
Extra Material, not in the text

Theorem 10.3b Let T1, T2, . . . be a sequence of random variables. If limn→∞ E(Tn) = θ

and limn→∞ V ar(Tn) = 0 then Tn
P→ θ.

This is proved using Markov’s inequality, with g(x) = (x − θ)2 and a = c2.

Continuous mapping theorem Let Tn = (T
(1)
n , . . . T

(k)
n )′, t0 = (t

(1)
0 , . . . t

(k)
0 )′, and

T
(j)
n

P→ t
(j)
0 for j = 1, . . . , k. If the function g is continuous at t0, then g(Tn)

P→ g(t0).

Method of Moments The description of this method that is presented in the text
(and initially, what I said in class) applies just to random samples. But the following
version is a bit more general. It is useful for data that are not identically distributed, like
regression data. In this formulation, the data need not even be independent.

Let the joint distribution of the data X1, . . . , Xn depend on the parameters θ1, . . . θr.
Following standard notation, we define the kth sample moment as

m′
k =

1

n

n∑
i=1

Xk
i

Clearly, E(m′
k) is a function of θ1, . . . θr. So pick r values of k, and write the system

of equations

E(m′
k1

) = g1(θ1, . . . θr)

...

E(m′
kr

) = gr(θ1, . . . θr)

Once this has been done, follow these steps.

1. Remove the expected values on the left hand side of the equations.

2. Add hats to the θ values on the right hand side.

3. Solve for the Θ̂ values. These are the Method of Moments (MOM) estimators.

Here are some comments.

• If the data are a random sample (independent and identically distributed) then
E(m′

k) = µ′
k, and we have the usual Method of Moments estimators.

• Of course it does not matter if you solve the equations first and then put the hats
on, or if you do it the other way around.

• You can hope that the values of k are just 1, . . . , r, but there is no guarantee. In
particular, if the distribution of the Xi values is symmetric about zero, then all the
odd-numbered moments are zero, and only even values of k will be useful.

• If the data are not a random sample (think regression), don’t depend on formulas
like E(X) = µ; they were derived for the i.i.d. case, and might not be correct. Do
the calculation.
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An i.i.d Example Let X1, . . . , Xn be a random sample from a Binomial distribution
with parameters k and θ, both unknown. We write the system of equations

E(m′
1) = kθ

E(m′
2) = kθ(1 − θ) + k2θ2

Removing expected value signs and adding hats gives us

m′
1 = K̂Θ̂

m′
2 = K̂Θ̂(1 − Θ̂) + K̂2Θ̂2

We then solve two equations in two unknowns to get

Θ̂ = m′
1 −

m′
2

m′
1

+ 1

K̂ =
m′2

1

m′2
1 + m′

1 −m′
2

Are these estimates unbiased? Good luck trying to compute the expected values! But
they are consistent, provided kθ �= 0. Here is how you would prove it for Θ̂n.

By the Law of Large numbers, m′
1

P→ kθ and m′
2

P→ kθ(1 − θ) + k2θ2. The function
g(x, y) = x − y/x + 1 is continuous except when x = 0, and so by the Continuous
Mapping Theorem,

g(m′
1, m

′
2)

P→ g(kθ, kθ(1 − θ) + k2θ2)

= kθ − kθ(1 − θ + kθ)

kθ
+ 1

= kθ − 1 + θ − kθ + 1

= θ,

showing that Θ̂n is consistent for θ, as long as k �= 0 and θ �= 0.

A Regression Example Let Yi = βxi + εi, for i = 1, . . . , n, where

x1, . . . , xn are fixed, known constants

ε1, . . . , εn are independent and identically distributed random variables with E(εi) = 0
and V ar(εi) = σ2.

β and σ2 are unknown parameters.

Let’s find a Method of Moments estimator for β.

E(Y n) = E

(
1

n

n∑
i=1

Yi

)

= E

(
1

n

n∑
i=1

(βxi + εi)

)
= E(βxn + εn)

= βxn
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So set Y n = β̂nxn, and get

β̂n =
Y n

xn

.

