
CHAPTER. 6 

Introduction 
to Statistical 
Inference 

6.1 Point Estimation 

The first five chapters of this book deal with certain concepts 
and problems of probability theory. Throughout we have carefully 
distinguished between a sample space ct of outcomes and the space d 
of one or more random variables defined on ct. With this chapter we 
begin a study of some problems in statistics and here we are more 
interested in the number (or numbers) by which an outcome is 
represented than we are in the outcome itself. Accordingly, we shall 

. adopt a frequently used convention. We shall refer to a random 
variable X as the outcome of a random experiment and we shall refer 
to the space of X as the sample space. Were it not so awkward, we 
would call X the numerical outcome. Once the experiment has been 
performed and it is found that X = x, we shall call x the experimental 
value of X for that performance of the experiment. 
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This convenient terminology can be used to advantage in more 
general situations. To illustrate this, let a random experiment be 
repeated n independent times and under identical conditions. Then 
the random variables X., Xh ... ,Xn (each of which assigns a 
numerical value to an outcome) constitute (Section 4.1) the 
observations of a random sample. If we are more concerned with the 
numerical representations of the outcomes than witb.the outcomes 
themselves, it seems natural to refer to XI, X2, ••• , Xn as the outcomes. 
And what more appropriate name can we give to the space of a random 
sample than the sample space? Once the experiment has been 
performed the indicated number of times and it is found that XI = XI, 

X2 = X2, ••• , Xn = Xn, we shall refer to X., X2, ••. ,Xn as the 
experimental values of XI' X2, ••• , Xn or as the sample data. 

We shall use the terminology of the two preceding paragraphs, and 
in this section we shall give some examples of statistical inference. These 
examples will be built around the notion of a point estimate of an 
unknown parameter in a p.d.f. 

Let a random variable X have a p.d.f. that is of known functiona1 
form but in which the p.d.f. depends upon an unknown parameter 0 
that may have any value in a set n. This will be denoted by writing the 
p.d.f. in the formf(x; 0), 0 E n. The set n will be called the parameter 
space. Thus we are confronted, not with one distribution of probabi1ity, 
but with a family of distributions. To each value of 0, fJ E n, there 
corresponds one member of the family. A family of probability density 
functions will be denoted by the symbol {f(x; fJ) : fJ En}. Any member 
of this famHy of probability density functions will be denoted by the 
symbolf(x; fJ), fJ E n. We shall continue to use the special symbols that 
have been adopted for the normal, the chi-square, and the binomial 
distributions. We may, for instance, have the family {N(O, I): fJ En}, 
where n is the set -00 < 0 < 00. One member of this family of 
distributions is the distribution that is N(O, 1). Any arbitrary member 
is N(fJ, I), - 00 < fJ < 00. 

Let us consider a family of probability density functions 
{f(x; fJ) : fJ En}. It may be that the experimenter needs to select 
precisely one member of the family as being the p.d.f. of his random 
variable. That is, he heeds a point estimate of fJ. Let XI' X 2, ••• , Xn 
denote a random samp1e from a distribution that has a p.d.f. which is 
one member (but which member we do not know) of the family 
{f(x; fJ) : fJ En} of probability density functions. That is, our sample 
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arises from a distribution that has the p.d.f. f(x; 6):6 E n. Our 
problem is that of defining a statistic Y, = UI (XI' X2, ••• ,X,,), so 
that if x" x2 , ••• ,x" are the observed experimental values of 
X" Xl, ... , X"' then the number YI = UI (x" X2, .•• , x,,) will be a good 
point estimate of 6. 

The following illustration should help motivate one principle that 
is often used in finding point estimates. 

EXlUllple 1 .. Let X., Xl, ... ,XII denote a random sample from the 
distribution with p.d.f. 

f(x) = OX(1 - 8)1-x, x = 0, I, 

= 0 elsewhere, 

where 0 <8< 1. The probability that XI = XI' X2 = X2 , ••• , XII = XII is the 
joint p.d.f. 

9X1(1 - 8)1 -xl9X2(l - 8)I-x2 • •• 9Xn(1 - 8)I-xlI = et:Xi(l - 8),,-"£x1, 

where Xi equals zero or 1, i == 1, 2, ... , n. This probability, which is the joint 
p.d.f. of XI, Xl • ...• XII' may be regarded as a function of 8 and, when so 
regarded, is denoted by L(8) and called the likelihood function. That is, 

L( 8) = 8"£Xi(l - 8)n - Ex;, 0 < 8 < 1. 

We might ask what value of 8 would maximize the probability L(8) of 
obtaining this particular observed sample XI, X2, ... ,XII' Certainly, this 
maximizing value of 8 would seemingly be a good estimate of 8 because it 
would provide the largest probability of this particular sample. Since the 
likelihood function L( 8) and its logarithm, In L( 8), are maximized for the same 
value 8, either L(8) or In L(8) can be used. Here 

In L(II) = (~x}n // + (n -~ x}n (I -II); 
so we have 

dlnL(8) LX; n-Lx; 
d8 =0- 1-8 =0, 

provided that 8 is not equaJ to zero or 1. This is equivalent to the equation 

(I - //) ~Xj = //(n - ~x.). 
II II 

whose solution for 8 is L xJn. That L xJn actually maximizes L(8) and 
I I 

In L(8) can be easily checked, even in the cases in which aU of x" X 2, ••• ,XII 
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n 

equal zero together or 1 together. That is. L xJn is the value of (J that 
I 

maximizes L( (J). The corresponding statistic.' 

1 n -
8 = - L Xi = X. 

n j = I 

is called the maximum likelihood estimator of fJ. The observed value of 8. 
" namely L xJn. is called the maximum likelihood estimate of 9. For a simple , 

example,supposethatn = 3,andx, = l,x2 = O,x3 = l,thenL«(J) = 92(1 - 9) 
and the observed tJ = 1 is the maximum likelihood estimate of 8. 

The principle of the method of maximum likelihood can now be 
formulated easily. Consider a random sample XI' X2, ...• Xn from a 
distribution having p.d.f. f(x; 8), 8 e n. The joint p.dJ. of 
X .. X2, ... , XII is f(xl; 6)f(x2; 6) ... f(xn; 6). This joint p.d.f. may be 
regarded as a function of 8. When so regarded. it is called the likelihood 
function L of the random sample, and we write 

8eO. 

Suppose that we can find a rtontrivial function of XI' X2, ••• , XII' say 
U(XI' X2, ••• , xn), such that, when 8 is replaced by U(XI' X2' •••• x,,), the 
likelihood function L is maximized. That is. L[u(x,. Xl, ...• X,,): 
XI, X2, ••• , xn] is at least as great asL(8; XI. X2, ••• , xn) for every 8 e n. 
Then the statistic u(X., X2, ...• X,,) will be called a maximum likelihood 
estimator (hereafter abbreviated m.Le.) of 8 and will be denoted by the 
symbol t1 = u(XI , X2, ••• , Xn)' We remark that in many instances there 
will be a unique m.l.e. fJ of a parameter 6. and often it may be obtained 
by the process of differentiation. 

Example Z. Let XI, X 2, ••• , X" be a random sample from the normal 
distribution N«(J, 1), - 00 < (J < 00, Here 

( I)n [n (Xi - (J)2] 
L(e;X"X2,""Xn)= fo exp -~ 2 . 

This function L can be maximized by setting the first derivative of L. with 
respect to e, equal to zero and solving the resulting equation for e. We note, 
however, that each of the functions L and In L is maximized at the same value 
of e. So it may be easier to solve 

dIn L(e; x" X2, ... ,XII) 
----dl-V---- = O. 
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For this example, 

din L(8; Xh X2, ••• , xn) _ f _ 
d8 - f(x1 8). 

If this derivative is equated to zero, the solution for the parameter 8 is 
n n 

U(XI' X2,' •• ,xn ) = 2: xi/no That 2: xi/n actuallymaximizes·L is easily shown. 
I I 

Thus the statistic 

is the unique m.l.e. of the mean 8. 

It is interesting to note that in both .Examples 1 and 2, it is true that 
E( d) = O. That is, in each of these cases, the expected value. of the 
estimator is equal.t().t~e corresponding parameter, which leads to the 
following definition. 

Definition I. Any statistic whose mathematica1 expectation is equal 
to a parameter 0 is called an unbiased estimator of the parameter O. 
Otherwise, the statistic is said to be biased. 

Example 3. Let 

I 
f(x; 8) = 7J' 0 < x <8. 0 < 8 < 00. 

= 0 elsewhere, 

and let XI, Xh •.. , Xn denote a random sample from this distribution. Note 
that we have taken 0 < x < 8 instead of 0 < x < 8 so as to avoid a discussion 
of supremum versus maximum. Here 

1 
L(8; XI' X2, .•. , x,,) = 9" ' 0 < Xi S; 8, 

which is an ever-decreasing function of O. The maximum of such functions 
cannot be found by differentiation but by selecting 8 as sma)) as possible. Now 
8 > each Xi; in particular, then, 8 > max (Xi)' Thus L can be made no larger 
than 

1 
[max (x;)]n 

and the unique m.l.e. 0 of 8 in this example is the nth order statistic max (Xi)' 
It can be shown that E[max (Xi)] = nO/(n + 1). Thus, in this instance, the 
m.l.e. of the parameter 8 is biased. That is, the property of unbiasedness is not 
in general a property of a m.l.e. 
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While the m.l.e. U of 0 in Example 3 is a biased estimator, results 
in Chapter 5 show that the nth order statistic U = max (X;) = Y" 
converges in probability to O. Thus, in accordance with the following 
definition, we say that U = Y" is a consistent estimator of O. 

Definiti~n 2. Any statistic that converges in probability to a 
parameter 8 is called a consistent estimator of that parameter O. 

Consistency is a desirable property of an estimator; and, in all cases 
of practical interest, maximum likelihood estimators are consistent. 

