STA 302f13 Assignment Five¹

These problems are preparation for the quiz in tutorial on Friday October 18th, and are not to be handed in.

For reference, the general linear model in matrix form is $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times (k+1)$ matrix of observable constants, the columns of \mathbf{X} are linearly independent, $\boldsymbol{\beta}$ is a $(k+1) \times 1$ vector of unknown constants (parameters), and $\boldsymbol{\epsilon}$ is an $n \times 1$ vector of unobservable random variables with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}_n$, where $\sigma^2 > 0$ is an unknown constant parameter. The least squares estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$.

- 1. Let $Y_i = \beta x_i + \epsilon_i$ for i = 1, ..., n, where $\epsilon_1, ..., \epsilon_n$ are a random sample from a distribution with expected value zero and variance σ^2 , and β and σ^2 are unknown constants. The numbers $x_1, ..., x_n$ are known, observed constants. This is a special case of the general linear model, which is given above in matrix form.
 - (a) What is $\mathbf{X}'\mathbf{X}$?
 - (b) What is $\mathbf{X'Y}$?
 - (c) $(X'X)^{-1}$?
 - (d) What is $\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}?$
 - (e) You already know that $\hat{\beta}$ is unbiased for β . It is also a *linear* estimator of the form $\mathbf{c'Y} = \sum_{i=1}^{n} c_i Y_i$, so it is a *linear unbiased estimator*. What is c_i ?
- 2. If we want to estimate $\mathbf{a}'\boldsymbol{\beta}$ based on sample data, the Gauss-Markov Theorem tells us that the most natural choice is also (in a sense) the best choice. This question leads you through the proof of the Gauss-Markov Theorem. Your class notes should help.
 - (a) What is the most natural choice for estimating $\mathbf{a}'\boldsymbol{\beta}$?
 - (b) Show that it's unbiased.
 - (c) The natural estimator is a *linear* unbiased estimator of the form $\mathbf{c}'_0 \mathbf{Y}$. What is the $n \times 1$ vector \mathbf{c}_0 ?
 - (d) Of course there are lots of other possible linear unbiased estimators of $\mathbf{a}'\boldsymbol{\beta}$. They are all of the form $\mathbf{c}'\mathbf{Y}$; the natural estimator $\mathbf{c}_0'\mathbf{Y}$ is just one of these. The best one is the one with the smallest variance, because its distribution is the most concentrated around the right answer. What is $Var(\mathbf{c}'\mathbf{Y})$? Show your work.
 - (e) We insist that $\mathbf{c'Y}$ be unbiased. Show that if $E(\mathbf{c'Y}) = \mathbf{a'\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$, we must have $\mathbf{X'c} = \mathbf{a}$.
 - (f) So, the task is to minimize $Var(\mathbf{c'Y})$ by minimizing $\mathbf{c'c}$ over all \mathbf{c} subject to the constraint $\mathbf{X'c} = \mathbf{a}$. As preparation for this, show $(\mathbf{c} \mathbf{c}_0)'\mathbf{c}_0 = 0$.

¹Copyright information is at the end of the last page.

(g) Using the result of the preceding question, show

$$\mathbf{c}'\mathbf{c} = (\mathbf{c} - \mathbf{c}_0)'(\mathbf{c} - \mathbf{c}_0) + \mathbf{c}_0'\mathbf{c}_0.$$

(h) Since the formula for \mathbf{c}_0 has no \mathbf{c} in it, what choice of \mathbf{c} minimizes the preceding expression? How do you know that the minimum is unique?

The conclusion is that $\mathbf{c}'_0 \mathbf{Y} = \mathbf{a}' \hat{\boldsymbol{\beta}}$ is the Best Linear Unbiased Estimator (BLUE) of $\mathbf{a}' \boldsymbol{\beta}$.

