4,]
       8
           4
```

Matrix multiplication Remember, \mathbf{A} is 3×4

```
> # U = AA' (3x3), V = A'A (4x4)
> U = A % * % t(A)
> V = t(A) %*% A; V
     [,1] [,2] [,3] [,4]
[1,]
       49
            62
                 58
                      38
[2,]
                      62
       62
           140
               -4
[3,]
       58
           -4
                166
                      29
[4,]
       38
            62
                 29
                      81
```

Determinants

[1] 1490273 [1] -3.622862e-09

Inverse of \mathbf{U} exists, but inverse of \mathbf{V} does not.

Inverses

- The solve function is for solving systems of linear equations like Mx = b.
- Just typing solve(M) gives M^{-1} .

> solve(U)

	[,1]	[,2]	[,3]
[1,]	0.0173505123	-8.508508e-04	-1.029342e-02
[2,]	-0.0008508508	5.997559e-03	2.013054e-06
[3,]	-0.0102934160	2.013054e-06	1.264265e-02

> solve(V)

```
Error in solve.default(V) :
    system is computationally singular: reciprocal condition
    number = 6.64193e-18
```

Eigenvalues and eigenvectors

> eigen(U)

\$values
[1] 234.01162 162.89294 39.09544

\$vectors

	[,1]	[,2]	[,3]
[1,]	-0.6025375	0.1592598	0.78203893
[2,]	-0.2964610	-0.9544379	-0.03404605
[3,]	-0.7409854	0.2523581	-0.62229894

V should have at least one zero eigenvalue

> eigen(V)

\$values

[1] 2.340116e+02 1.628929e+02 3.909544e+01 -1.012719e-14

\$vectors

	[,1]	[,2]	[,3]	[,4]
[1,]	-0.4475551	0.006507269	-0.2328249	0.863391352
[2,]	-0.5632053	-0.604226296	-0.4014589	-0.395652773
[3,]	-0.5366171	0.776297432	-0.1071763	-0.312917928
[4,]	-0.4410627	-0.179528649	0.8792818	0.009829883

Spectral decomposition $\mathbf{V} = \mathbf{CDC'}$

```
> eigenV = eigen(V)
> C = eigenV$vectors; D = diag(eigenV$values); D
```

	[,1]	[,2]	[,3]	[,4]
[1,]	234.0116	0.0000	0.00000	0.000000e+00
[2,]	0.0000	162.8929	0.00000	0.000000e+00
[3,]	0.0000	0.0000	39.09544	0.000000e+00
[4,]	0.0000	0.0000	0.00000	-1.012719e-14

```
> # C is an orthoganal matrix
> C %*% t(C)
```

[,1] [,2] [,3] [,4] [1,] 1.00000e+00 5.551115e-17 0.000000e+00 -3.989864e-17 [2,] 5.551115e-17 1.000000e+00 2.636780e-16 3.556183e-17 [3,] 0.000000e+00 2.636780e-16 1.000000e+00 2.558717e-16 [4,] -3.989864e-17 3.556183e-17 2.558717e-16 1.000000e+00

Verify $\mathbf{V} = \mathbf{CDC}'$

> V; C %*% D %*% t(C)

[1,] [2,] [3,] [4,]	[,1] 49 62 58 38	[,2] 62 140 -4 62	[,3] 58 -4 166 29	[,4] 38 62 29 81
[1,]	[,1] 49	[,2] 62	[,3] 58	[,4] 38
[2,]	62	140	-4	62
[3,]	58	-4	166	29
[4,]	38	62	29	81

Square root matrix $\mathbf{V}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
```

```
Warning message:
In sqrt(D) : NaNs produced
```

```
> # Multiply to get V
> sqrtV %*% sqrtV; V
```

	[,1]	[,2]	[,3]	[,4]
[1,]	NaN	NaN	NaN	NaN
[2,]	NaN	NaN	NaN	NaN
[3,]	NaN	NaN	NaN	NaN
[4,]	NaN	NaN	NaN	NaN
	[,1]	[,2]	[,3]	[,4]
[1,]	49	62	58	38
[2,]	62	140	-4	62
[3,]	58	-4	166	29

What happened?

> D; sqrt(D)

	[,1]	[,2]	[,3]	[,4]
[1,]	234.0116	0.0000	0.00000	0.000000e+00
[2,]	0.0000	162.8929	0.00000	0.000000e+00
[3,]	0.0000	0.0000	39.09544	0.000000e+00
[4,]	0.0000	0.0000	0.00000	-1.012719e-14
				F 43

	[,1]	[,2]	[,3]	[,4]
[1,]	15.29744	0.00000	0.000000	0
[2,]	0.00000	12.76295	0.000000	0
[3,]	0.00000	0.00000	6.252635	0
[4,]	0.00000	0.00000	0.000000	NaN

Warning message: In sqrt(D) : NaNs produced

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f14