Is it unbiased? Yes, immediately. Consistent? Be very careful here! You cannot simply
invoke the Law of Large Numbers, because the Law of Large Numbers was proved using
Chebyshev’s inequality, and the proof of Chebyshev’s inequality assumed that X1, . . . , Xn

all had the same mean µ and the same variance σ2. It does not apply here, because E(Yi)
depends on i. If you use it directly in a case like this, you might get a point or two out
of charity, but you will lose a lot of marks. Even Theorem 10.3 does not apply, because
the proof in the book uses Chebyshev’s inequality.

On the other hand, Theorem 10.3b is just a theorem about sequences of random
variables. The proof uses Markov’s inequality, but Markov’s inequality always holds. All
we need to apply the theorem is the existence of V ar(β̂n) for n sufficiently large. Here we
go.

We know β̂n is unbiased, so it’s asymptotically unbiased. We just have to check to see
if V ar(β̂n) → 0.

V ar(β̂n) = V ar

(
Y n

xn

)
=

1

x2
n

V ar

(
1

n

n∑
i=1

Yi

)

=
1

n2x2
n

V ar

(
n∑

i=1

βxi + εi

)
ind
↓
=

1

n2x2
n

n∑
i=1

V ar(βxi + εi)

=
1

n2x2
n

n∑
i=1

σ2

=
1

n2x2
n

nσ2

=
σ2

nx2
n

Now we can see the condition for β̂n to be consistent: 1
nx2

n
→ 0 as n → ∞. A convenient

sufficient condition is for xn → x∞ �= 0, but it’s more than we really need. The sequence
of constants xn can actually converge to zero, as long as it does not go there too fast.
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Modified Central Limit Theorem There are many versions of the Central Limit
Theorem. This one just says that the version we proved in class still holds when the
parameter σ is replaced by any consistent estimator. That is, let X1, . . . , Xn be a random
sample from a distribution with mean µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ̂

d→ Z ∼ N(0, 1),

where σ̂ is any consistent estimator of σ.
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Hypothesis testing

Model We will write the model as X ∼ Pθ, θ ∈ Θ.

• The quantity X represents the collection of all observable random variables in the
model. Frequently, X = X1, . . . , Xn, but not always. For example,

– Suppose we have two independent random samples, X1, . . . , Xn1 and Y1, . . . , Yn2 .
Then X = X1, . . . , Xn1 , Y1, . . . , Yn2.

– In the simple regression model Yi = β0 + β1xi + εi, X = Y1, . . . , Yn. The inde-
pendent variables x1, . . . , xn are not part of X because they are known, fixed
constants. The error terms ε1, . . . , εn are random, but they are not observable;
so, they are not part of X either.

• Pθ is the joint probability distribution of the random variables in X. It is equivalent
to the likelihood. It depends on the parameter θ, which could be a vector. For

example, if X1, . . . , Xn
i.i.d.∼ N(µ, σ2), θ = (µ, σ2).

• The probability distribution Pθ can be a function of various known constants as well
as unknown parameters. In the regression example, x1, . . . , xn are part of Pθ.

Θ is called the parameter space. It is the set of all permissible values for θ. That is, Pθ

is a probability distribution if and only if θ ∈ Θ. In the case of a normal distribution,
Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}.

We will denote the sample space by X. The random vector X takes values in X, and the
joint cumulative distribution of X is defined on all of X. For example, let X = (X1.X2),
where X1 and X2 are independent Bernoulli random variables. The sample space X is the
entire plane �2. The probability is zero that X falls into a cirle of unit radius, centered
at (-14,-22). But that set is still part of the sample space.

In this course, X will always be the set of real numbers of dimension m, where m is
the length of X. That’s because all our random variables are real-valued. If our random
variables were more exotic (for example, they could be complex-valued), then X would be
more exotic too. But we don’t need to go there.

We will denote the support of the (joint) distribution Pθ by S, defined as follows. Let

S = {x ∈ X : f(x; θ) > 0},

where f(x; θ) is the joint density or distribution (probability mass function) of X. Note
that

• The support is contained in the sample space: S ⊆ X.

• The support S may depend upon the parameter, but the sample space X does not.

• As the sample size increases, X and S get bigger, while Θ stays the same size.
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For example, let X1, . . . , Xn
i.i.d.∼ Binomial(k, θ), where k and θ are both unknown. We

have

• Θ = {(k, θ) : k = 0, 1, . . . and 0 < θ < 1}.

