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Moment-generating Functions

Joint moment-generating function

Of a p-dimensional random vector X

o Mx(t)=E (et’X)

_ X1t1+Xoto+ X3t
o For example, M(lexz’x?))(tht%t?)) =F (e 1t1+Xota+X3 3)

Section 4.3 of Linear models in statistics has some material on
moment-generating functions (optional).



Moment-generating Functions

Two big theorems
Proof omitted

@ Joint moment-generating functions correspond uniquely to
joint probability distributions.

@ Two random vectors X7 and Xo are independent if and
only if the moment-generating function of their joint

distribution is the product of their moment-generating
functions.

These results assume only that the moment-generating

functions exist in a neighborhood of t = 0. Nothing else is
required.



A helpful distinction

o If X; and X5 are independent,

M, . () =M, ()M, (t)

X1+X2 X1

e X; and X9 are independent if and only if

M Xo (t1,t2) = Mxl (tl)]wx2 (t2)

X1,



Moment-generating Functions

Theorem: Functions of independent random vectors are

independent

Show X; and X3 independent implies that Y = ¢1(X;) and
Y2 = g2(X3) are independent.

Let

gl(Xl)(tl)Mgg(Xg)(tQ) 6/37



g Functions

Max(t) = Mx(A't)

Analogue of Myx (t) = Mx (at)

Max(t) = E(et’AX)
_ (G(A’t)/X)
= Mx(A't)

Note that t is the same length as Y = AX: The number of
rows in A.



ng Functions

Mx yo(t) = et Mx(t)

Analogue of Mxi.(t) = e Mx(t)

Mxic(t) = E (et/<X+C))
— F (et/X—l—t/c)
_ tlep ( 8t’X)

= e Mx(t)



Definition

Distributions may be defined in terms of

moment-generating functions

Build up the multivariate normal from univariate normals.
o If Y ~ N(u,0?), then M, (t) = ekttt

o Moment-generating functions correspond uniquely to
probability distributions.

@ So define a normal random variable with expected value p

and variance o2 as a random variable with
. . ut+10'2t2
moment-generating function e**" 2 .

o This has one surprising consequence . ..

9/37



Definition

Degenerate random variables

A degenerate random variable has all the probability

concentrated at a single value, say Pr{Y = yo} = 1. Then
Y
M,(t) = E(e')

= > ¢"ply)

= e - p(yp)
et .1

eyot
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Definition

If Pr{Y =y} =1, then M, (t) = e¥'

o This is of the form e®+37°t" with p =1 and o = 0.
SoY ~ N(yo,())

That is, degenerate random variables are “normal” with
variance zero.

Call them singular normals.

This will be surprisingly handy later.






Definition

Moment-generating function of Z
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Definition

Transform Z to get a general multivariate normal
Remember: A non-negative definite means v'Av > 0

Let X3 be a p X p symmetric non-negative definite matrix and
pweERP. Let Y = SY2Z + p.
@ The elements of Y are linear combinations of independent
standard normals.
o Linear combinations of normals should be normal.
@ Y has a multivariate distribution.

o We'd like to call Y a multivariate normal.



Definition

Moment-generating function of Y = »!27 + o

Remember: Max(t) = Mx(A't) and Mxc(t) = et/cj\[x(t) and M, (t) = et

My(t) = M (t)

vy=x1/27z4u
= M, (1)
= M M, (Z?¢)
= VP M, (BY28)
V1 o3 (B2 (21/2¢)

t,[J, e%t121/221/2t

e

/ 14/
ot/ 1 o3t/ St

So define a multivariate normal random variable Y as one with

. . / 14/
moment-generating function M, (t) = et'# e2¥ >t



Definition

Compare univariate and multivariate normal

moment-generating functions

. . 1.242
Univariate M, (t) = e/*+327t

Multivariate M.

L) = et'm e%t’Et

So the univariate normal is a special case of the multivariate
normal with p = 1.

16 / 37



Mean and covariance matrix

For a univariate normal, E(Y) = p and Var(Y) = o

Recall Y = Y27 + p.

E(Y) = p

cov(Y) = XV2cou(Z)nV?
_ wl/2pnl/2
= X

We will say Y is multivariate normal with expected value g and
variance-covariance matrix 3, and write Y ~ N,(u, X).



Properties

Probability density function of Y ~ N,(u, X)

Remember, X is only positive semi-definite.

It is easy to write down the density of Z ~ N,(0,I) as a
product of standard normals.

If X is strictly positive definite (and not otherwise), the density
of Y = 2127 + p can be obtained using the Jacobian Theorem
as

1

27T)§<e><p{;<y W=y -

f = 1
MNP

This is usually how the multivariate normal is defined.

18 / 37



3} positive definite?

o Positive definite means that for any non-zero p x 1 vector
a, we have a’Xa > 0.

e Since the one-dimensional random variable W = 3% . 4,;Y;
may be written as W = a’Y and
Var(W) = cov(a’Y) = a’Xa, it is natural to require that X
be positive definite.

o All it means is that every non-zero linear combination of Y
values has a positive variance. Often, this is what you want.

19 / 37



Singular normal: X is positive semi-definite.