The preceding definitions and properties are easily generalized. Let 
X, Y, ... ,Z denote random variables that mayor may not 
be independent and that mayor may not be identically distributed. Let 
the joint' p.d.f. g(x, y, ... , z; 01, O2, .•. ,Om), (01, O2, ••• , Om) E n, 
depend on m parameters. This joint p.d.f., when regarded as a 
function of (0" O2, ••• , Om) En, is called the likelihood function 
of the' random variables. Then those functions UI (x, y, ... , z), 
U2(X, y, ... ,z), ... , um(x, y, ... ,z) that maximize this likelihood 
function with respect to 01, O2, ••• ,Om' respectively, define the 
maximum likelihood estimators 

(jl = UI(X, Y, ... ,Z), (j2 = U2(X, Y, ... , Z), ... , 

(jm = um(X, Y, ... , Z) 

of the m parameters. 

Example 4. Let Xl> X2, ••• , XII denote a random .sample from a 
distribution that is N(8 .. 82), -00 < 8. < 00,0 < 82 < 00. WeshallfindO.and 
O2, the maximum likelihood estimators of 8, and O2, The logarithm of the 
likelihood function may be written in the form 

We observe that we may maximize by differentiation. We have 

o In L olnL 

If we equate these partial derivatives to zero and solve simultaneously the two 
n 

equations thus obtained, the solutions for 81 and 82 are found to be L x;/n = X 
n I 

and L (Xi - x)2/n = s2, respectively. It can be verified that these 
1 
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solutions maximize L. Thus the maximum likelihood estimators of '8i == J.l 
and 82 = u2 are, respectively, the mean and the variance oJ the sample, namely 
0, = X and O2 = S2. Whereas 0, is an unbiased estimator of 81, the estimator 
O2 = S2 is biased because . 

O
A (12 (n02) (12 (nS2) '{n - 1)0'2 (n - 1)82 

E( 2) = - E - = - E - = = . n (12 n (12 n n 

However, in Chapter 5 it has been shown that 01 = X and O2 = S2 converge 
in probability to 81 and 82, respective1y, and thus they are consistent estimators 
of 01 and 82 , 

Suppose that we wish to estimate a function of e, say h(e). For 
convenience, let us say that ,,= h(e) defines a one-to-one 
transformation. Then the value of ", say ~, thai maximizes the 
likelihood function L(e), or equivalently L[e = h- '(,,)], is selected so 
that 8 =h-'(~), where 8 is the m.l.e. of e. Thus ~ is taken' so that 
~ = h(8); that is, ' 

............... 

h(e) = h(8). 

This result is called the invariance property of a maximum Iikidihood 
estimator. For illustration, if" = ff, where 8 is the mean of N(e, 1), then 
~ = il. While there is a little complication if h(e) is not one-to-one, we 
still use the fact that tl = h(8). Thus if X is the mean of!.he samylefrom 
b(l, e), so that 8 = X and if" = e(1 - e), then ~ = X(l - X). These 
ideas can be extended to more than one parameter. For illustration, in 
Example 4, if" = e, + 2.jii;, then ~ = X + 2S.; : . . 

Sometimes it is impossible to find maximum likelihood estimators 
in a convenient closed form and numerical methods must be used to 
maximize the likelihood function. For illustration, suppose. that­
XI, X2 , ••• , Xn is a random sample from a gamma distribution with 
parameters a = e\ and fJ = 82 , where e, > 0, e2 > O. It is difficult to 
maximize 

with respect to e1 and 62, owing to the presence of the gamma function 
r(e.). Thus numerical methods must be used to maximize L once 
XI, X2, ••• , Xn are observed. 

There are other ways, however, to obtain easily point estimates of 
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O. and Oz. For illustration, in the gamma distribution situation, let us 
simply equate the first two moments of the distribution to the 
corresponding moments of the sample. This seems like a reasonable 
way in which to find estimators, since the empirical distribution Fn(x) 
converges in probability to flx), and hence corresponding moments 
should be about equal. Here in this illustration we have 

O. O2 = X, O. O~ = S2, 

the solutions of which ,are 

and 
_ S2 
6 _-

2 - -. 
X 

We say that these latter two statistics, If. and 1f2~ are respective 
estimators of O. and O2 found· by the method of moments. 

To generalize the discussion of the preceding paragraph, let 
XI, X2, ••• , Xn be a random sample of size n from a distribution with 
p.d.f. f(x; OJ, O2, ••• , Or), (01, ••• , Or)eO. The expectation E(Xk) is 
frequently called the kth moment of the distribution, k = 1,2,3, .... 

n 

The sum Mk = L X~ In is the kth moment of the sample, 
• k = 1, 2, 3, .... The method of moments can be described as follows. 

Equate E(Xk) to M k , beginning with k = 1 and continuing until there 
are enough equations to provide unique solutions for 01, O2, ••• ,0" 
say hj(MJ, M2, ••• ); i = 1,2, ... , r, respectively. It should be noted 
that this could be done in an equivalent manner by equating J.l = E(X) 

_ n. _ 

to X and El(X - J.l)k] to L (Xj - Xl In, k = 2, 3, and so on until unique 
• solutions for 01, O2 , ••• , Or are obtained. This alternative procedure 

was used in the preceding illustration. In most practical cases, the 
estimatorlJ; = h;(M

" 
M2 , ••• )ofOj , found by the method of moments, 

is a consistent estimator of 0" i = 1,2, ... , r. 

EXERCISES 

6.1. Let XI, X2, ••• ,Xn represent a random sample from each of the 
distributions having the following probability density functions: 
(a) f(x; 8) = OXe-9/x!, x = 0, 1,2, ... ,0 < 8 < 00, zero elsewhere, where 

f(0; 0) = 1. 
(b) f(x; 8) = 8J! 1,0 < X < 1,0 < (:J < 00, zero elsewhere. 
(c) f(x; 8) = (l/8)e-x/6, 0 < X < 00,0 < (:J < 00, zero elsewhere. 
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(d) f(x; 8) = !e-lx-91, -00 < x < 00, -00 < 8 < 00. 

(e) f(x; 8) == e-(x - 6),8 ::s:; x < 00, - 00 < 0 < 00, zero elsewhere. 
In each case find the m.l.e. 11 of 8. 

6.2. Let XI, X2, ••• ,Xn be Li.d., each with the distribution having p.d.f. 
f(x; 8., ( 2) = (1/82)e-<x-9,)/82, 8, S; x < 00, ...... 00 < 8, < 00, 0 < 82 < 00, 

zero elSewhere. Find the maximum likelihood estimators of 81 and 82, 

6.3. Let Y, < Y2 < ... < Yn be the order statistics of a random sample from 
a distribution with p.d.f. f(x; 8) = 1,8 - ! ::s:; x ::s:; 8 +!, - 00 < 8 < 00, 

zero elsewhere. Show that every statistic u(X" X2, ••• , X,,) such that 

Y" - ! < u(X" X2, ••• , X,,) < Y. + ! 
is a m.l.e. of 8. In particular, (4 Y. + 2 Y" + 1 )/6, (Y. + Y,,)/2, and (2 Y. + 
4 Y" - 1 )/6 are three such statistics. Thus uniqueness is not in general a 
property of a m.1.e. 

6.4. Let X" X2, and X3 have the multinomial distribution in which n = 25, 
k = 4, and the unknown probabilities are 8" 82, and 83, respectively. 
Here we can, for convenience, let X4 = 25 - X. - X2 - X3 and 
84 = 1 - 8. - 82 - 83, If the observed values of the rand Oil! variables are 
XI = 4, X2 = 11, and X3 = 7, find the maximum likelihood estimates of 8" 
82, and 83, 

6.5. The Pareto distribution is frequently used as a model in study of incomes 
and has the distribution function 

8, < x, zero elsewhere, 

where 8, > 0 and 82 > O. 

If X" X2, ••• ,XII is a random sample from this distribution, find the 
maximum likelihood estimators of 8. and 82, 

6.6. Let Y" be a statistic such that lim E( Y,,) = 8 and lim at = O. Prove that 
11-+00 ""'00 

Y" is a consistent estimator of 8. 
Hint: Pr (I Y" - 81 ~ £) < E[( Y" - 8):z:J/£2 and E[( Y" - 8)2] = [E( Y" - 8)]2 

+ a1y". Why? < 

6.7. For each of the distributions in Ex~rcise 6), find an estimator of 8 by 
the method of moments and show that it is consistent. 

6.8. If a random sample of size n is taken from a distribution having p.d.f. 
f(x; 8) = 2x/82, 0 < X ::s:; 8, zero elsewhere, find: 
(a) The m.l.e. 11 for 8. 
(b) The constant c so that E(cl1) = 8. 
(c) The m.l.e. for the median of the distribution. 
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6.9. Let XI' X2, ••• ,XII be i.i.d., each with a distribution with p.dJ. 
f(x~ 8) = (I /8)e- K/8, 0 < X < 00, zero elsewhere. Find the m.l.e. ofPr (X ::;; 2). 

6.10. Let X have a binomial distribution with parameters nand p. The 
variance .of Xln is p(1 - p)!n; this is sometimes estimated by the m.l.e. 

! (I - !) I n. Is this an unbiased estimator of pi I - p)/n? If not, can you 

construct one by multiplying this one by a constant? 

6.11. Let the table 

x 2 3 4 5 

Frequency 10 14 13 6 I 

represent a summary of a sample of size 50 from a binomial distribution 
having n , 5. Find the m.l.e. of Pr (X > 3). 

6.12. Let Y, < Y2 < ... < Yn be the order statistics of a random sample of 
size n from the uniform distribution of the continuous type over the closed 
interval [8 - p. 8 + pl. Find the maximum likelihood estimators for 8 and 
p. Are these two unbiased estimators"? 

6.13. Let X,. X2 , X3 , X4 • Xs be a random sample from a Cauchy distribution 
with median iJ, that is, with p.d.f. 

- 00 < x < 00, 

where - 00 < 8 < 00. If XI = - 1.94, X2 = 0.59, X3 = - 5.98, 
X4 = - 0.08, Xs = - 0.77. find by numerical methods the m.l.e. of 8. 