• X = �n = {(x1, . . . , xn) : ∞ < xi < ∞, i = 1, . . . , n}

• S = {(x1, . . . , xn) : xi = 0, . . . , k for i = 1, . . . , n}.

Notice how the support depends upon the parameter – specifically upon the k part –
while the sample space does not.

When specifying Θ and S for a particular problem, please do so in terms of the tech-
nical details of the probability distributions you are using, not in terms of the real-life
phenomena being modelled. For example, we might adopt the normal distribution as a
model for the number we get when we weigh a randomly selected pig. It’s a good model,
but of course it’s not exactly right. Weights (and expected weights) cannot be negative,
but S still includes negative values of the Xi, and Θ includes negative values of µ.

The General Idea of classical hypothesis testing is this. First, we tentatively adopt
an assumption about the value of θ. This assumption is called the “null” hypothesis,
because it is supposed to capture the idea that nothing interesting is going on. For
example in a blind taste test, the null hypothesis might be that expressed preference
for one brand of cola over another is like tossing a fair coin. The model would be

X1, . . . , Xn
i.i.d.∼ Bernoulli(θ), and the null hypothesis is H0 : θ = 1

2
.

If the data we observe are very unlikely given the assumption of the null hypothesis
(like, 90% of the sample prefer Brand A), then we reject H0 in favour of an alternative
hypothesis H1, which is set up to be the positive conclusion of the investigation. For
example, H1 : θ �= 1

2
, or H1 : θ > 1

2
.

Formal Statement of Null and Alternative Hypotheses We will write

H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ1,
Θ0 ⊂ Θ, Θ1 ⊂ Θ, and Θ0 ∩ Θ1 = ∅.

It is nice when Θ0 ∪ Θ1 = Θ, but this need not be the case. Recall from the text and
lecture that statistical hypotheses can be either simple or composite. When testing a
simple hull hypothesis against a simple alternative, both Θ0 and Θ1 are singleton sets
consisting on one element each. You definitely do not have Θ0 ∪ Θ1 = Θ, except maybe
in very strange and artificial cases.

Why would anyone want to leave out part of the parameter space, thus effectively
assuming that the parameter cannot possibly be in the missing part? I can think of two
reasons.

• The classical methods we’re studying are formal tools for deciding between two al-
ternatives: θ ∈ Θ0 and θ ∈ Θ1. Sometimes, parts of the parameter space are just
irrelevant. Suppose I’m giving patients a test for the level of some blood chemical,
and I’m doing it two ways, a cheap way that is relatively inaccurate, and an ex-
pensive way that is more accurate. Let Xi represent the cheap measurement and
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Yi represent the expensive measurement for patient i, and denote Cov(Xi, Yi) by κ,
which is the same for i = 1, . . . , n. I am very interested in testing H0 : κ = 0 versus
H1 : κ > 0. The possibility κ < 0 would mean that on average, high values of X go
with low values of Y and vice versa. It’s not even worth considering. Similarly, this
is where you can eliminate the possibility that the expected weight of your pigs is
negative.

• You can also set up simple versus simple hypotheses as a stepping stone to other,
more practical comparisons. Applications of the Neyman-Pearson lemma usually
fall into this category. More later.

Critical Regions We need a rule for deciding between H0 and H1. The decision should
be based on the data X, while the rule should be something we can set up in advance,
before we see the data. Accordingly, we divide the sample space into two disjoint regions,
C and Cc. X = C ∪ Cc.

The set C is called a critical region. It is also called a rejection region; the two terms
mean the same thing. If X ∈ C , then we reject H0 and conclude θ ∈ Θ1. If X /∈ C , then
we accept H0 and conclude θ ∈ Θ0.

Several comments are in order.

• We are living in a world of decision theory here. We are deciding between θ ∈ Θ0

and θ ∈ Θ1. These are the only two alternatives, and we have to pick one. 1

• Usually, part of the support is in C , and part is in Cc. Parts of C and parts
of Cc may have probability zero, but that does not present any problem. If the
support does not depend on the parameter, then the decision rule is not affected.
Pθ(X ∈ C) = Pθ(X ∈ C ∩ S), regardless of what θ is, and the same applies to Cc.

On the other hand, if the support does depend on θ, it is very nice when C contains
the regions of X that have zero probability under H0 — because if X falls into there,
then the null hypothesis is definitely wrong, and the decision to reject it is correct,
with probability one.