Suppose there is a # 0 with a’3a = 0. Let W = a’Y.
e Then Var(W) =Var(a'Y) =a’¥a = 0. That is W has a
degenerate distribution (but it’s still still normal).
o In this case we describe the distribution of Y as a singular
multivariate normal.
o Excluding the singular case creates a lot of extra work in
later proofs.

o We will insist that a singular multivariate normal is still
multivariate normal, even though it has no density.



Distribution of AY

Recall M, (t) = e*'#+at'=¢

Let A be an r x p matrix, and W = AY.

Mg (t) = M, (t)
= M, (A't)

(At 1 6%(A’t)’E(A’t>

ot (Ap) e%t’(AEA’)t

et’(Au)Jr%t’(AEA’)t

Recognize moment-generating function and conclude

W ~ N,(Ap, ASA')



Exercise

Use moment-generating functions, of course.

Let Y ~ N,(p, X).

Show Y +c¢c ~ Ny(u + ¢, X).



Properties

Zero covariance implies independence for the

multivariate normal.

o Independence always implies zero covariance.

o For the multivariate normal, zero covariance also implies
independence.

@ The multivariate normal is the only continuous distribution
with this property.



Properties

Show zero covariance implies independence
By showing My (t) = My, (t1) My, (t2)

Let Y ~ N(p, X), with
( Y: ) g < Ho 0 |3 to

My(t) = E(et/Y)
- E(ewt;w)
= My ((t1]t3)")

V]
1



Properties

. . . / / 147
Continuing the calculation: M, (t) = et #Hat>t

ve () w=(8) == () e

My(t) = My ((t]th)")
_ exp{uutg) < Z; )}exp{;@’ﬂt’z) ( 2o1 z(:)z ) < E >}
= ebitttars oxp {; (t1 31 t53) (2) }

/ / 1
— etipittaps exp {2 (t/121t1 + t/222t2)}

— othibr thg o3 (81 D1t1) 5 (6 Sats)

= MYI (tl)MYz (t2)

So Y7 and Yy are independent.

N
~



Properties

An easy example
If you do it the easy way

Let Y1 ~ N(1,2), Yo ~ N(2,4) and Y3 ~ N(6,3) be
independent, with W7 =Y; + Y and Wy = Y5 4+ Y3. Find the
joint distribution of Wi and Whs.

Y1
)| v
Y3

VRS
S
SN—
Il
VRS
S
—
= o

W = AY ~ N(Ap, ASA’)



W = AY ~ N(Ap, AZA)

Yi ~ N(1,2), Y2 ~ N(2,4) and Y3 ~ N(6,3) are independent

1
110 3
e (o )2 )= (%)
6
2 0 0 10
ASA = (1)]1‘(1)>040 11
003/)\o01
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S o
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Properties

Marginal distributions are multivariate normal
Y ~ Ny(i, ), s0 W = AY ~ N(Ap, ASA’)

Find the distribution of

Y

0100\ | Y| (%

0001 v, | \v
Y,

Bivariate normal. The expected value is easy.

28 /37



Properties

Covariance matrix

cov(AY) = AXA’

2
oy 012 013 014 0 0
(0100 o192 03 023 024 10
0001 013 023 O0F O34 0 0
2

01,4 024 034 Of 0 1

0 0

2
. 012 05 023 024 1 0
= 2
014 024 034 Of 0 O
0 1

2
_ O3 024
- 2
0'274 0'4

Marginal distributions of a multivariate normal are multivariate
normal, with the original means, variances and covariances.



Summary

e If ¢ is a vector of constants, X + ¢ ~ N(c + p, X)
e If A is a matrix of constants, AX ~ N(Au, AXA’)

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of X are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.



Properties

Multivariate normal likelihood

For reference

n

ww® = ] Wexp{;xi SR

— |2|*n/2(2ﬁ)7np/2 exp {; Z(xZ — M)/Efl(xi - [L)}

=1

= =) e -2 {8 + ®- WS R -0}

S _ 1\ = A
where X = =" | (x; — X)(x; — X)' is the sample
variance-covariance matrix.



\‘~ and t distributions

Showing (X — p)S (X — ) ~ %(p)

3 has to be positive definite this time

Y=X-p ~ N(0, =)
1 1 1
Z—%3Y ~ N(o,zfﬁzzﬁ)
- N(o,z—%zé 2%2—%)
- N(0,D)

So Z is a vector of p independent standard normals, and

p
YIE—].Y — (2_%Y)/<2_%Y> = ZIZ = ZZE ~ X2(p> .
j=1



\‘~ and t distributions

X and S? independent

Xi,..

S Xn ol N(u,0?)

Note A is (n+ 1) x 1, so cov(AY) = 02AA’ is
(n+1) x (n+ 1), singular.

33/37



\‘~ and t distributions

The argument

o Y is multivariate normal.

Cov (X, (X, — X)) =0 (Exercise)

@ So X and Y, are independent.

e So X and S? = g(Y3) are independent. M



\‘~ and t distributions

Leads to the ¢ distribution

If
e Z ~ N(0,1) and
e Y ~ x?(v) and

e Z and Y are independent, then
Z

Y/v

T =

~ i(v)



\‘~ and t distributions

Random sample from a normal distribution

Let X1,..., X, " N(u,0?). Then
o YUX=W  N(0,1) and
° %wx (n—1) and

@ These quantities are independent, so

roo X o
3/ -1)

o2

V(X —w)
= ?Nt(n—l)




\‘~ and t distributions

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f14
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