6.2 Confidence Intervals for Means 

Suppose that we are wiHing to accept as a fact that the (numerical) 
outcome X of a random experiment is a random variable that has a 
normal distribution with known variance (12 but unknown mean JJ.. 
That is, JJ. is some constant, but its value is unknown. To elicit some 
information about jl, we decide to repeat the random experiment 
under identical conditions nindependent times, n being a fixed 
positive integer. :Let the random variables XI, X2, ••• , XIf denote, 
respectively, the outcomes to be obtained on these n repetitions of the 
experiment. If our assumptions are fulfilled, we then have under 
consideration a random sample XI, Xl' ... ,XIf from a distribution 
that is N(jL. (12), (12 known. Consider the maximum likelihood estima-
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tor of Jl, namely p. = X. Of course, X is N(Jl, 0'2/n) and (X - Jl)/(O'IJn) 
is N(O, I). Thus 

Pr (-2 < :/In < 2) = 0.954. 
However, the events 

X-Jl -2 < ;: < 2, 
u/yn 

-20' - 20' 
--<X-Jl<-
In In' 

and 
- 20') - 20' 
X--. -<Jl<X+-In In 

are equivalent. Thus these events have the same probability. That is, 

(
- 20' - 20') Pr X - In < Jl < X + In = 0.954. 

Since_O' is a known number, each of the rand~m variables'! 20'1); 
and X + 20'IJn is a statistic. The interval (X - 2u1Jn, X + 20'iJ;,) 
is a random interval. In this case, both end points of the interval are 
statistics. The immediately preceding probability statement can be 
read: Prior to the repeated independent performances of the random 
experiment, the probability is 0.954 that the random interval 
(X - 2u1Jn, X + 2u1Jn) includes the unknown fixed point (par­
ameter) Jl. 

Up to this point, only probability has been involved; 
the determination of the p.d.f. of X and the determination of 
the random interval were problems of probability. Now the 
problem becomes statistical. Suppose the experiment yields 
XI = X., X2 = X2' ... , X" = x". Then the sample value of X is 
x = (XI + X2 + ... + x,,)/n, a known number. Moreover, since 0' 
is known, the interval (x - 20'1Jn, x + 2u1Jn) has known 
endpoints. Obviously, we carinot say that 0.954 is the probability that 
the particular inte,rval (X - 2uIJn,:x + 2u1Jn) includes the 
parameter Jl, for Jl, although unknown, is some constant, and this 

, particular interval either does or does not include Jl. However, the 
fact that we had such a high probability, prior to the Rerformance of 
the experiment, that the random interval (X - 2uljit, i + 20'1";;') 
includes the fixed point (parameter) Jl, leads us to have some 
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reliance' on the particular interval (x - 2a1Jn, x + 2aIJn). This • 
reliance is reflected by calling the known interval (X - 2a 1 In, 
x + 2(1IJn) a 95.4 percent confidence interval for p. The number 0.954 
is called the confidence coefficient. The confidence coefficient is equal 
to the probability that the random interval includes the parameter. One 
may, of course, obtain an 80, a 90, or a 99 percent confidence interval 
for Jl by using 1.282, 1.645, or 2.576, respectively, instead of the 
constant 2. 

A statistical inference of this sort is an example of interval 
.. estimation ofa parameter. Note that the interval estimate of Jl is found 
by taking a good (here maximum likelihood) estimate x of Jl and adding 
and subtracting twice the standard deviation of X, namely 
2a 1 In, which is small if n is large. If a were not known, the end points 
of the random interval would not be statistics. Although the prob­
ability statement about the random interval remains valid, the sample 
data would not yield an interval with known end points. 

Example 1. Ifin the preceding discussion n = 40, (12 =" 10, and x = 7.164, 
then (7.164 - 1.282A, 7.164 + 1.282Jlb,or(6.523, 7.805),isan80percent 
confidence interval for JI.. Thus we have an interval estimate of JI.. 

In the next example we show how the central limit theorem may 
be used to help us find an approximate confidence interval for Jl when 
our sample arises from a distribution that is not normal. 

Example 2. Let X denote the mean of a random sample of size 25 from 
a distribution having variance (12 = 100, and mean JI.. Since (1IJn = 2, 
then approximately 

Pr ( -1.96 < X ; II < 1.96) = 0.95, 

or 
Pr (X - 3.92 < JI. < X + 3.92) = 0.95. 

Let the observed mean of the sample be x = 67.53. Accordingly. the interval 
from x - 3.92 = 63.61 to x + 3.92 = 71.45 is an approximate 95 percent 
confidence interval for the mean JI.. 

Let us now turn to the problem of finding a confidence interval for 
the mean p of a normal distribution when we are not so fortunate as 
"to know the variance til. From Section 4.8, we know that 

In(X - JI.)/(I X - P 
T- --r== 

- JnS2/(a2(n - I)] - SIJn - 1 
has a I-distribution with n - I degrees of freedom. whatever the value 
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of (12 > O. For a given positive integer n and a probability of 0.95, say, 
we can find a number b from Table IV in Appendix B, such that 

Pr (-b < ~ - P < b) = 0.95. 
S/ n - I 

which can be written in the form 

Pr (x -J bS < p < X + bS ) = 0.95. n - I In - I 

Then the interval [X - (bS/Jn - 1), X + (bS/Jn - 1)] is a random 
interval having probability 0.95 of including the unknown fixed point 
(parameter) J.t. If the experimental values of XI, X2, ••• ,X" are 

" " 
XI, X2, ••. , Xn with ;. = L (Xi - x)2/n, where x = L x;/n, then the 

I 1 

interval Lx ...:... (bs/Jn - I), x + (bs/Jn - 1)] is a 95 percent confidence 
interval for J.t for every (12 > O. Again this interval estimate of Jl. is found 
by adding and subtracting a quantity, here bs/ J n - 1, to the point 
estimate X. 

Example 3. If in the preceding discussion n = 10, x = 3.22, and s = 1.17, 
then the interval [3.22 - (2.262)(1.17)/)9, 3.22 + (2.262)(1.17)/)9] or 
(2.34,4.10) is a 95 percent confidence interval for Jl. 

Remark. If one wishes to find a confidence interval for Jl and if the 
variance (12 of the nonnormal distribution is unknown (unlike Example 2 of 
this section), he may with large samples proceed as follows. If certain weak 
conditions are satisfied, then S2, the variance of a random sample of size n > 2. 

, converges in probability to q2. Then in 

In(X - Jl)/CT _ ~(X - Jl) 

JnSl/(n - 1)(12 - S 
the numerator of the left-hand member has a limiting distribution that is 
N(O, I) and the denominator of that member converges in probability to 1. 
Thus ;;=I(X - Jl)/S has a limiting distribution that is N(O. I). This fact 
enables us to find approximate confidence intervals for p. when our conditions 
are satisfied. This procedure works p3:rticularly well when the underlying 
nonnormal distribution is symmetric, because then X and S2 are uncorrelated 
(the proof of which IS beyond the level of the text). As the underlying 
distribution becomes more skewed, however, the sample size must be larger 
to achieve good approximations to the desired probabilities. A similar 
procedure can be followed in the next section when seeking confidence 
intervals for the difference of the means of two non normal distributions. 
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We shall now consider the problem of determining a confidence 
interval for the unknown parameter p of a binomial distribution when 
the parameter n is known. Let Y be b(n, p), where 0 < p < 1 and n is 
known. Then p is th~ mean of Yin. We shall use a result of Example 
1, Section 5.5, to find an approximate 95.4 percent confidence interval 
for the mean p. There we found that 

Pr -2 < < 2 = 0.954, [ 
Y-np ] 

jn(Yln)(1 - Yin) 

approximately. Since 

Y - np (Yin) - p 
--;====== , 
jn(Yln)(1 - Yin) j(Yln)(1 - Yln)/n 

the probability statement above can easily be written in the form 

P [Y 2 (Yln)(1 - Yin) Y (Yln)(l - Yin)] 95 
r n - n < p < n + 2 n = O. 4, 

approximately. Thus, for large n, if the experimental value of Y is y, 
the interval 

[~ _ 2 (yln)(1 - yin) 
n n' 

, r------
~ + 2 (yln)(l - Yin)] 
n n 

provides an approximate 95.4 percent confidence interval for p. 
A more complicated approxima~e 95.4 percent confidence interval 

can be obtained from the fact that Z = (Y - np)/jnp(1 - p). has a . 
limiting distribution that is N(O, I), and the fact that the event 
- 2 < Z < 2 is equivalent to the event 

Y + 2 - 2j[Y(n - Y)ln] + 1 Y + 2 + 2J[Y(n - Y)ln] + 1 
. + 4 <p < 4 . n n + . 

(1) 

The first of these facts was established in Chapter 5, and the proof of 
inequalities (1) is left as an exercise. Thus an experimental value Y of 
Y may be used in inequalities (1) to determine an approximate 95.4 
percent confidence interval for p. 

If one wishes a 95 percent confidence interval for p that does not 
depend upon limiting distribution theory, he or she may use the 
following approach. (This approach is quite general and can be used 
in other instances; see Exercise 6.21.) Determine two increasing 
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functionsofp, say CI(P) and C2(P), such that for each valueofpwehave, 
at least approximately, 

Pr [CI(P) < Y < C2(P)] = 0.95. 

The'reason that this may be approximate is due to the fact that Yhas 
a distribution of the discrete type and thus it is, in general, impossible 
to achieve the probability 0.95 exactly. With CI (p) and C2(P) increasing 
functions, they have single-valued inverses, say d, (y) and d2(y), 
respectively. Thus the events CI (p) < Y < C2(P) and d2( Y) < p < d, (Y) 
are equivalent and we have, at least approximately, 

Pr [d2(y) < p < d,(Y)] = 0.95. 

In the case of the binomialdistributioD, thefuDctions c.(p), C2(P), d2(y), 
and d\(y) caDnot be found explicitly, but a number of books provide 
tables of d2(y) and d\(y) for various values of n. 

Example 4. If, in the preceding discussion, we take n = 100 and y = 20, the 
first approximate 95.4 percent confidence interval is given by 
(0.2 - 2j(0.2)(0.8)/I00, 0.2 + 2j(0.2)(0.8)/100) or (0.12,0.28). The ap­
proximate 95.4 percent confidence interval provided by inequalities (1) is 

(
22 - 2j(1600/100) + 1 22 + 2j(1600/100) + 1) 

104 ' 104 

or (0.13, 0.29). By referring to the appropriate tables found elsewhere, we find 
that an approximate 95 percent confidence interval has the limits dz(20) = 0.13 
and d.(20) , 0.29. Thus, in this example, we see that all three methods yield 
results that are in substantial agreement. 

