STA 261s2006 Assignment 2

Do this assignment in preparation for the quiz in tutorial on Wednesday Jan 18. The questions are practice for the quiz, and are not to be handed in.

- 1. Here are some problems on moment-generating functions.
 - (a) Let $M_X(t)$ be the moment-generating function of the random variable X, and let a be a constant. Show $M_{aX}(t) = M_X(at)$.
 - (b) Let X_1, \ldots, X_n be independent random variables with respective momentgenerating functions $M_{X_1}(t), \ldots, M_{X_n}(t)$. Let $Y = \sum_{i=1}^n X_i$. Show $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$. Be clear about where you use independence.
 - (c) Let X_1, \ldots, X_n be independent Exponential(θ) random variables. Find the distribution of \overline{X}_n . Show your work.
 - (d) Let $Z \sim N(0, 1)$, and let $X = Z^2$. Find the distribution of X using moment-generating functions. Show your work.
 - (e) Let X_1, \ldots, X_n be independent chi-square random variables with respective degree of freedom parameters ν_1, \ldots, ν_n . Find the distribution of $Y = \sum_{i=1}^n X_i$. Show your work.
 - (f) Let X_1, \ldots, X_n be independent Poisson random variables with respective parameters $\lambda_1, \ldots, \lambda_n$. Find the distribution of $Y = \sum_{i=1}^n X_i$. Show your work.
 - (g) Let X_1, \ldots, X_n be independent and identically distributed Binomial random variables with parameters m and θ . Find the distribution of $Y = \sum_{i=1}^n X_i$. Show your work.
 - (h) Let X_1, \ldots, X_n be independent and identically distributed Normal random variables with parameters μ and σ^2 . Find the distribution of \overline{X}_n . Show your work.
- 2. Let X_1, \ldots, X_n be independent random variables, all with the same expected value μ and the same variance σ^2 .
 - (a) Find $E[\overline{X}_n]$. Show your work. This is quick.
 - (b) Find $Var[\overline{X}_n]$. Show your work. This is quick.
 - (c) Find $E[S^2] = E\left[\frac{\sum_{i=1}^n (X_i \overline{X}_n)^2}{n-1}\right]$. Show your work.

- 3. Let g be a non-negative function. That is $g(x) \ge 0$ for all x. For any constant a, show that $E(g(X)) \ge aPr\{g(X) \ge a\}$
 - (a) For X discrete.
 - (b) For X continuous.

This is *Markov's inequality* (see lecture notes).

- 4. Read Section 4.4, Pages 141-143. Do exercises 4.29, 4.30, 4.32
- 5. Let X_1, \ldots, X_n be independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Combine your results from the first two parts of problem 2 with Chebyshev's inequality to show that for any constant c > 0,

$$\lim_{n \to \infty} \Pr\{|\overline{X}_n - \mu| \ge c\} = 0$$

This is the Law of Large Numbers.