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Definitions and Basic Results

Random Vectors and Matrices

See Chapter 3 of Linear models in statistics for more detail.

A random matriz is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p x 1)
may be called random vectors.

3/19



Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p x ¢ random matrix X by [X; ],

E(X) = [E(Xi;)].
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Defi

Immediately we have natural properties like

E(X+Y)



Definitions and Basic Results

Moving a constant through the expected value sign

Let A = [a; ;] be an 7 x p matrix of constants, while X is still a
p X ¢ random matrix. Then

E(AX) = E(

Similar calculations yield E(AXB) = AE(X)B.



Variance-Covariance Matrices

Let X be a p x 1 random vector with F(X) = p. The
variance-covariance matriz of X (sometimes just called the
covariance matriz), denoted by cov(X), is defined as

cov(X) = E{(X — u)(X - p)'}.
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Definitions and Basic Results

con(X) = B{(X — u)(X — )}

X1
cov(X) = E{(Xgug) ( X1—p1 Xo—p2 X3—ps3 )}
X3 —p3
(X1 —m)? (X1 —pa)(X2 —p2) (X1 — p1)(Xs — p3)
= E (X2 — #2)(X1 p1) (X2 — p2)? (Xz - #2)(X3 — p3)
(X3 —p3)(X1 —p1) (X3 —p3)(Xo —p2) (X3 — p3)?
E{(X1 —p1)?} E{(X1—pm)(Xo —p2)t  E{(X1—p1)(Xs -
= B{(X2 —p2)(X1 —p1)}  B{(X2 —n2)?} E{(X2 *H2)(X -
B{(X3 —p3)(X1 —p1)}  B{(X3—p3)(Xz2 —p2)} E{(X3—p3)*}
( Var(X1) Cov(X1,X2) Cov(X1,X3) )
= Cov(X1,X2) Var(X2) Cov(X2,X3) |.
Cov(X1,X3) Cov(X2,X3) Var(Xs)

So, the covariance matrix cov(X) is a p X p symmetric matrix with variances on

the main diagonal and covariances on the off-diagonals.
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Definitior

Analogous to Var(a X) = a? Var(X)

Let X be a p x 1 random vector with F(X) = p and
cov(X) = X, while A = [a; ;] is an r x p matrix of constants.

Then

cov(AX)

E{(AX — Ap)(AX — Ap)'}
E{AX - p) (A(X —p))'}
E{AX - p)(X - p)A'}
AB{(X - p)(X - p)}A
Acov(X)A’

AZA/



Definitions and Basic Results

Positive definite is a natural assumption

For covariance matrices

cov(X) =X
Y. positive definite means a’¥a > 0. for all a # 0.

Y =a'X=aX;+ -+ a,X, is a scalar random variable.
Var(Y) = a'Xa

3} positive definite just says that the variance of any
(non-trivial) linear combination is positive.

This is often what you want (but not always).
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Matrix of covariances between two random vectors

Let X be a p x 1 random vector with F(X) = p,, and let Y be
a ¢ x 1 random vector with E(Y) = p,. The p X ¢ matrix of
covariances between the elements of X and the elements of Y is

CX,Y) = BE{(X — p)(Y —p,)'}.
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Definitions and Basic Results

Adding a constant has no effect

On variances and covariances

It’s clear from the definitions:

o cov(X) = E{(X — u)(X — )}

°o C(X,Y) = E{(X—p,)(Y —p,)'}
That

e cov(X + a) = cov(X)

e C(X+a,Y+b)=C(XY)

For example, F(X +a) = p + a, so

covX+a) = B{(X+a—(n+a)(X+a-(u+a)}
= BE{X-p)(X-p)}
= cov(X)



Moment-generating Functions

Moment-generating function

Of a p-dimensional random vector X

o Mx(t) = E (et’X)
o Corresponds uniquely to the probability
distribution.

Section 4.3 of Linear models in statistics has some material on
moment-generating functions.
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Max(t) = Mx(A't)

Analogue of Myx (t) = Mx (at)

Max(t) = E(et’AX)
_ (G(A’t)/X)
= Mx(A't)

Note that t is the same length as Y = AX: The number of
rows in A.



Mx yo(t) = et Mx(t)

Analogue of Mxi.(t) = e Mx(t)

Mxic(t) = E (et/<X+C))
— F (et/X—l—t/c)
_ tlep ( 8t’X)

= e Mx(t)



Independence

Two random vectors X; and X are independent
if and only if the moment-generating function of
their joint distribution is the product of their
moment-generating functions.
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Mx(t) = E(et'x)

= FE <et’1X1+t’2X2> - F (etixlet,QXQ)
_ / / X1 et fi (1) fix, (3c2) (1) d(x2)
— /et§x2 </ etllxlfxl(xl)d(m)) Jx,(x2) d(x2)

_ /6t'2x2]\4x1 (t1) fx,(x2) d(x2)
= Mx, (t1)Mx,(t2)

By uniqueness, it’s an if and only if.
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Moment-generating Functions

X1 and X3 independent implies that Y; = ¢;(X;) and
Y, = ¢2(X3) are independent.

(etllYl—l-téYQ) — B (etllYletngQ)

191 (X1) gthg2 (x2>)

E
E
FE
B / et 00) ta02002) iy (x1) fx, (%2) d(31)d(x2)
Mg, (x) (81) Mg, (x,) (t2)

= MY1 (tl)MYQ(tQ)
So Y7 and Y5 are independent.
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Moment erating Functions

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:

http://www.utstat.toronto.edu/ ~brunner/oldclass/302f13
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