STA 302f13 Assignment Five¹

These problems are preparation for the quiz in tutorial on Friday October 17th, and are not to be handed in.

- 1. The "hat" matrix is given by $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. It's called the hat matrix because it puts a hat on \mathbf{Y} by $\mathbf{H}\mathbf{Y} = \widehat{\mathbf{Y}}$. The hat matrix is special.
 - (a) What are dimensions (number of rows and columns) of the hat matrix?
 - (b) Show that the hat matrix is symmetric.
 - (c) Show that the hat matrix is *idempotent*, meaning $\mathbf{H}^{1/2} = \mathbf{H}$.
 - (d) Show that $(\mathbf{I} \mathbf{H})$ is also symmetric and idempotent.
 - (e) Write $\hat{\boldsymbol{\epsilon}}$ in terms of the hat matrix (it's a function of $\mathbf{I} \mathbf{H}$).
 - (f) Write SSE in terms of the hat matrix. Simplify.
 - (g) From the last assignment, recall that the the subset of \mathbb{R}^n spanned by the columns of the **X** matrix is $\mathcal{V} = \{\mathbf{v} = \mathbf{X}\mathbf{b} : \mathbf{b} \in \mathbb{R}^{k+1}\}$. Also recall that $\widehat{\mathbf{Y}}$, being the closest point in \mathcal{V} to the data vector \mathbf{Y} , is the orthoganal projection of \mathbf{Y} onto \mathcal{V} . Since \mathbf{Y} could be any point in \mathbb{R}^n , multiplication by the hat matrix \mathbf{H} is the operation that projects any point in \mathbb{R}^n onto \mathcal{V} . It's like the light bulb above the point that you turn on in order to cast a shadow onto \mathcal{V} . All this talk implies that if a point is already in \mathcal{V} , its shadow is the point itself.

Verify that $\mathbf{H}\mathbf{v} = \mathbf{v}$ for any $\mathbf{v} \in \mathcal{V}$.

- 2. The first parts of this question were in Assignment One. Let Y_1, \ldots, Y_n be independent random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$ for $i = 1, \ldots, n$.
 - (a) Write down $E(\overline{Y})$ and $Var(\overline{Y})$.
 - (b) Let c_1, \ldots, c_n be constants and define the linear combination L by $L = \sum_{i=1}^n c_i Y_i$. What condition on the c_i values makes L an unbiased estimator of μ ? Recall that L unbiased means that $E(L) = \mu$ for all real μ . Treat the cases $\mu = 0$ and $\mu \neq 0$ separately.
 - (c) Is \overline{Y} a special case of L? If so, what are the c_i values?
 - (d) What is Var(L)?
 - (e) Now show that $Var(\overline{Y}) < Var(L)$ for every unbiased $L \neq \overline{Y}$. Hint: Add and subtract $\frac{1}{n}$.

¹Copyright information is at the end of the last page.

- 3. For the general linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, suppose we want to estimate the linear combination $\mathbf{a}'\boldsymbol{\beta}$ based on sample data. The Gauss-Markov Theorem tells us that the most natural choice is also (in a sense) the best choice. This question leads you through the proof of the Gauss-Markov Theorem. Your class notes should help. Also see your solution of Question 2.
 - (a) What is the most natural choice for estimating $\mathbf{a}'\boldsymbol{\beta}$?
 - (b) Show that it's unbiased.
 - (c) The natural estimator is a *linear* unbiased estimator of the form $\mathbf{c}_0'\mathbf{Y}$. What is the $n \times 1$ vector \mathbf{c}_0 ?
 - (d) Of course there are lots of other possible linear unbiased estimators of $\mathbf{a}'\boldsymbol{\beta}$. They are all of the form $\mathbf{c}'\mathbf{Y}$; the natural estimator $\mathbf{c}_0'\mathbf{Y}$ is just one of these. The best one is the one with the smallest variance, because its distribution is the most concentrated around the right answer. What is $Var(\mathbf{c}'\mathbf{Y})$? Show your work.
 - (e) We insist that $\mathbf{c'Y}$ be unbiased. Show that if $E(\mathbf{c'Y}) = \mathbf{a'\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$, we must have $\mathbf{X'c} = \mathbf{a}$.
 - (f) So, the task is to minimize $Var(\mathbf{c'Y})$ by minimizing $\mathbf{c'c}$ over all \mathbf{c} subject to the constraint $\mathbf{X'c} = \mathbf{a}$. As preparation for this, show $(\mathbf{c} \mathbf{c}_0)'\mathbf{c}_0 = 0$.
 - (g) Using the result of the preceding question, show

$$\mathbf{c}'\mathbf{c} = (\mathbf{c} - \mathbf{c}_0)'(\mathbf{c} - \mathbf{c}_0) + \mathbf{c}_0'\mathbf{c}_0.$$

(h) Since the formula for \mathbf{c}_0 has no \mathbf{c} in it, what choice of \mathbf{c} minimizes the preceding expression? How do you know that the minimum is unique?

The conclusion is that $\mathbf{c}'_0 \mathbf{Y} = \mathbf{a}' \hat{\boldsymbol{\beta}}$ is the Best Linear Unbiased Estimator (BLUE) of $\mathbf{a}' \boldsymbol{\beta}$.

