
STA 302f14 Assignment Four1

Except for Question 2(g)vii, these problems are preparation for the quiz in tutorial on Friday
October 10th, and are not to be handed in. Please bring your printout from Question 2(g)vii
to the quiz. Please look at the current formula sheet while you do these problems.

1. The general linear model is Y = Xβ+ε, where X is an n×(k+1) matrix of observable
constants, β is a (k + 1) × 1 vector of unknown constants (parameters), and ε is an
n×1 vector of unobservable random variables with E(ε) = 0 and cov(ε) = σ2In, where
σ2 > 0 is an unknown constant parameter.

(a) Show that the matrix X′X is symmetric.

(b) Recall that the p× p matrix A is said to be non-negative definite if v′Av ≥ 0 for
all constant vectors v ∈ Rp. Show that X′X is non-negative definite.

(c) Show that if the columns of X are linearly independent, then X′X is positive
definite.

(d) Show that if X′X is positive definite, then (X′X)−1 exists.

(e) Show that if (X′X)−1 exists, then the columns of X are linearly independent.

This is a good problem because it establishes that the least squares estimator β̂ =
(X′X)−1X′Y exists if and only if the columns of X are linearly independent, meaning
that no independent variable is a linear combination of the other ones.

2. This question is an example of simple regression. “Simple” means one independent
variable. Chapter 6 in the text is about simple regression. It covers testing as well as
estimation. We’ll get to testing later.

Here is the model. Let Yi = β0 + β1xi + εi for i = 1, . . . , n, where ε1, . . . , εn are a
random sample from a distribution with expected value zero and variance σ2. The
numbers x1, . . . , xn are known, observed constants, while the parameters β0 β1 and σ2

are unknown constants (parameters).

(a) What is E(Yi)?

(b) What is V ar(Yi)?

(c) Find the Least Squares estimates of β0 and β1 by minimizing the function

Q(β) =
n∑

i=1

(Yi − β0 − β1xi)2

over all values of (β0, β1). Let (β̂0, β̂1) denote the point at which Q(β) is minimal.

Your answer is a pair of formulas, one for β̂0 and one for β̂1.

1Copyright information is at the end of the last page.
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(d) Give the equation of the least-squares line.

(e) Recall that a statistic is an unbiased estimator of a parameter if the expected
value of the statistic is equal to the parameter.

i. Is β̂0 an unbiased estimator of β0? Answer Yes or No and show your work.

ii. Is β̂1 an unbiased estimator of β1? Answer Yes or No and show your work.

(f) Fitting this simple regression problem into the matrix framework of Question 1,

i. What is X′X?

ii. What is X′Y?

iii. What is (X′X)−1?

iv. Verify that your expression for β̂1 agrees with β̂ = (X′X)−1X′Y. The formula

for β̂0 agrees also, but it’s messy so don’t bother.

(g) Please use this small data set for the following questions:
x 1 8 3 6 4 7
y 14 2 14 10 9 9

i. What is β̂0? Your answer is a number. Two decimal places of accuracy will
be fine.

ii. What is β̂1? Your answer is a number. Two decimal places of accuracy will
be fine.

iii. What is Ŷ3? Your answer is a number. Again, two decimal places of accuracy
will be fine.

iv. What is ε̂3? Your answer is a number.

v. Based on these data, what value of y would you predict for x = 5? Your
answer is a number.

vi. Plot the least-squares line. You can do it freehand; it does not need to be
perfect.

vii. Use R to estimate β0 and β1. Bring your printout (one page maximum) to
the quiz. You may be asked to hand it in. You may write your name and
student number on the printout (or put them in a comment statement), but
don’t write anything else on the printout.

3. In Question 2, the model had both an intercept and one independent variable. But
suppose the model has no intercept. This is called simple regression through the origin.
The model would be Yi = β1xi + εi.

(a) Find the least squares estimator β̂1 with calculus.

(b) What is X′X?

(c) What is X′Y?

(d) What is (X′X)−1?

(e) Verify that your expression for β̂1 agrees with β̂ = (X′X)−1X′Y.
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4. There can even be a regression model with an intercept but no independent variable.
In this case the model would be Yi = β0 + εi.

(a) Find the least squares estimator β̂0 with calculus.

(b) What is the X matrix?

(c) What is X′X?

(d) What is X′Y?

(e) What is (X′X)−1?

(f) Verify that your expression for β̂0 agrees with β̂ = (X′X)−1X′Y.

5. In scalar form, the model of Question 1 is

Yi = β0 + β1xi1 + · · ·+ βkxik + εi,

and we obtain least-squares estimates of the β values by minimizing the sum of squared
differences between observed Yi and E(Yi). That is, we choose β0, . . . , βk to make

Q(β) =
n∑

i=1

(Yi − β0 − β1xi1 − · · · − βkxik)2

as small as possible.

(a) Differentiate Q(β) with respect to β0 and set the derivative to zero, obtaining the
first normal equation.

(b) Noting that the quantities β̂0, . . . , β̂k must satisfy the first normal equation, show
that the least squares plane must pass through the point (x1, x2, . . . , xk, Y ).

(c) Defining “predicted” Yi as Ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik, show that
∑n

i=1 Ŷi =∑n
i=1 Yi.

(d) The residual for observation i is defined by ε̂i = Yi − Ŷi. Show that the sum of
residuals equals exactly zero.

6. Referring to the matrix version of the linear model (see Question 1) and letting β̂ =
(X′X)−1X′Y (which implies that the columns of X must be linearly independent),

show that (Y −Xβ̂)′(Xβ̂ −Xβ) = 0.

7. Using the result of the preceding question and writing Q(β) as Q(β) = (Y−Xβ)′(Y−
Xβ), show that Q(β) = (Y − Xβ̂)′(Y − Xβ̂) + (β̂ − β)′(X′X)(β̂ − β). Why does

this imply that the minimum of Q(β) occurs at β = β̂? How do you know that the
minimum is unique?
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8. The set of vectors V = {v = Xb : b ∈ Rk+1} is the subset of Rn consisting of linear
combinations of the columns of X. That is, V is the space spanned by the columns
of X. The least squares estimator β̂ = (X′X)−1X′Y was obtained by minimizing

(Y−Xb)′(Y−Xb) over all b ∈ Rk+1. Thus, Ŷ = Xβ̂ is the point in V that is closest

to the data vector Y. Geometrically, Ŷ is the projection (shadow) of Y onto V .

This means the vector of differences ε̂ = Y − Ŷ should be perpendicular (at right
angles) to each and every vector in V . Prove it, by calculating the inner product
(Xb)′ ε̂ for general b.

9. Is β̂ an unbiased estimator of β? Answer Yes or No and show your work.

10. Calculate cov(β̂) and simplify. Show your work.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, Uni-
versity of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0
Unported License. Use any part of it as you like and share the result freely. The LATEX source
code is available from the course website: http://www.utstat.toronto.edu/∼brunner/oldclass/302f14
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