• A critical region is equivalent to a test. Sometimes we call C a critical region, and
sometimes we call it a test. There should be no confusion.

1In some classes (like STA220, STA221 and STA442), students are told that if we reject H0 then we
accept H1, but if we do not reject H0, then we conclude nothing. We never accept the null hypothesis,
they are told. This point of view is due to R. A. Fisher (Mr. F distribution) who came up with the
concept of hypothesis testing more or less as we know it. As usual with intellectual pioneers, his ideas
were brilliant but not every detail was precisely worked out. Neyman and Pearson came along a bit later
and cleaned up Fisher’s method, putting it on a firm decision-theoretic basis.

During their lifetimes, Fisher fought bitterly with Neyman and Pearson. To Neyman and Pearson,
Fisher was creative but mathematically unsophisticated. To Fisher, Neyman and Pearson were good
mathematicians, but they were missing the point, because science does not proceed by simple yes or no
decisions.

Today, Neyman-Pearson theory usually dominates in theoretical research and theoretical courses, while
Fisher’s approach is more helpful in applications and applied courses. STA 261 is a theoretical course,
and so we’re in Neyman-Pearson mode for the moment.
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• Almost always, critical regions are defined in terms of test statistics. For example,

X1, . . . , Xn
i.i.d.∼ N(µ, σ2), and we want to test H0 : µ = µ0 against H1 : µ �= µ0.

Consider the critical region C = {x ∈ X :
∣∣∣x−µ0

s/
√

n

∣∣∣ > tα/2,n−1}. Clearly X ∈ C if and

only if |T (X)| > tα/2,n−1, where T = X−µ0

S/
√

n
. The test statistic is T .

• Statistics cannot depend upon unknown parameters. And, whether you write a
critical region in terms of a statistic or not, neither can a critical region. Again,
a critical region cannot be defined in terms of any unknown parameters. It only
makes sense. A critical region is equivalent to a decision rule, and you cannot make
decisions based on something you do not know.

• For almost any model and null and alternative hypothesis, a huge number of tests
(critical regions) are possible. Some must be better than others. Better in what
sense? This is the next point to consider.

Type I and Type II Error When we perform a test — that is, when we observe a
value of X and check whether it falls into C — four things are possible.

1. θ ∈ Θ0 but we mistakenly conclude θ ∈ Θ1.

2. θ ∈ Θ1 but we mistakenly conclude θ ∈ Θ0.

3. θ ∈ Θ0 and we correctly conclude θ ∈ Θ0.

4. θ ∈ Θ1 and we correctly conclude θ ∈ Θ1.

If θ ∈ Θ0 and it happens that X ∈ C , we falsely conclude θ ∈ Θ1. This is called a
Type I Error. If θ ∈ Θ1 and it happens that X /∈ C , we falsely conclude θ ∈ Θ0. This
is called a Type II Error. We would like to choose C so as to minimize the probability
of both kinds of error, simultaneously. Unfortunately, this is not possible; you can’t do
both.

Consider the awful strategy of never rejecting H0, regardless of the data. The prob-
ability of Type II error may be high, but the probability of Type I error is zero. For
minimizing Type I error, you cannot beat this ”test.” At the other extreme, you could
always reject H0, regardless of the data. The probability of Type I error may be high,
but the probability of Type II error is zero. We need a principled tradeoff between the
two types of error.

Here’s the standard answer. Restrict your attention to critical regions C such that
for θ ∈ Θ0, Pθ{X ∈ C} is held to a fixed, low level. Then seek a critical region with
Pθ{X ∈ C} large for θ ∈ Θ1.

Size of a test The size of a test is the maximum probability of making a Type I Error.
In symbols, it is

α = max
θ∈Θ0

Pθ{X ∈ C}

This is a standard definition, but it does not seem to be in our text. Our authors treat
the probability of a Type I error as a function of θ, writing it as α(θ) for θ ∈ Θ0. Mostly
they avoid composite null hypotheses. We will not. The probability of a Type II error is
also definitely a function of θ. It is written β(θ).
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Power The power of a test is the probability of correctly rejecting the null hypothesis.
That is, it is the probability of detecting something (like a difference between expected
values, perhaps) that is really present. It too is a function of θ: Power = 1 − β(θ) for
θ ∈ Θ1.

