Categorical Independent Variables

STA302 Fall 2014

See last slide for copyright information

Categorical means *unordered* categories

- Like Field of Study: Humanities, Sciences, Social Sciences
- Could number them 1 2 3, but what would the regression coefficients mean?
- But you really want them in your regression model.

One Categorical Explanatory Variable

- X=1 means Drug, X=0 means Placebo
- Population mean is $E[Y|X = x] = \beta_0 + \beta_1 x$
- For patients getting the drug, mean response is $E[Y|X=1]=\beta_0+\beta_1$
- For patients getting the placebo, mean response is

$$E[Y|X=0] = \beta_0$$

Sample regression coefficients for a binary explanatory variable

• X=1 means Drug, X=0 means Placebo

• Predicted response is
$$\ \ \widehat{Y}=\widehat{eta}_0+\widehat{eta}_1x$$

• For patients getting the drug, predicted response is

$$\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 = \overline{Y}_1$$

• For patients getting the placebo, predicted response is

$$\widehat{Y} = \widehat{\beta}_0 = \overline{Y}_0$$

Regression test of $H_0: \beta_1 = 0$

- Same as an independent t-test
- Same as a oneway ANOVA with 2 categories
- Same t, same F, same p-value.
- Now extend to more than 2 categories

Drug A, Drug B, Placebo

- x₁ = 1 if Drug A, Zero otherwise
- x₂ = 1 if Drug B, Zero otherwise
- $E[Y|X = x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
- Fill in the table

Group	x_1	x_2	$\beta_0 + \beta_1 x_1 + \beta_2 x_2$
А			$\mu_1 =$
В			$\mu_2 =$
Placebo			$\mu_3 =$

Drug A, Drug B, Placebo

- x₁ = 1 if Drug A, Zero otherwise
- x₂ = 1 if Drug B, Zero otherwise
- $E[Y|X = x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

Regression coefficients are *contrasts* with the category that has no indicator – the *reference* category

Indicator dummy variable coding with intercept

- Need p-1 indicators to represent a categorical explanatory variable with p categories.
- If you use p dummy variables, columns of the X matrix are linearly dependent.
- Regression coefficients are *contrasts* with the category that has no indicator.
- Call this the *reference category*.

Now add a quantitative variable (covariate)

- x₁ = Age
- x₂ = 1 if Drug A, Zero otherwise
- x₃ = 1 if Drug B, Zero otherwise
- $E[Y|X = x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Drug	x_2	x_3	$\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3$
A	1	0	$(eta_0+eta_2)+eta_1x_1$
В	0	1	$(eta_0+eta_3)+eta_1x_1$
Placebo	0	0	$\beta_0 + \beta_1 x_1$

Parallel regression lines

Covariates

- Of course there could be more than one
- Reduce MSE, make tests more sensitive
- If values of categorical IV are not randomly assigned, including relevant covariates could change the conclusions.

Interactions

- Interaction between independent variables means "It depends."
- Relationship between one explanatory variable and the response variable *depends* on the value of the other explanatory variable.
- Can have
 - Quantitative by quantitative
 - Quantitative by categorical
 - Categorical by categorical

Quantitative by Quantitative

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$ $E(Y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

For fixed x_2

$$E(Y|\mathbf{x}) = (\beta_0 + \beta_2 x_2) + (\beta_1 + \beta_3 x_2) x_1$$

Both slope and intercept depend on value of x₂

And for fixed x_1 , slope and intercept relating x_2 to E(Y) depend on the value of x_1

Quantitative by Categorical

- One regression line for each category.
- Interaction means slopes are not equal
- Form a product of quantitative variable by each dummy variable for the categorical variable
- For example, three treatments and one covariate: x₁ is the covariate and x₂, x₃ are dummy variables
- $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$ $+ \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \epsilon$

Make a table

$E(Y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3$

Group	x_2	x_3	$E(Y \mathbf{x})$
1	1	0	$(\beta_0 + \beta_2) + (\beta_1 + \beta_4)x_1$
2	0	1	$(\beta_0 + \beta_3) + (\beta_1 + \beta_5)x_1$
3	0	0	$\beta_0 + \beta_1 x_1$

Group	x_2	x_3	$E(Y \mathbf{x})$
1	1	0	$\left[(\beta_0 + \beta_2) + (\beta_1 + \beta_4) x_1 \right]$
2	0	1	$(\beta_0 + \beta_3) + (\beta_1 + \beta_5)x_1$
3	0	0	$\beta_0 + \beta_1 x_1$

What null hypothesis would you test for

- Equal slopes
- Comparing slopes for group one vs three
- Comparing slopes for group one vs two
- Equal regressions
- Interaction between group and x₁

General principle

- Interaction between A and B means
 - Relationship of A to Y depends on value of B
 - Relationship of B to Y depends on value of A
- The two statements are formally equivalent

What to do if $H_0: \beta_4 = \beta_5 = 0$ is rejected

- How do you test Group "controlling" for x₁?
- A reasonable choice is to set x₁ to its sample mean, and compare treatments at that point.

- How about setting x₁ to sample mean of the group (3 different values)?
- With random assignment to Group, all three means just estimate $E(X_1)$, and the mean of all the x_1 values is a better estimate.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides will be available from the course website: <u>http://www.utstat.toronto.edu/brunner/oldclass/302f14</u>