Remark. The fact that the variance of YIn is a function of p caused us 
some difficulty in finding a confidence interval for p. Another way of handling 
the problem is to try to find a function u(Y/n) of YIn, whose variance is 
essentially free of p. In Section 5.4, we proved that 

u (:) = arcsin ft 
has an approximate normal distribution with mean arcsin JP and variance 
1/4n. Hence we could find an approximate 95.4 percent confidence interval by 
using 

pr(_2<arcsin~rcsinJP <2)=0.954 
1/4n 

and solving the inequalities for p. 

Example 5. Suppose that we sample from a distribution with unknown 
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mean p. and variance til = 225. We want to find the sample size n so that i + 1 
(which means i-I to i + 1) serves as a 95 percent confidence interval 
for p.. Using the fact that the sample mean of the observations, i, is 
approximately N(p., til/n), we see that the interval given by x + 1.96(l5/Jn) 
will serve as an approximate 95 percent confidence interval for p.. That is, we 
want 

or, equivalently, 

In = 29.4, and thus n ~ 864.36 

or n = 865 because n must be an integer. Suppose, however, we could not 
afford to take 865 observations. In that case, the accuracy or confidence level 
could possibly be relaxed some. For illustration, rather than requiring i + 1 
to be a 95 percent confidence interval for p., possibly i + 2 would be a 
satisfactory 80 percent one. If this modification is acceptable, we now have 

1.282(j;) = 2 
or, equivalently, 

In = 9.615 and n ~ 92.4. 

Since n must be an integer, we wOlJld probably use 93 in practice. Most likely, 
the persons involved in this project would find this is a more reasonable sample 
size. 

EXERCISES 

6.14. Let the observed value of the mean i of a random sample of size 20 from 
a distribution that is N(p., 80) be 81.2. Find a 95 percent confidence interval 
for p.. 

6.15. Let X be the mean of a random sample of size n from a distribution that 
is N(p., 9). Find n such that Pr (X - 1 < p. < X + I) = 0.90, approximately. 

6.16. Let a random sample of size 17 from the normal distribution N(p.,0"2) 
yield i = 4.7 and jl = 5.76. Determine a 9O-percent confidence interval for 
p.. 

6.17. Let X denote the mean of a random sample of size n from a distribution 
that has mean p. and variance til = 10. Find n so that the probability is 
approximately 0.954 that the random interval (X - !, X + ! ) includes p.. 
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6.18. Let XI, X2, ••• , X9 be a random sample of size 9 from a distribution that 
is N(p, a2). 
(a) If (J is known, find the length of a 95 percent confidence interval for p 

if this interval is based on the random variable ..j9(X - p)/(J. 
(b) If (J is unknown, find the expected value of the length of a 95 percent 

confidence interval for p if this interval is based on the random variable 
j8(X - p)/ S. . 
Hint: Write E(S) = «(J/Jn)E[(nS2/(J2)1/21. 

(c) Compare these two answers. . 

6.19. Let X., X2, ••• , Xm X" + I be a random sample of size n + 1, n > 1, from 
- " "-a distribution that is N{Jl, 0'2). Let X = L Xdnan4 SZ = L(X; - Xf/n. Find 

I I 

the constant C so that the statistic c(X - X,,+ I)/S has a t-distribution. If 
n = 8, determine k such that Pr (X - kS < X9 < X + kS) = 0.80. The 
observed interval (x - ks, x + ks) is often called an 80 percent prediction 
interval for X9 • 

6.20. Let Y be b(300, p). If the observed value of Y is y = 75, find an 
approximate 90 percent confidence interval for p. 

6.21. Let X be the mean of a random sample of size n from a distribution that 
is N{Jl, a2), where the positive variance (J2 is known. Use the fact that 
CJ)(2) - cI>( - 2) = 0.954 to find, for each p, CI{Jl) and C2(P) such that 
Pr [Ct(p) < X < C2(P)] = 0.954. Note that CI(P) and C2{Jl) are increasing 
functions of p. Solve for the respective functions dl(x) and d2(x); thus we 
also have that Pr [d2(X) < p < d,(X)1 = 0.954. Compare this with the 
answer obtained previously in the text. 

6.22. In the notation of the discussion of the confidence interval for p, show 
that the event - 2 < Z < 2 is equivalent to inequalities (I). 

Hint: First observe that - 2 < Z < 2 is equivalentto Z2 < 4, which can 
be written as an inequality involving a quadratic expression in p. 

6.23. Let X denote the mean of a random sample of size 25 from a 
gamma-type distribution with IX = 4 and {J > O. Use the central limit 
theorem to find an approximate 0.954 confidence interval for p, the mean 
of the gamma distribution. 

Hint: Base the confidence interval on the random variable 
(X - 4{J)/(4P2/25)1/2 = 5X/2{J - 10. 

6.24. Let x be the observed mean of a random sample of size n from a 
distribution having mean p and known variance a2. Find n so that x - 0'/4 
to x + 0'/4 is an approximate 95 percent confidence interval for p. 

6.25. Assume a binomial model for a certain random variable. If we desire 
a 90 percent confidence interval for p that is at most 0.02 in length, find n. 
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Hint: Note that j(y/n)(l - yin) ~ j(!)(1 - !). 

6.16. It is known that a random variable X has a Poisson distribution with 
parameter Jl. A sample of200 observations from this population has a mean 
equal to 3.4. Construct an approximate:9O percent confidence interval 
for Jl. 

6.17. Let Y I < Y2 < '" < Y" denote the order statistics of a random sample 
of size n from a distribution that has p.d.f. f(x) = 3r/fP, 0 < x < 6, zero 
elsewhere. . 
(a) Show that Pr (c < Y,,/6 < 1) = 1 - r.f3", where 0 < c < 1. 
(b) If n is 4 and if the observed value of Y4 is 2.3, what is a 95 percent 

confidence interval for 61 

6.21. Let XI, X2, ••• , X" be a random sample from N(p, 01), where both 
parameters Jl and (12 are unknown. A confidence interval for u2 can be found 
as follows. We know that nS2/(12 is x2(n - 1). Thus we can find constants 
a and b so that Pr (nS2/u2 < b) = 0.975 and Pr (a < nS2/u2 < b) = 0.95. 
(a) Show that this second probability statement can be written as 

Pr (nS2/b < u2 < nS2/a) = 0.95. 
(b) If n = 9 and; = 7.63, find a 95 percent confidence interval for u2. 
(c) If Jl is known, how would you modify the preceding procedure for 

finding a confidence interval for u2? 

6.29. Let X" X2, ••• , X" be a random sample from a gamma distribution with 
known parameter IX = 3 and unknown p > O:Discuss the construction of 
a confidence interval for p. " 

Hint: What is the distribution of 2 L XJ{J? Follow the procedure 
outlined in Exercise 6.28. i"" I 

6.3 Confidence Intervals for Differences of Means 

The random variable T may also be used to obtain a confidence 
interval for the difference III - 112 between the means of two normal 
distributions, say N(P" 0'2) and N(P2, a2), when the distributions have 
the same, but unknown, variance 0'2. 

Remark. Let X have a normal distribution with unknown parameters JlI 
and u2. A modification can be made in conducting the experiment so that the 
variance of the distribution will remain the same but the mean of the 
distribution will be changed; say, increased. After the modification has been 
effected, let the random variable be denoted by Y, and let Y have a normal 
distribution with unknown parameters Jl2 and u2. Naturally, it is hoped that 
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112 is greater than Ill' that is, that III - 112 < O. Accordingly, one seeks a 
confidence interval for III - 112 in order to make a statistical inference. 

,A confidence interval for PI' - P2 qlay be obtained as follows: Let 
Xh X 2, ••• , X" and Y., Y2, ••• , Ym denote, respectively, independent 
random samples from the two distributions, N(PI, 0-2) and N(P2, 0-2), 
respectively. Denote the means of the samples by X and Y and the 
variances of the samples by Si and Si, respectively. It should be noted 
that these four statistics are independent. The independence of X and 
si (and, inferentially that of Yand SD was established in Section 4.8; 
the assumption that the two samples are independent accounts for the 
independence of the others. Thus X and Yare normally and 
independently distributed with means PI and P2 and variances 0-2/n and 
0-2/m, respectively. In accordance with Section 4.7, their difference 
X - Y is normally distributed with mean PI - P2 and variance 
0-2/n + 0-2/m. Then the random variable 

(X - Y) - (PI - P2) 

J 0-2/n + a2/m 
is normally distributed with zero mean and unit variance. This random 
variable may serve as the numerator of a T random variable. Further, 
nSi/0-2 and mSi/a2 have independent chi-square distributions with 
n - 1 and m - 1 degrees of freedom, respectively, so that their sum 
(nSi + mSD/0-2 has a chi-square distribution with n + m - 2 degrees 
offreedom,providedthatm + n - 2> O. Because of the independence 
of X, Y, Si, and S~, it is seen that 

.-----:----:--

nSi + mSi 
a2(n + m - 2) 

may serve as the denominator of a T random variable. That is, the 
random variable 

has at-distribution wit,h n + m - 2 degrees of freedom. As in the 
previous section, we can (once nand m are specified positive integers 
with n + m - 2 > 0) ijnd a positive number b from Table IV of 
Appendix B such that 

Pr ( -b < T < b) = 0.95. 
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If we set 

R= 

this probability may be written in the form 

Pr [(X - f) - bR < IIi - 112 < (X - f) + bR] = 0.95. 

It follows that the ran~om interval 

(X - 'f) - b - + -
[ 

. nS1;+ mS~ (I 1) 
n+m-2 n m' 

(X - Y) +b nSf + mS~ (! +l)J 
n+m-2 n m 

has probability 0.95 of including the unknown fixed point (PI - Ill)' As 
usual, the experimental values of X, Y, Si, and S~, namely X, y, sf, and 
si, will provide a 95 percent confidence interval for III - 112 when the 
variances of the two normal distributions are unknown but equal. A 
consideration of the difficulty encountered when the unknown 
variances of the two normal distributions are not equal is assigned to 
one of the exercises. 