Our text defines the overall power function π(θ) as α(θ) for θ ∈ Θ0 and 1 − β(θ) for
θ ∈ Θ1. In our notation,

π(θ) = Pθ{X ∈ C} = α(θ)I(θ ∈ Θ0) + (1 − β(θ))I(θ ∈ Θ1).

Clearly, power (statistical power, anyway) is a good thing. If C and D are two critical
regions of size α with Pθ{X ∈ C} > Pθ{X ∈ D}, we say C is more powerful than D —
for that particular value of θ. If C is more powerful than any other size α critical region,
it is said to be the most powerful test. This is great, but it is still specific to that θ. If C
is most powerful for all θ ∈ Θ1, the test is said to be uniformly most powerful of size α.
You can’t do any better than that. It’s a wonder that any such tests exist. Thank you,
Mr. Neyman. Thank you, Mr. Pearson.

The Neyman-Pearson Lemma The key to deriving uniformly most powerful tests
(when they exist) is this lemma, which gives us the most powerful test of a simple null
hypothesis versus a simple alternative.

Without losing any generality, we can write H0 : θ = θ0 and H1 : θ = θ1. Write the
likelihood as L(x; θ). The Neyman-Pearson Lemma says that the most powerful size α
test is given by

C = {x ∈ X : L(x; θ0) ≤ k L(x; θ1)}.
The constant k is general, and is chosen to make the test have size α. That is, Pθ0{X ∈
C} = α, where it is recognized that for discrete distributions, we may not be able to
have any exact value of α we want2. Also, because any critical region consists of points
in X, the “∈ X” part in the definition of C is redundant, and may be dropped in long
calculations.

When we say that C is most powerful of size α, we mean precisely the following. Let
D be any other critical region with Pθ0{X ∈ D} ≤ α. Then Pθ1{X ∈ C} ≥ Pθ1{X ∈ D}.
The proof given in lecture (but not the one in the book) carefully includes the case where
the case where Pθ0{X ∈ D} is strictly less than α.

Our book writes the likelihoods in a ratio, which is often useful in calculations, and
also nice because it makes intuitive sense. If the ratio L(x;θ0)

L(x;θ1)
is small, it means that the

observed data are relatively less probable given θ = θ0 than they are given θ = θ1. If
the relative likelihood is small enough, then surely H0 : θ = θ0 should be rejected. Still,
we’re not writing it as a ratio here, because sometimes the likelihood equals zero when
the support of the distribution depends on the parameter – and we want to avoid division
by zero.

Sample Questions and answers Let X1, . . . , Xn be a random sample from a normal
distribution with mean µ and variance one. We will test H0 : µ ≤ µ0 versus H0 : µ > µ0

with the test statistic T =
√

n(X − µ0), rejecting H0 if T > zα.

2Well, you can if you use a randomized test, but randomized tests are so unacceptable in applications
that they are not discussed here.
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Question 1 What is the parameter space Θ?

Answer: The set of real numbers. That is, {µ : −∞ < µ < ∞}.

Question 2 What is Θ0?

Answer: (−∞, µ0]

Question 3 What is Θ1?

Answer: (µ0,∞)

Question 4 What is the sample space X?

Answer: �n, not just �.

Question 5 What is the support S?

Answer: Again, �n. The normal density does not require an indicator for the support.

Question 6 What is the critical region C?

Answer: {x ∈ �n :
√

n(x− µ0) > zα}.

Question 7 Find the power function π(µ).

Answer: We know X ∼ N(µ, 1/n), and of course µ need not equal µ0. So,

Pµ{X ∈ C} = Pµ{
√

n(X − µ0) > zα}
= Pµ{X >

zα√
n

+ µ0}

= Pµ{
√

n(X − µ) >
√

n(
zα√
n

+ µ0 − µ)}

= Pµ{
√

n(X − µ) > zα +
√

n(µ0 − µ)}
= 1 − FZ [zα +

√
n(µ0 − µ)],

where FZ is the cumulative distribution function of a standard normal.

Question 8 Find the size of the test. Hint: H0 is composite.

