Family (Last) Name ______ Given (First) Name ______ Student Number _____

STA 302s13 Quiz 3A

- 1. (4 points) For this question, recall that the spectral decomposition of a symmetric matrix \mathbf{A} is $\mathbf{A} = \mathbf{CDC'}$. Let \mathbf{A} be a square symmetric matrix with eigenvalues that are all strictly positive.
 - (a) Suppose A is 3×3 , with eigenvalues λ_1 , λ_2 and λ_3 . What is \mathbf{D}^{-1} ? Just write down the answer. No proof is required.

(b) Prove $\mathbf{A}^{-1} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$. You have two things to show.

$$(I) \quad (D'C'A = C \quad D'C'C, \quad DC' = C \quad D'D'C'$$
$$= CC' = T$$

$$(a) A C D'C' = C D C C C D C' = C D D C' = C C' = I$$

dono

expected value hor and

2. (4 points) If the $p \times 1$ random vector \mathbf{X}' has variance-covariance matrix $\boldsymbol{\Sigma}$ and \mathbf{A} is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of $\mathbf{A}\mathbf{X}$ is $\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'$. Start with the definition of a variance-covariance matrix:

 $cov(\mathbf{Z}) = E\{(\mathbf{Z} - \boldsymbol{\mu}_z)(\mathbf{Z} - \boldsymbol{\mu}_z)'\}.$

 $E(AX) = AM_{X}$, so $cov(AX) = E \sum (AX - AM_x)(AX - AM_x)^3$ = $E \{A(X - M_x)(A(X - M_x))'\}$ = E ZA (X-Ma) (X-Ma) A 3 = $A \in \{(x - \mu_x)(x - \mu_x)^{\prime}\}$ = A Z A'

3. (2 points) Attach the R output for your answer to Homework Question Two: That's Question 2.77 in the text. Make sure your name is on the printout.