EXlI1IIple 1. It maybe verified that if in the preceding discussion.Jt = 10, 
m = 7, x = 4.2, Y = 3.4, s~ = 49, s~ = 32, then the interval ( - 5.16, 6.76) is a 
90 percent confidence interval for PI - P2' 

Let Y. and Y2 be two independent random variables with binomial 
distributions b(n., PI) and b(n2' P2), respectively. Let us now tum to the 
problem of finding a confidence interval for the difference P. - P2 of 
the means of Y. /n. and Y2/n2 when nl and n2 are known. Since the mean 
and the variance of YJ!nl - Y2/n2 are, respectively, PI - P2 and 
P. {l - PI )/n. + P2(1 - P2)/nh then the random variable given by the 
ratio 

(Y. /n. - Y2/n2) - (PI -P2) , 
Jp.(1 - p.)/n. + P2(l - P2)/n2 

has mean zero and variance 1 for all positive integers fll and n2' More­
over, since both Y. and Y2 have approximate normal distributi()n~ 
for large n. and n2, one suspects that the ratio has an approximate 
normal distribution. This is actually the case, but it will not be 
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proyed here. Moreover, if n\ /nz = c, where c is a fixed positive constant, 
the result of Exercise 6.36 shows that the random variable 

(Y'/n\)(l - Y'/n\)/n. + (Yz/nz)(1 - Y2/n2)/n2 
P. (l - P. )/n. + P2(l - P2)/n2 

(1) 

converges in probability to I as n2 -. 00 (and thus n.-.oo, since 
n. /n2 = c, c > 0). In a~ordance with Theorem 6, Section 5.5, the 
random variable 

where 

u = J(Y./nl)(1 - Y'/nl)/n. + (Y2/n2)(1 - Y2/n2)/n2, 

has a limiting distribution that is N(O, 1). The event - 2 < W < 2, the 
probability of which is approximately equal to 0.954, is equivalent to 
the event 

Accordingly, the experimental values Y. and Y2 of Y. andY2~ 
respectively, will provide an approximate 95.4 percent confidence 
interval for PI - P2' 

EXllIIIple Z. If, in the preceding discussion, we take nl = 100, n2 .- 400, 
y, = 30, Y2 = 80, then the experimental values of Ydn, - Y2/n2 and U are 0.1 

and j(0.3)(0.7)/I00 + (0.2)(0.8)/400 = 0.05, respectively. Thus the interval 
(0, 0.2) is an approximate 95.4 percent confidence interval for p, - P2' 

EXERCISES 

6.30. Let two independent random samples, each of size 10, from two normal 
distributions N(IlI' 0'2) and N(P2, 02) yield i = 4.8, s: = 8.64, Y = 5.6, 
si = 7.88. Find a 95 percent confidence interval for III - 1l2' 

6.31. Let two independent random variables Y, and Y2, with binomial 
distributions that have parameters n, = n2 = 100, Ph and P2, respectively, 
be observed to be equal to YI = 50 and 12 = 40. Determine an approximate 
90 percent confidence interval for PI - P2' 

6.32. Discuss the problem of finding a confidence interval for the difference 
III - 112 between the two means of two nonnaldistributions if the variances 
O'i and ~ are known but not necessarily equal. 
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6.33. Discuss Exercise 6.32 when it is assumed that the variances are unknown 
and unequal. This is a very difficult problem, and the discussion 
should point out exactly where the difficulty lies. If, however, the variances 
are unknown but their ratio o'~ /o'~ is a known constant k, then a statistic that 
is a T random variable can again be used. Why? 

6.34. As an illustration of Exercise 6.33, one can let XI, X 2, ••• ,X9 and 
YI , Y2, ••• , YI2 represent two independent random samples from the 
respective normal distributions N(PI, O'D and N(1'2' O'D. It is given that 
o'~ = 3O'~, but o'~ is unknown. Define a random variable which has a 
t-distribution that can be used to find a 95 percent interval for 1'1 - 1'2' 

6.35. Let X and Y be the means of two independent random samples, each 
of size n, from the respective distributions N(PI, 01) and N{JJ2, 01), where the 
common variance is known. Find n such that 

- - - -
Pr (X - Y - 0'/5 < 1'1 - 1'2 < X - Y + 0'/5) = 0.90 

6.36. Under the conditions given, show that the random variable defined by 
ratio (I) of the text converges in probability to I. 

6.37. Let XI, X2, ••• ,Xn and Y" Y2, ••• , Ym be two independent random 
samples from the respective normal distributions N(I'I, ~) and N(P2, O'D, 
where the four parameters are unknown. To construct a confidence interval 
for the ratio, O'~/o'~, of the variances, form the quotient of the two 
independent chi-square variables, each divided by its degrees of freedom, 
namely 

F= S2/ ' n I 
- (n - I) 0'2 

I 

where S~ and S~ are the respective sample variances. 
(a) What kind of distribution does F have? 
(b) From the appropriate table, a and b can be found so that 

Pr (F < b) = 0.975 and Pr (a < F < b) = 0.95. 
(c) Rewrite the second probability statement as 

Pr a < - < = . 5. [ 
nS~/(n - 1) O'f b nSf/(n - I) ] 09 
mS~/(m - 1) o'~ mS~/(m - I) 

The observed values, sf and s~, can be inserted in these inequalities to 
provide a 95 percent confidence interval for ~/~. 

6.4 Tests of ~tatistical Hypotheses 
The two principal areas of statistical inference are the areas of 

estimation of parameters and of tests of statistica1 hypotheses. The 



Sec. 6.4) Tests of Sttltistical Hypotheses 281 

problem of estimation of parameters, both point and' interval esti­
mation, has been treated. In Sections 6.4 and 6.5 some aspects 
of statistical hypotheses and tests of statistical hypotheses will 
be considered. The subject will be introduced by way of example. 

Example 1. Let it be known that the outcome X of a random experiment 
is N(9, 100). For instance, X may denote a score on a test, which score 
we assume to be normally distributed with mean 9 and variance 100. Let 
us say the past experience with this random experiment indicates that 
9 = 75. Suppose, owing possibly to some research in the area pertaining to 
this experiment, some changes are made in the method of performing 
this random experiment. It is then suspected that no longer does 9:;:: 75 
but that now 9> 75. There is as yet no formal experimental evidence 
that 9> 75; hence the statement 9> 75 is a conjecture or a statistical 
hypothesis. In admitting that the statistical hypothesis 9 > 75 may be false, 
we allow, in effect, the possibility that 9 < 75. Thus there are actually two 
statistical hypotheses. First, that the unknown parameter 9 < 75; that is, 
there has been no increase in 9. Second, that the unknown parameter 
9 > 75. Accordingly. the parameter space is n = {9: - 00 < 9 <00 }. We 
denote the first of these hypotheses by the symbols Ho: 9 < 75 and the 
second by the symbols HI : 9 > 75. Since the values 9 > 75 are alternatives 
to those where 9 < 75, the hypothesis HI : 9 > 75 is called the alternative 
hypothesis. Needless to say, Ho could be called the alternative to HI; 
however, the conjecture, here 9> 75, that is made by the research worker 
is usually taken to be the alternative hypothesis. In any case the problem 
is to decide which of these hypotheses is to be accepted. To reach a decision, 
the random experiment is to be repeated a number of independent times, 
say n, and the results observed. That is, we consider a random sample 
XI> X2 • •••• Xn from a distribution that is N(9. 100), and we devise a rule 
that will tell us what decision to make once the experimental values, 
say x" X2, ••• ,Xm have been determined. Such a rule is called a test of 
the hypothesis Ho: 9 <75 against the alternative hypothesis HI : 9 > 75. 
There is no bound on the number of rules or tests that can, be con­
structed. We shall consider three such tests. Our tests will be constructed 
around the following notion. We shall partition the sample space d into a 
subset C and its complement C*. If the experimental values of XI. X2 • ••• , Xn• 

say X" X2, ••• ,Xn, are such that the point (x" X2, •••• xn) E C. we shall reject 
the hypothesis Ho (accept the hypothesis HI)' If we have (XI' X2 • •••• xn) E C·, 
we shall accept the hypothesis Ho (reject the hypothesis H.,). 

Test 1. Let n = 25. The sample space d is the set 

{(x" Xl> ••• , X2S): - 00 < Xi < 00, i = 1,2, ...• 25}. 
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Let the subset C of the sample space be 

C = {(XI, X2, ••• ,X2S) : XI + X2 + ... + X2S > (25)(75)}. 

We shall reject the hypothesis Ho if and only if our 25 experimental values are 
such that (XI, X2, ••• , X2S) E C. If (XI, X2, •••• X2S) is not an element of C, we 
shall accept the hypothesis Ho. This subset C of the sample space that leads 
to the rejection of the pypothesis Ho : 8 < 75 is called the critical region of Test 

2S 2S 

1. NowL:x; > (25)(75) if and only if x > 75, where x = L:x;/25. Thus we can 
I I 

much more conveniently say that we shall reject the hypothesis Ho : 8 < 75 and 
accept the hypothesis Hi : 8 > 75 if and only if the experimentally determined 
value of the sample mean x is greater than 75. If x s; 75, we accept the 
hypothesis Ho: 8 s; 75. Our test then amounts to this: We shall reject the 
hypothesis Ho: (J s; 75 if the mean of the sample exceeds the maximum value 
of the mean of the distribution when the hypothesis Ho is true. 

It would help us to evaluate a test of a statistical hypothesis if we knew 
the probability of rejecting that hypothesis (and hence of accepting the 
alternative hypothesis). In our Test 1, this means that we want to compute the 
probability 

Pr [(XI, ... ,X2S ) E C] = Pr (X > 75). 

Obviously, this probability is a function of the parameter 8 and we shall denote 
it by K ,(8). The function K,(8) = Pr (X > 75) is called the power function of 
Test 1, and the value of the power function at a parameter point is called the 
power of Test 1 at that point. Because X is N(8,4), we have 

K,(II) = Pr (i 2" /I > 7S 2 8) = I - <lies 2 II} 
So, for illustration, we have, by Table III of Appendix B, that the power at 
(} = 75 is K,(75) = 0.500. Other powers are KI (73) = 0.159, K ,(77) = 0.841, 
and K,(79) = 0.977. The graph ofK,(8) of Test 1 is depicted in Figure 6.1. 
Among other things~ this means that, if 8 = 75, the probability of rejecting 
the hypothesis Ho :'8 < 75 is f. That is, if 8 = 75 so that Ho is true, the 

o 
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FIGURE 6.1 



probability of rejecting this true hypothesis Ho is!. Many statisticians and 
research workers find it very undesirable to have such a high probability as 
! assigned to this kind of mistake: namely the rejection of Ho when Ho is a true 
hypothesis. Thus Test 1 does not appear to be a'very satisfactory test. Let us 
try to devise another test that does not have this objectionable feature. We 
shall do this by making it more difficult to reject the hypothesis Ho, with the 
hope that this will give a smaller probability of rejecting Ho when that 
hypothesis is true. 

