Family (Last) Name		
Given (First) Name	Jerry	
Student Number	/	

STA 302s13 Quiz 5A

For reference, the general linear model in matrix form is $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times (k+1)$ matrix of observable constants, the columns of \mathbf{X} are linearly independent, $\boldsymbol{\beta}$ is a $(k+1) \times 1$ vector of unknown constants (parameters), and $\boldsymbol{\epsilon}$ is an $n \times 1$ vector of unobservable random variables with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}_n$, where $\sigma^2 > 0$ is an unknown constant parameter. The least squares estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$.

1. (1 point) Suppose we want to estimate $\mathbf{a}'\boldsymbol{\beta}$ based on sample data. What estimator is the most natural choice?

		~1
\sim	1	\cap
\mathcal{A}		13

2. (2 points) Show that the estimator you have proposed is unbiased. Show the full calculate $D_0 \text{ net } \cup SE E(\vec{\beta}) = \beta \text{ directly},$ $E(q'\vec{\beta})' = q'E(\vec{\beta}) = q'E((++)'++)$ $= q'(++)'++F(q) = q'(+++)'++F(q) = q'\beta$

3. (2 points) The natural estimator is a *linear* unbiased estimator of the form $\mathbf{c}_0'\mathbf{Y}$. What is the $n \times 1$ vector \mathbf{c}_0 ? Make sure your answer has the correct dimension. You have more room than you need. CINCLO XUIN ON PROSECTION OF $\subseteq \mathcal{O}$

$$C_{0}'' = \alpha'\beta' = \alpha'(x'x)''x'y, so$$

 $C_{0}' = \alpha'(x'x)'x', and$
 $C_{0} = x(x'x)''x''a$

4. (5 points) As you saw in homework and lecture, the *best* linear unbiased estimator is $\mathbf{c}_0'\mathbf{Y}$. An important part of the proof is to show $(\mathbf{c} - \mathbf{c}_0)'\mathbf{c}_0 = 0$, using the constraint $\mathbf{X}'\mathbf{c} = \mathbf{a}$. Please carry out the calculation.

 $(c-c_{0})\dot{c}_{0}=c\dot{c}_{0}-c_{0}\dot{c}_{0}$ = C' X (X'X)' a - (X(X'X)' a) X (X'X)' ausing Kic = a (=) c'x=a' = a' x (x'x)' a - q' (x'x) x' x (x'x)' q

Family (Last) Name ____

Given (First) Name

Student Number

STA 302s13 Quiz 4B

For reference, $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ means $M_{\mathbf{Y}}(\mathbf{t}) = e^{\mathbf{t'}\boldsymbol{\mu} + \frac{1}{2}\mathbf{t'}\boldsymbol{\Sigma}\mathbf{t}}$. You may use these facts without proof: $M_{\mathbf{AY}}(\mathbf{t}) = M_{\mathbf{Y}}(\mathbf{A't})$ and $M_{\mathbf{Y}+\mathbf{c}}(\mathbf{t}) = e^{\mathbf{t'c}}M_{\mathbf{Y}}(\mathbf{t})$.

1. \mathcal{F} points) Let $\mathbf{Z} = \tilde{\boldsymbol{\Sigma}}^{1/2} (\mathbf{Y} - \boldsymbol{\mu})$. What is the distribution of \mathbf{Z} ? Show your work. Circle your final answer.

$$M_{Z}(t) = M_{Y,\mu}(\overline{z}^{t_{2}}t) = M_{Y,\mu}(\overline{z}^{t_{2}}t)$$

$$= C^{-t_{\mu}}M_{Y}(\overline{z}^{-t_{2}}t)$$

$$= C^{-t_{\mu}}M_{Y}(\overline{z}^{-t_{2}}t)$$

$$= C^{-t_{\mu}}C^{t_{\mu}}+\frac{1}{2}(\overline{z}^{-t_{2}}t)^{t_{2}}\overline{z}(\overline{z}^{-t_{2}}t)$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}+\frac{1}{2}(\overline{z}^{-t_{2}}\overline{z})^{t_{2}}\overline{z}^{-t_{2}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}\overline{z}^{-t_{2}}t = C^{t_{\mu}}t$$

$$= C^{-t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}C^{t_{\mu}}\overline{z}^{-t_{2}}\overline{z}^{-$$