Answer: Because the null hypothesis is composite, we must maximize π(θ) over Θ0.

d

dµ
Pµ{X ∈ C} =

d

dµ

(
1 − FZ [zα +

√
n(µ0 − µ)]

)
= (−1)fz(zα +

√
n(µ0 − µ))(−

√
n) > 0,

so the function is increasing. It attains its maximum on the right boundary of Θ0, where
µ = µ0. At that point,

1 − FZ [zα +
√

n(µ0 − µ)] = 1 − FZ [zα] = 1 − (1 − α) = α.

So, the size of the test is α. Note: If the null hypothesis is composite and you are asked
to find the size of the test, you must maximize the power function over Θ0 to get full
marks. Almost always, the maximum occurs at the point in Θ0 that is closest to Θ1, but
you have to show it, not just guess.
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Question 9 Suppose µ0 = 0 and α = 0.05. If n = 4, what is the power at µ = 1?

Answer:

1 − FZ [zα +
√

n(µ0 − µ)] = 1 − FZ [1.645 + 2(0 − 1)] = 1 − FZ [−0.355]

= 0.5 +
1

2
(0.1368 + 0.1406) = 0.6387

Question 10 Again, suppose µ0 = 0 and α = 0.05. What sample size is required so that
if the true value of µ is one half, the power (probability of rejecting H0) will be at least
0.99?

Answer: We want

0.99 = 1 − FZ [1.645 +
√

n(0 − 1

2
)]

= 1 − FZ [1.645 −
√

n

2
],

so we set

1.645 −
√

n

2
= z0.99 = −z0.01 = −2.326

and solve for n to get n = 63.08. The next highest integer is n = 64, which makes the
probability of rejecting H0 a bit more than 0.99.

I got the value 2.326 from the last row of the t table. By the way, this is the standard
method for selecting sample size when the purpose of a study is to test a hypothesis.
You pick a value of θ ∈ Θ1 that is is scientifically reasonable, even modest. Then you
find the sample size that makes the probability of rejecting H0 (and thus concluding H1)
comfortably high for that parameter value. This procedure is quite general, and is usually
called statistical power analysis in applied statistics.

Question 11 Prove that this test is uniformly most powerful of size α for testing H0 :
µ ≤ µ0 against H1 : µ > µ0.

Let D be another critical region of size α for testing H0 : µ ≤ µ0 against H1 : µ > µ0. We
seek to show Pµ{X ∈ D} ≤ Pµ{X ∈ C} for all µ > µ0.

First, consider the simple null hypothesis H0 : µ = µ0 versus the simple alternative
H1 : µ = µ1, where µ1 > µ0. By the Neyman-Pearson lemma, the most powerful test of
H0 versus H1 is given by

C = {x ∈ X : L(x; µ0) ≤ k L(x; µ1)}

= {x :

n∏
i=1

1√
2π

e−
(xi−µ0)2

2 ≤ k

n∏
i=1

1√
2π

e−
(xi−µ1)2

2 }

= {x : exp[−1

2

n∑
i=1

(xi − µ0)
2] ≤ k exp[−1

2

n∑
i=1

(xi − µ1)
2]}

= {x :
exp[−1

2

∑n
i=1(xi − µ0)

2]

exp[−1
2

∑n
i=1(xi − µ1)2]

≤ k}
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= {x : exp
1

2

n∑
i=1

[(xi − µ1)
2 − (xi − µ0)

2] ≤ k}

= {x :
n∑

i=1

[(xi − µ1)
2 − (xi − µ0)

2] ≤ 2 ln k = k1}

= {x :
n∑

i=1

[x2
i − 2xiµ1 + µ2

1 − x2
i + 2xiµ0 − µ2

0] ≤ k1}

= {x : 2(µ0 − µ1)
n∑

i=1

xi + n(µ2
1 − µ2

0) ≤ k1}

= {x : 2(µ0 − µ1)

n∑
i=1

xi ≤ k2 = k1 − n(µ2
1 − µ2

0)}

= {x : (µ0 − µ1)
n∑

i=1

xi ≤ k3 =
1

2
k2}

= {x :
n∑

i=1

xi ≥ k4 =
k3

µ0 − µ1
k2},

where the direction of the inequality changed because we divided by µ0 − µ1, a negative
number. Notice that although the constant on the right side keeps changing, the set of
x, and hence the critical region we are simplifying, remains the same. This is typical of
calculations related to the Neyman-Pearson Lemma. The rule is that you can absorb all
kinds of constants into k, but never x values or functions of x. If you absorb any part of
x into the constant, the answer is wrong. On the other hand, you will not lose marks for
failure to write each constant as an explicit function of the last one; I are doing it here
just for clarity.