Test 2. Let n = 25. We shall reject the hypothesis Ho: 6 < 75 and aqcept 
the hypothesis HI : 6> 75 if and only if i > 78. Here the critical region is 
C = {(XI, ••• , X2S) : Xl + ... + X2S > (25)(78)}. The power function of 
Test 2 is, because X is N(9, 4), 

-; (78 ~ 6) , K2(6) = Pr (X > 78) = 1 - ~ 2 :' 

Some values of 'the power function of Test 2 ate K2(73) = O~OO6, 
K2(75) = 0.067, K2(77) = 0.309, and K2(79) = 0.691. That is, if 9 = 75, the 
probability of rejecting Ho : 6 S 75 i~,0~Q<i7; this is much more desirable than 
the corresponding probability! that resulted from Test 1. However, ifHo is 
false and, in fact, 6 = 77, the probability of rejecting Ho: 6 < 75 (and hence 
of accepting H): 6 > 75) is only 0.309. In certain instances, this' low 
probability 0.309 of a correct decision (the acceptance of HI when HI is true) 
is objectionable. That is, Test 2 is not wholly satisfactory. Perhaps we can 
overcome the undesirable features of Tests 1 and 2 if we proceed as in Test 3. 

Test 3. Let us first select a power"function K3(6) that has the features of 
a small value at 9 = 75 and a large value at 6 = 77. For instance, take 
K3(75) == 0.159 and K3(77):::i:: 0.841. To determine a test with such a power 
function, let us reject Ho : 6 < 75 if and only if the experimental value i of the 
mean of a random sample of size n i~ greater than some constant ,c. Thus the 
critical region is C = {(XI> X2 • ••• , xn) : XI + X2 + + ... + Xn > nc}. It 
should be noted that the sample size n and the constant c have not been 
determined as yet. However, since X is N(6, l00/n), the power function is 

- (C-6) K)(6) = Pr (X > c) = 1 - ~ r:. . 
101-" n 

The conditions 1(,(75) = 0.159 and K3(77)_ 0.841 require that 

1 - ~(;o~JD = 0.159, 1 -" ~to~JD '" 0.84\. 

Equivalently, from Table III of Appendix B, we have 

C -75 C -77 --= 1 - -1. 
10/Jr, , 10/Jr, 
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The solution to these two equations in nand c isn = 100, c = 76. With these 
values of nand c, other powers of Test 3 are K3(73) = 0.00 I and 
K3(79) = 0.999. It is important to observe that although Test 3 has a more 
desirable power function than those of Tests I and 2;' a certain "price" has 
been paid-a sample size ofn = 100 is required in Test 3, whereas we had 
n = 25 in the earlier tests. 

Remark. Throughout the text we frequently say that we accept the 
hypothesis Ho if we do not reject Ho in favor of HI' If this decision is made, 
it certainly does not mean that Ho is true or that we even believe that it is true. 
All it means is, based upon the data at hand, that we are not convinced that 
the hypothesis Ho is wrong. Accordingly, the statement "We accept Ho" would 
possibly be better read as "We do not reject Ho." However, because it is in 
fairly common use, we use the statement "We accept Ho," but read it with this 
remark in mind . 

. We have now illustrated the following con~epts= 

1. A statistical hypothesis. ~ .. 
2. A test of a hypothesis against an alternative hypothesis and the 

associated concept of the critical region of the test. 
3. The power of a test. 

These concepts will now be formally defined. 

Definition 3. A statistical hypothesis is an assertion about the 
distribution of one or more random variables. If the statistical • 
hypothesis completely specifies the distribution, it is called a simple 
statistical hypothesis; if it does not, it is called a composite statistical 
hypothesis. 

If we refer to Example 1, we see that both Ho: 0 <75 and 
HI : 0 > 75 are composite statistical hypotheses, since neither of them 
completely specifies the distribution. If there, instead of Ho : () < 75, we 
had Ho: () = 75, then Ho would have been a simple statistical 
hypothesis. ' 

Definition 4. A test of a statistical hypothesis is a rule which, when 
the experimental sample values have been obtained, leads to a decision 
to accept or to reject the hypothesis under consideration. 

Definition S. Let C be that subset of the sample space which, in 
accordance with a prescribed test, leads to the rejection of the 
hypothesis under consideration. Then C is called the critical region of 
the test. 
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Definition 6. The power Junction of a test of a statistical hypothesis 
Ho against an alternative hypothesis H, is that function. defined for 
all distributions under consideration, which yields the probability that 
the sample point falls.in the critical region C of the test, that is. a 
function that yields the probability of rejecting the hypothesis under 
consideration. The value of the power function at a parameter point 
is called the power of the test at that point. 

Definition 7. Let Ho denote a hypothesis that is to be tested against 
an alternative hypothesis H, in accordance with a prescribed test. The 
significance level of the test (or the size of the critical region C) is the 
maximum value (actually supremum) of the power function of the test 
when H 0 is true. 

., 

If we refer again to Example I, we see that the significance levels 
of Tests 1, 2, and 3 of that example are 0.500, 0.067~ and .0.159, 
respectively. An additional example may help clarify these ~efinitions. 

EXlUllple 2. 'It is known that the random variable X has a p.d.f. of the form 

I 
!(x; 0) = 8 e-x/6, 0 < x < 00, 

= 0 elsewhere. 

It is· desired to test the simple hypothesis Ho: 0 = 2 against the alternative 
simple hypothesis H, : 0 = 4. Thus n = {O: 0 = 2, 4}. A random sample 
XI' X2 of size n = 2 will be used. The test to be used is defined by taking the 
critical region to be C == {(x,. xz): 9.5 < x, + X2 < oo}. The power function 
of the test and the significance level of the test will be determined. 

There are but two probability density functions under consideration, 
namely, !(x; 2) specified by Ho and !(x; 4) specified by HI' Thus the power 
function is defined at but two points 0 = 2 and 0 = 4. The power function of 
the test is given by Pr [(XI' X2) E C'j. If Ho is true, that is, (J = 2, the joint p.d.f. 
of XI and X2 is 

!(x,; 2)!(X2; 2) = ie-(X, + X2)!2, 0 < XI < 00, 0 < Xz < 00, 

= 0 elsewhere, 

and 

= 0.05, approximately. 
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If HI is true, that i$, 8. = 4, the joint p.d.f. of XI and X2 is 

f(XI; 4)f(X2; 4) = 116e-(Xl + Xl)'\ 0 < XI < 00, 0 < X2 < 00, 

= 0 elsewhere, 

and 

-:.0.31, approximately. 

Thus the power of the test is given by 0.05 for 8 = 2 and by 0.31 for 8 = 4. 
That is, the probability of rejecting Ho when Ho is true is 0~05; and. the 
probability of rejecting Ho when Ho is false is 0.31. Since the significance level 
of this test (or the size of the critical region) is the power of the test when Ho 
is true, the significance level of this test is 0.05. . . 

The fact that the power of this test, when 8 =4, is only 0.31 immediately 
suggests that a search be made for another test which, with the same/power 
when 8 = 2, would have a power greater than 0.31 when 8 = 4. However later, 
it will be clear that such a search would be fruitless. That IS, there is no test 
with a significance level of 0.05 and based on a random sample of size n = 2 
that has greater power at 8 = 4. The only manner in which the situation may 
be improved is to have recourse to a random sample of size n greater than 2. 

Our computations of the powers of this test at the two points 8 = 2 and 
8 = 4 were purposely done the hard way to focus attention on fundamental 
concepts. A procedure that is computationally simpler is the following. When 
the hypothesis Ho is true,the random variable X is X2(2). Thus the random 
variable XI + Xl = Y, say, is X2(4). Accordingly, the power of the test when 
Ho is true is given by·; 

Pr(Y~ 9.5) = I - Pr(Y < 9.5) = 1 - 0.95 = 0.05, 

from Table II of Appendix B. When the hypothesis HI is true, the random 
variable X/2 is X2(2); so the random variable (XI + X2 )/2 = Z, say, is t(4). 
Accordingly, the power of the test when HI is true is given by 

Pr (XI + X2 > 9.5) = Pr (Z > 4.75) 

which is equal to 0.31, approximately. 

= 100 

~Z.-"2 dz. 
4.1S 

ReDlark. The rejection of the hypothesis Ho when that hypothesis is true 
is, of course, an incorrect decision or an error. This incorrect decision is often 
called a type I error; accordingly, the significance level of the test is the 
probability of committing an error of type I. The acceptance of Ho when Ho 
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is false (HI is true) is called an error of type II. Thus the probability .of a 
type II error is 1 minus the power of the test when HI is true. Frequently, it 
is disconcerting to the student to discover that there are so many names for 
the same thing. However, since all of them are used in the statistical literature, 
we feel obligated to point out that "significance level," "size of the critical 
region," "power of the test when Ho is true," and "the probability of 
committing an error of type I" are all equivalent. 

EXERCISES 

6.38. Let X have a p.d.f. of the form f{x; 6) = 6x9 - 1,,0 < X < 1, zer:o 
elsewhere, where 6 e {6 : 6 = 1, 2}. To test the simple hypothesis Ho : 6 = 1 
against the alternative simple hypothesis HI: 6 = 2, use a random 
sample XI, X 2 of size n = 2 and define the critical region to be 
C = {(XI', X2) : 1 < XI X2}' Find tt,te power function of the test. 

6.39. Let X have a binomial distribution with parameters n = 10 and 
p e {p : p = 1, !}. The simple hypothesis Ho: p =! is rejected, and the 
alternative simple hypothesis H. : p = i is accepted, if the observed value of 
X .. a random sample of size I, is less than orequal to i Find the power 
function of the test. 