- 4. The model for simple regression through the origin is $Y_i = \beta x_i + \epsilon_i$, where $\epsilon_1, \ldots, \epsilon_n$ are independent with expected value 0 and variance σ^2 . In previous homework, you found the least squares estimate of β to be $\hat{\beta} = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}$.
 - (a) What is $Var(\hat{\beta})$?
 - (b) Let $\widehat{\beta}_2 = \frac{\overline{Y}_n}{\overline{x}_n}$.
 - i. Is $\hat{\beta}_2$ an unbiased estimator of β ? Answer Yes or No and show your work.
 - ii. Is $\hat{\beta}_2$ a linear combination of the Y_i variables, of the form $L = \sum_{i=1}^n c_i Y_i$? Is so, what is c_i ?
 - iii. What is $Var(\hat{\beta}_2)$?
 - iv. How do you know $Var(\hat{\beta}) \leq Var(\hat{\beta}_2)$? No calculations are necessary.

- (c) Let $\widehat{\beta}_3 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{x_i}$.
 - i. Is $\hat{\beta}_3$ an unbiased estimator of β ? Answer Yes or No and show your work.
 - ii. Is $\hat{\beta}_3$ a linear combination of the Y_i variables, of the form $L = \sum_{i=1}^n c_i Y_i$? Is so, what is c_i ?
 - iii. What is $Var(\hat{\beta}_3)$?
 - iv. How do you know $Var(\hat{\beta}) \leq Var(\hat{\beta}_3)$? No calculations are necessary.
- 5. The joint moment-generating function of a *p*-dimensional random vector **X** is defined as $M_{\mathbf{X}}(\mathbf{t}) = E\left(e^{\mathbf{t}'\mathbf{X}}\right)$.
 - (a) Let $\mathbf{Y} = \mathbf{A}\mathbf{X}$, where \mathbf{A} is a matrix of constants. Find the moment-generating function of \mathbf{Y} .
 - (b) Let $\mathbf{Y} = \mathbf{X} + \mathbf{c}$, where \mathbf{c} is a $p \times 1$ vector of constants. Find the moment-generating function of \mathbf{Y} .
- 6. Let $Z_1, \ldots, Z_p \stackrel{i.i.d.}{\sim} N(0,1)$, and

$$\mathbf{Z} = \left(\begin{array}{c} Z_1 \\ \vdots \\ Z_p \end{array}\right)$$

- (a) What is the joint moment-generating function of **Z**? Show some work.
- (b) Let $\mathbf{Y} = \mathbf{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu}$, where $\boldsymbol{\Sigma}$ is a $p \times p$ symmetric non-negative definite matrix and $\boldsymbol{\mu} \in \mathbb{R}^{p}$.
 - i. What is $E(\mathbf{Y})$?
 - ii. What is the variance-covariance matrix of **Y**? Show some work.
 - iii. What is the moment-generating function of \mathbf{Y} ? Show your work.
- 7. We say the *p*-dimensional random vector \mathbf{Y} is multivariate normal with expected value $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, and write $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, when \mathbf{Y} has moment-generating function $M_{\mathbf{Y}}(\mathbf{t}) = e^{\mathbf{t}'\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}}$.
 - (a) Let $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{W} = \mathbf{A}\mathbf{Y}$, where \mathbf{A} is an $r \times p$ matrix of constants. What is the distribution of \mathbf{W} ? Show your work.
 - (b) Let $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{W} = \mathbf{Y} + \mathbf{c}$, where \mathbf{A} is an $p \times 1$ vector of constants. What is the distribution of \mathbf{W} ? Show your work.
- 8. Let $\mathbf{Y} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \qquad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

Using moment-generating functions, show Y_1 and Y_2 are independent.

9. Let $\mathbf{X} = (X_1, X_2, X_3)'$ be multivariate normal with

$$\boldsymbol{\mu} = \begin{bmatrix} 1\\0\\6 \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 1 \end{bmatrix}.$$

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_2 + X_3$. Find the joint distribution of Y_1 and Y_2 .

- 10. Let X_1 be Normal (μ_1, σ_1^2) , and X_2 be Normal (μ_2, σ_2^2) , independent of X_1 . What is the joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$? What is required for Y_1 and Y_2 to be independent? Hint: Use matrices.
- 11. Show that if $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma}$ positive definite, then $Y = (\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu})$ has a chi-square distribution with p degrees of freedom.
- 12. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution.
 - (a) Show $Cov(\overline{X}, (X_j \overline{X})) = 0$ for j = 1, ..., n.
 - (b) Show that \overline{X} and S^2 are independent.
 - (c) Show that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

where
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$
. Hint: $\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \overline{X} + \overline{X} - \mu)^2 = \dots$

13. Recall the definition of the t distribution. If $Z \sim N(0,1)$, $W \sim \chi^2(\nu)$ and Z and W are independent, then $T = \frac{Z}{\sqrt{W/\nu}}$ is said to have a t distribution with ν degrees of freedom, and we write $T \sim t(\nu)$. As in the last question, let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Show that $T = \frac{\sqrt{n}(\overline{X}-\mu)}{S} \sim t(n-1)$.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f14