Note also that this critical region does not depend on any unknown parameters; µ0 is
a specific number specified by H0, and µ1 is a specific number specified by H1. Now we
continue.

C = {x :
n∑

i=1

xi ≥ k4}

= {x : x ≥ k5 = k4/n}
= {x :

√
n(x− µ0) ≥ k6 =

√
n(k5 − µ0)}.

Now choose k6 = zα, obtaining a size α test. You could reverse all the steps and solve for
the original k, but why bother? Nobody ever does it.

This test is most powerful for testing the simple null hypothesis H0 : µ = µ0 versus
the simple alternative H1 : µ = µ1. But notice that the final form of the critical region
depends upon the value µ1 only in one subtle way. Because µ1 > µ0, the direction of the
inequality reversed at one point in the calculation; that’s why it’s pointing right instead
of left.

Hence, the conclusion applies to all µ1 > µ0. We conclude that the test C is uniformly
most powerful for testing the simple null hypothesis H0 : µ = µ0 versus the composite
alternative H1 : µ > µ0. Now we will extend it to the composite null hypothesis H0 : µ ≤
µ0, which was our goal from the beginning.
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Since we have already shown that the power function is increasing, we know that the
test C is size α for testing the composite null hypothesis H0 : µ ≤ µ0. Now we will show
it is uniformly most powerful of size α for testing the composite null hypothesis.

Let D be another critical region of size α for testing H0 : µ ≤ µ0. Size α means
Pµ{X ∈ D} ≤ α for all µ ∈ (−∞, µ0]. Since µ0 is definitely in this set, we have Pµ0{X ∈
D} ≤ α. Thus D is also a size α test of the simple null hypothesis H0 : µ = µ0 versus the
composite alternative H1 : µ > µ0. But we have shown that C is uniformly most powerful
for this situation; so, Pµ{X ∈ D} ≤ Pµ{X ∈ C} for all µ > µ0. �

Likelihood Ratio Tests

Reconciling the notations In the textbook’s section on likelihood ratio tests, they
introduce notation for the parameter space etc. that is different from the notation in this
handout. Here is a key for translating between the two notations. You may use either
one.

• Parameter space: Ω = Θ. The book uses Ω to denote the parameter space, while
in lecture and this handout, the parameter space is Θ. The book writes θ ∈ Ω. We
write θ ∈ Θ.

• Null Hypothesis: ω = Θ0. The book writes H0 : θ ∈ ω. We write H0 : θ ∈ Θ0.

• Alternative Hypothesis: ω′ = Θ1. The book writes H1 : θ ∈ ω′. We write
H1 : θ ∈ Θ1. In the book’s notion, ω ∪ ω′ = Ω. Thus, their null and alternative
hypotheses cover the entire parameter space — which is appealing, but their notation
does not apply to the Neyman-Pearson section.

• Maximum Likelihood Estimates: In both the text and lectures, θ̂ has been used
to denote an estimate of θ, including maximum likelihood estimates. A Maximum
Likelihood Estimate, of course, is the point that maximizes the likelihood over the
entire parameter space. But in this section of the text,

θ̂ is the point that maximizes L(θ,x) over ω, and̂̂
θ is the point that maximizes L(θ,x) over the whole parameter space Ω.

I suppose the idea is that
̂̂
θ maximizes over two susets of the parameter space, ω and

ω′, so it deserves two hats. But it’s unfortunate when an important symbol like θ̂ is used
to represent two different quantities that could easily be confused.

So I will continue to use θ̂ for the unrestricted MLE, and I will use θ̃ to denote the
restricted MLE. That is,

max
θ∈Θ

L(θ,x) = L(θ̂,x) and max
θ∈Θ0

L(θ,x) = L(θ̃,x)

See? The hat on the restricted MLE is crushed, broken. It can never be as impressive
as the unrestricted MLE. θ̂ is the location of the tallest mountain in the world. θ̃ is the
location of the tallest mountain in North America.

Of course I like my notation more, but it does not matter which one you use. The end
product will be the same.
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