6.40. Let XI, X2 be a random sample of sizen = 2 from the distribution having 
p.d.f.f{x; 6) = (l/6)e-:rI6, 0 < X < 00, zero elsewhere. We reject Ho:6 = 2 
and accept HI : 6 = 1 if the observed values of X" X2, say X" X2, are such 
that 

f(xI; 2)f(X2; 2) 1 
---'---<-
f(Xl; 1)f(x2;1) - 2' 

Here n = {6 : 6 = 1, 2}. Find the significance level of the test and the power 
of the test when Ho is fal~e. 

6.41. Sketch, as in Figure 6.1, the graphs of the power functions of Tests 1, 
2, and 3 of Example 1 of this section. 

6.42. Let us assume that the life of a tire in miles, say X, is normally distributed 
with mean 6 and standard deviation 5000. Past experience indicates that 
6 = 30,000. The manufacturer claims that the tires made by a new process 
have mean 6 > 30,000, and it is very possible that 6 = 35,000. Let us cheCk 
his claim by testing Ho: 6 = 30,000 against. HI : 6 > 30,000. We shall 
observe n independent values of X, say XI, .•• ,Xn, and we $hall reject Ho 
(thus accept HI) if and only if x > c. Determine nand c·so.that the power 
function K(6) of the test has the values· K(30,000) = 0.01 and 
K(35,OOO) = 0.98. 

6.43. Let X have a Poisson distribution with mean 6. Consider the simple 
hypothesis Ho: 6 = ~ and the alternative composite hypothesis H. : 6 <!. 
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Thus n = {O : 0 < 0 < !}. Let XI, ... , X12 denote a random sample of size 
12 from this distribution. We reject Ho if and only if the observed value of 
Y = XI + ... + X 12 < 2. If K(O) is the power function of the test, find the 
powers KG), K(j), K(!), K(~), and KG2)' Sketch the graph of K(O). What is 
the significance level of the test? 

6.44. Let Y have a binomial. distribution with parameters nand p. We reject 
Ho:p = i and accept HI :p >! if Y> c. Find nand c to give a power 
function K(P) which is such that K(D = 0.10 and K(j) = 0.95, 
approximately. 

6.45. Let YI < 'Y2 < Y3 < Y4 be the order statistics of a random sample of size 
n = 4 from' a. distribution with p.d.f. f(x; 0) =1/0, 0 < x < 0, zero 
elsewhere, where 0 < O. The hypothesis Ho : 0 = 1 is rejected and HI : 0 > 1 
accepted if the observed Y4 > c. 
(a) Find the constant c so that the significance level is IX = 0.05. 
(b) Determine the power function of the test. 

6.5 Additional Comments About Statistical Tests 

All of the alternative hypotheses considered in Section 6.4 were 
one-sided hypotheses. For illustration, in Exercise 6.42 we tested 
Ho : (J = 30,000 against the one-sided alternative HI: (J > 30,000, 
where (J is the mean of a normal distribution having standard deviation 
(J' = 5000. The test associated with this situation, namely reject Ho if 
and only if the sample mean X > c, is a one-sided test. For convenience, 
we often call Ho: (J = 30,000 the null hypothesis because, as in this 
exercise, it suggests that the new process has not changed the mean of 
the distribution. That is, the new process has been used without 
consequence if in fact the mean still equals 30,000; hence the 
terminology null hypothesis is appropriate. So in Exercise 6.42 we are 
testing a simple null hypothesis against a composite one-sided 
alternative with a one-sided test. 

This does suggest that there could be two-sided alternative 
hypotheses. For illustration, in Exercise 6.42, suppose there is the 
possibility that the new process might decrease the mean. That is, say 
that we simply do not know whether with the new process (J > 30,000 
or (J < 30,000; or there has been no change and the null hypothesis 
Ho : (J = 30,000 is still true. Then we would want to test Ho : (J = 30,000 
against the two-sided alternative H, : 8 =I: 30,000. To help see how to 
construct a two-sided test for Ho against H" consider the following 
argument. 
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In dealing with a test of Ho: 8 = -30,000 against the one-sided 
alternative 8 > 30,000, we used X > c or, equivalently, 

Z 
_ X - 30,000 ..... c - 30,000 _ 
- c::::;. - CI 

(JIJn (JIJn ~ 
where since X is N(8 = 30,000, u'lln) under Ho, Z is N(O, I); and we 
could select CI = 1.645 to have a test of significance level a = 0.05. That 
is, if X is 1.645(J I In greater than the mean 8 = 30,000, we would reject 
Ho and accept HI and the significance level would be equal to a = 0.05. 
To test Ho: 8 = 30,000 against HI : 8 '#; 30,000, let us again use X 
through Z and reject Ho if X or Z is too large or too small. Namely, 
if we reject Ho and accept HI when 

1.21 = IX ~~OOO > 1.96, 
(J/v n 

the significance level a = 0.05 because this is the probability of 
/ZI > 1.96 when Ho is true. 

It is interesting to note that the latter test is the equivalent of 
saying that we reject Ho and accept HI if 30,000 is not in the (two­
sided) confidence interval for the mean 8. Or equivalently, if 

- (J -' (J 
X - 1.96 In < 30,000 < X + 1.96 In' 

then we accept Ho: 8 = 30,000 because those two inequalities are 
eq uivalent to 

X - 30,000 < 1.96, 
(JIJn . 

which leads to the acceptance of Ho : 8 = 30~000. 
Once we recognize this relationship between confidence intervals 

and tests of hypotheses, we can use all those statistics that we used to 
construct confidence intervals to test hypotheses, not only against 
two-sided alternatives but one~sided ones as welL Without listing all 
of these in a table, we give enough of them so that the principle can 
be understood. 

EXlllllp/e I. Let X and S2 be the mean and the variance of a random sample 
of size n coming from N(p, 0'2). To test. at significance level 1%= 0.05, 
Ho : p = IJo against the two-sided alternative HI : p. :cF 1Jo. reject if . 

X-Jl1) 
ITJ = r:::--; > b, 

S/yn - I 
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where b is the 97~5th percentile of the I~istribution with n - 1 degrees of 
freedom. 

EXllmpk Z. Let independent random samples be taken from N(PI' (12) and 
N(P2, (12), respectively. Say these have the respective sample characteristics n, 
i, Sr and m, Y, si. At ex = 0.05. reject Ho: PI = P2 and accept the one·sided 
alternative HI : 1'1 > P2 if 

i- y-o 
T= ---;:==::==::;:::;=== 2: c. 

nSr.+ mS~ (I 1) 
n+m-2 ;;+m 

Note that i - Y has a normal distribution ~ith.mean zero under Ho. So c 
is taken as the 95th percentile of a t-distributionwith n + m - 2 degrees of 
freedom to provide ex = 0~05. 

EXllmple 3. Say Y is b(n. p). To test Ho : P = Po against HI : P < Po, we use 
either 

(Yin) - Po (Yin) - Po 
Z. = < C or Z2 = < c. 

J Po( l- po)/n. ' J( Yln)() - Yln)/n 
Ifn is large,both Zland Z2 have approximate standard normal distributions 
provided that Ho : P = Po is true. Hence c'is taken to be - 1.645 to give an 
approximate significance level of ex = 0.05. Some statisticians use ZI and 
others Z2' We do not have strong preference one way or the other because 
the two methods provide about the same numerical result. As one might 
suspect, using Z, provides better probabilities for power calculations if the 
true P is close to Po while Z2 is better if Ho is clearly false. However, with a 
two-sided alternative hypothesis. Z2 does provide a better relationship with 
the confidence interval for p. That is, IZ21 < 2 is equivalent to Po being in the 
interval from 

Y _ 2 (Yln)(1 - Yin) to Y +2 (Yln)(l - Yin) , 
n n n n 

which is the interval that provides a 95.4 percent confidence interval for p as 
considered in Section 6.2. 

In closing this section, ~we introduce the concepts of randomized 
tests and p-l)aiues through an example and remarks that follow the 
example. 

Example 4. tet XI. X 2, •••• X IO be a: random sample of size n = 10 from 
a Poisson distrioution with mean 8.A critical region for testing Ho: e = 0.1 

10 

against HI : 8 > 0.1 is given by Y = L Xi:> 3. The statistic Y has a Poisson 
i .. 1 



Sec.6.5) A.tI4itiolllll COIIfIIIeIll, A.bollt Sttltistictll Ttlts 291 

distribution with mean 108. Thus, with (J = 0.1 so that the mean ofY is I, the 
significance level of the test is 

Pr (Y > 3) = 1 - Pr (Y < 2) = 1 - 0.920 = 0.080. 

10 

If the critical region defined by ~ Xi ~4 is used, the significance level is 
I 

a=Pr(Y>4)= I-Pr(Y<.3)= 1-0.981 =0.019. 

If a significance lever of about IX = 0.05, say, is desired, most statisticians 
woul~ use one of these tests; that is. they would adjust the significance level 
to that of one of these 'convenient tests. However, a significance level of 

10 10 

a = 0.05 can be achieved exactly by rejecting Ho if LXI > 4 OF if LXi = 3 and 
. 1 I 

an auxiliary independent random experiment resulted in "success," where the 
probability of success is selected to be equal to 

0.050 - 0.019 31 
0.080 - 0.019 = 61 . 

This is due to the fact that, when 0 = 0.1 so that the mean of Y is I, 

Pr (Y ~ 4) + Pr (Y = 3 and success) = 0.019 + Pr (Y = 3) Pr (success) 

= 0.019 + (0.061) M- = 0.05. 

The process of performing the auxiliary experiment to decide whether to reject 
or not when Y = 3 is sometimes referred to as a randomized test. 

Remarks. Not many statisticians like randomized tests in practice, 
because the use of diem means that two statisticians could make the same 
assumptions, observe the same data, apply the same test, and yet make 
different decisions. Hence they usually adjust their significance level so as not 
to randomize. As a matter of fact, many statisticians report what are 
commonly called p-values (for probability values). For illustration, if in 
Example 4 the observed Y is y ,= 4, the p-value is 0.019; and if it is y = 3, the 
p-value is 0.080. That. is, the p-value is the Qbserved "tail" probability of a 
statistic being at least as extreme as the particuiar observed value when Ho is 
true. Hence, mort.? generally, if Y = ,(XI , X2 , •••• XII) is the statistic to be used 
in a test of Jlo ~ and if the critical region is of the form 

u(X .. X2 • ...• XII) < C, 

an observed value u(x" xz, ... , XII) = d would mean that the 

p-value = Pr (Y < d; Ho). 