- 3. For the model of Question 1, let $\hat{\beta}_2 = \frac{\overline{Y}_n}{\overline{x}_n}$.
 - (a) Show that $\widehat{\beta}_2$ is unbiased for β .
 - (b) Which has the smaller variance, $\hat{\beta}_2$ or your estimator from Question 1? How do you know? This is quick if you see it.
- 4. For the model of Question 1, let $\hat{\beta}_3 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{x_i}$.
 - (a) Show that $\widehat{\beta}_3$ is unbiased for β .
 - (b) Which has the smaller variance, $\hat{\beta}_3$ or your estimator from Question 1? How do you know? Again, this is quick.
- 5. The first parts of this question were in Assignment One. Let Y_1, \ldots, Y_n be independent random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$ for $i = 1, \ldots, n$.
 - (a) Write down $E(\overline{Y})$ and $Var(\overline{Y})$.
 - (b) Let c_1, \ldots, c_n be constants and define the linear combination L by $L = \sum_{i=1}^n c_i Y_i$. What condition on the c_i values makes L an unbiased estimator of μ ?
 - (c) Is \overline{Y} a special case of L? If so, what are the c_i values?
 - (d) What is Var(L)?
 - (e) Now show that $Var(\overline{Y}) < Var(L)$ for every unbiased $L \neq \overline{Y}$. Hint: Add and subtract $\frac{1}{n}$ as in Question 2.
- 6. Another way to express the model of Question 5 is to say $Y_i = \mu + \epsilon_i$ for i = 1, ..., n, where $\epsilon_1, ..., \epsilon_n$ are independent random variables from a distribution with expected value zero and variance σ^2 . This is a regression with *no independent variables* (weird), and $\beta_0 = \mu$.
 - (a) What is the **X** matrix?
 - (b) What is $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$?
 - (c) Now how do you know $Var(\overline{Y}) < Var(L)$ in Question 5, without any calculations?

7. For this question, you may use the following, as well as standard properties of momentgenerating functions.

$$Y \sim N(\mu, \sigma^2) \text{ means } M_Y(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$
$$M_{\mathbf{Y}}(\mathbf{t}) = E(e^{\mathbf{t}'\mathbf{Y}}) \qquad M_{\mathbf{A}\mathbf{Y}}(\mathbf{t}) = M_{\mathbf{Y}}(\mathbf{A}'\mathbf{t}) \qquad M_{\mathbf{Y}+\mathbf{c}}(\mathbf{t}) = e^{\mathbf{t}'\mathbf{c}}M_{\mathbf{Y}}(\mathbf{t})$$

- (a) Let Z_1, \ldots, Z_p be independent standard normal random variables, and $\mathbf{Z} = (Z_1, \ldots, Z_p)'$.
 - i. What is $E(\mathbf{Z})$?
 - ii. What is $cov(\mathbf{Z})$?
 - iii. What is $M_{\mathbf{Z}}(\mathbf{t})$?
 - iv. Let Σ be a $p \times p$ symmetric non-negative definite (real) matrix and $\boldsymbol{\mu} \in \mathbb{R}^p$. Letting $\mathbf{Y} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{Z} + \boldsymbol{\mu}$, show that $M_{\mathbf{Y}}(\mathbf{t}) = e^{\mathbf{t}'\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}}$. A random vector with this moment-generating function will be called *multivariate normal* with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, and we will write $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- (b) Let $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let \mathbf{A} be an $r \times p$ matrix of real constants. Show that the random vector \mathbf{AY} has a multivariate normal distribution. Give the mean vector and covariance matrix.
- (c) Let $\mathbf{X} = (X_1, X_2, X_3)'$ be multivariate normal with

$$\boldsymbol{\mu} = \begin{bmatrix} 1\\0\\6 \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 1 \end{bmatrix}.$$

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_2 + X_3$. Find the joint distribution of Y_1 and Y_2 .

- (d) Let X_1 be Normal (μ_1, σ_1^2) , and X_2 be Normal (μ_2, σ_2^2) , independent of X_1 . What is the joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$? What is required for Y_1 and Y_2 to be independent? Hint: Use matrices.
- (e) Show that if $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where the covariance matrix $\boldsymbol{\Sigma}$ is strictly positive definite, $W = (\mathbf{Y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y} \boldsymbol{\mu})$ has a chi-squared distribution with p degrees of freedom.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f13