That is, if G(y) is the distribution function of Y = U(XI' X2, ••• , XII)' provided 
that Ho is true, the p-value is equal to G(d) in this case. However, 
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G( Y), in the continuous case, is uniformly distributed on the unit interval, so 
an observed value G(d) < 0.05 would be equivalent to selecting c, so .that 

Pr [U(XI' X2, ••• , XIf) :s;; c; Hol = 0.05 

and observing that d < c. Most computer programs automatically print out 
the p-value of a test. 

Exlllflple 5. Let XI, X2, ••• ,X2S be a random sample from N(p, (12 = 4). 
To test Ho: Il = 77 against the one-sided alternative hypothesis HI: 
Il < 17, say we observe the 25 values and determine that i...:... 76.1. the 
variance of X is u2/n = 4/25 = 0.16; so we know that Z = (X - 71)/0.4 
is N(O, l) provided that Il = 71. Since the observed value of this test statistic 
is z = (76.1 - 17)/0.4 = - 2.25, the p-value of the test is tJ)( - 2.25) = 
I - 0.988 = 0.012. Accordingly, if we were using a significance level of 
IX = 0.05, we would reject Ho and accept HI : Il < 77 because 0.012 < 0.05. 

EXERCISES 

6.46. Assum~ that the weight of cereal in a "lO-ounce box" is N(Il, u2). To 
test Ho: /J = 10.1 against H. : Il > 10.1, we take a random sample of size 
n = 16 and observe that i = 10.4 and s = 0.4. 
(a) Do we acCept or reject Ho at the 5 percent significance level? 
(b) What is the approximate p-value of this test? 

6.47. Each of 51 golfers hit three golf balls of brand X and three golf balls 
of brand Y in a random order. Let Xi and Yi equal the averages of the 
distances traveled by the brand X and brand Y golfbaUs hit by the ith golfer, 
i= 1,2 •... ,51. Let W;=Xf- Yj , i= 1,2, ... ,51. Test Ho:llw=O 
against HI : Ilw > 0, where Ilw is the mean of the differences. If w = 2.07 and 
s; = 84.63, would Ho be accepted or rejected at an IX = 0.05 significance 
level? ,What is the p-value of this test? 

6.41. Among the data collected for the World Health Organization air quality 
monitoring project is a measure of suspended particles in Ilg/m3• Let X and 
Yequal the concentration of suspended particles in Ilg/m3 in the city center 
(commercial district) for Melbourne and Houston, respectively. Using 
n = 13 observations of X and m = 16 observations of Y, we shall test 
Ho: Ilx = Ily against HI : Ilx < Ily· 
(a) Define the test statistic and critical region, assuming that the variances 

are equal. Let IX = 0.05. 
(b) Ifi = 12.9,8)( = 25.6,:;; = 81.7,andsy = 28.3, calculate the value of the 

test statistic and state your conclusion. 

,6.49. Let p equal the proportion of drivers who use a seat belt in a state that 
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does not have a mandatory seat belt law. It was claimed that p = 0.14. An 
advertising campaign was conducted to increase this proportion. Two 
months after the campaign, y = 104 out of a random sample of n = 590 
drivers were wearing their seat belts. Was the campaign successful? 
(a) Define the null and alternative hypotheses. 
(b) Define a critical region with an ex = 0.0 I significance level. 
(c) Determine the approximate p-value'and state your conclusion. 

6.50. A machine shop that manufactures toggle levers has both a day 
and a night shift. A toggle lever is defective if a standard nut cannot be 
screwed onto the threads. Let PI and P2 be the proportion of defective levers 
among those manufactured by the day and night shifts, respectively. We 
shall test the null hypothesis, Ho : PI = P2, against a two-sided alternative 
hypothesis based on two random samples, each of 1000 levers taken' from 
the production of the respective shifts. 
(a) Define the test statistic which has an approximate N(O, I) distribution. 

Sketch a standard normal p.d.f. illustrating the critical region having 
ex = 0.05. 

(b) If Yl = 37 and Y2 = 53 defectives were observed for the day and night 
shifts, respectively, calculate the value of the test statistic and the 
approximate p-value (note that this is a two-sided test). Locate the 
calculated test statistic on your figure in part (a) and state your 
conclusion. 

6.51. In Exercise 6.28 we found a confidence interval for the variance 0'2 using 
the variance S2 of a random sample of size n arising from N(p., O'~, where 
the mean Jl is unknown. In testing Ho : 0'2 = oi against HI : cI- > O'~, use the 
critical region defined by nffl/oi > c. That is, reject Ho and accept HI if 
S2;;;::: cO'Un. If n = 13 and the significance level ex = 0.025, deten;nine c. 

6.52. In Exercise 6.37, in finding a confidence interval for the ratio, of 
the variances of two normal distributions, we used a statistic 
[nSi /(n - 1 )]/[mSV(m - 1)], whic,h has an F-distribution when those two 
variances are equal. Ifwe denote that statistic by F, we can test Ho : O'i = ~ 
against HI: 07 > ~ using the critical region F;;;::: c. If n = 13, m = 11, and 
ex = 0.05, find c. 

6.6 Chi-Square Tests 

In this section we introduce tests of statistical hypotheses called 
chi-square tests. A test of this sort was originally proposed by Karl 
Pearson in 1900, and it provided one of the earlier methods of statistical 
inference. 
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Let the random variable Xi be N(l'i' 07), i = 1, 2, ... , n, and let 
XI, Xl, ... , Xn be mutually independent. Thus the joint p.d.f. of these 
variables is 

-00 < Xi < 00. 

The random variable that is defined by the exponent (apart from 
n , 

the coefficient -!) is L (Xi - 1'1)2/0';, and this random variable is x2(n). 
I 

In Section 4.10 we generalized this joint normal distribution 
of probability to n random variables that are dependent and we call the 
distribution a multivariate normal distribution. In Section 10.8, it will 
be shown that a certain exponent in the joint p.d.f. (apart from a 
coefficient of -!)defines a random variable that is xl(n). This fact is 
the mathematical basis of the chi-square tests. 

Let us now discuss some random variables that have approximate 
chi-square distributions. Let Xl be b(n, PI)' Since the random variable 
Y = (Xl - npI)/Jnpl (1 - PI) has, as n-+ 00, a limiting distribution 
that is N(O, 1), we would strongly suspect that the limiting distribution 
of Z = y2 is x2(1). This is, in fact, the case, as will now be shown. If 
G,,(y) represents the distribution function of Y, we know that 

lim G,,(y) = (J)(y), -00 <y < 00, 
" .... 00 

where (J)(y) is the distribution function of a distribution that is N(O, 1). 
Let H,,(z) represent, for each positive integer n, the distribution 
function of Z = yl. Thus, if z > 0, 

H,,(z) = Pr(Z < z) = Pr~-Jz < y< Jz) 

= G;,(Jz) - G,,[( -Jz)-]. 

Accordingly, since (J)(y) is everywhere continuous, 

lim H,,(z) = (J)(Jz) - Cf)( -Jz) 
" .... 00 

I
JZ 1 

= 2 0 J2-ir, e-
w2

/
2 dw. 
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If we change the variable of integration in this last integraJ by writing 
w2 = v, then 

lim H (z) = V I /2 - le- IJ
/
2 dv lz 1 

n .... oo n 0 r(~)21/2 ' 

provided that z ~ O. If z < 0, then lim Hn(z) = O. Thus lim Hn(z) is 
n .... oo n .... ct) 

equal to the distribution function of a random variable that is x2(1). 
This is the desired result. 

Let us now return to the random variable XI which is b(n, PI)' Let 
X2 ~ n - XI and let P2 = 1 - PI' If we denote y2 by QI instead of Z, 
we. see that Q I may be written as 

QI = (XI - nplf = (XI - npl)2 + (XI - npl)2 
npl(1 - PI) npi n(1 - PI) 

(XI - npI)2 (X2 - np2)2 
= +----

npi np2 

because (XI - npl)2 = (n - X2 - n + np2)2 = (X2 - np2)2. Since Q, has 
a limiting chi-square distribution with I degree of freedom, we say, 
when n is a positive integer, that Q I has an approximate chi-square 
distribution with I degree of freedom. This result can be generalized 
as follows. 

Let XI, X2, • ' •• ,Xk I have a multinomial distribution with the 
parameters n, PI, ... ,Pk _ I, as in Section 3.1. As a convenience, let 
Xk=n-(XI+",+Xk I) and let- Pk=I-(PI+"'+Pk-I)' 
Define Qk I by 

Q 
_ f (X; - np;)2 

k-I- i.J 
i= I npi 

It is proved in a more advanced course that, as n -+ 00, Qk _ I has a 
limiting distribution that is X2(k - 1). If we accept this fact, we can say 
that Qk _ I has an approximate chi-square distribution with k - 1 
degrees of freedom when n is a positive integer. Some writers caution 
the user of this approximation to be certain that n is large enough that 
each np" i = 1, 2, ... , k, is at least equal to 5. In ~ny case it is important 
to realize that Qk I does not have a chi-square distribution, only an 
approximate chi-square distribution. 

The random variable Qk _ I may serve as the basis of the tests of 
certain statistical hypotheses which we now discuss. Let the sample 
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space .xl of a random experiment be the union of a finite number 
k of mutually disjoint sets A I> A2, ••• , Ale' Furthermore, let P(Ai) = Ph 
i = I, 2, ... ,k, where Pk = I - PI - ... - Pk _ I, so that Pi is the 
probability that the outcome of the random experiment is an element 
of the set Ai' The random experiment is to be repeated n independent 
times and Xi will represent the number of times the outcome is an 
element of the set Ai' That is, XI, X2, ••• , Xic = n - XI - ... - Xk _ I 

are the frequencies with which the outcome is, respectively, an element 
of AI, Ah ... , Ale' Then the joint p.d.f. of XI' Xl> ... ,XIc _ I is the 
multinomhil p.d.f. with the parameters n, PI, ... ,Pie _ I' Consider the 
simple hypothesis (concerning this multinomial p.d.f.) Ho : PI ..:... PIO, 
P2 = P20, ... ,Pk I = Pic 1,0 (Pic = PIcO = I -PIO - ..• - Pic -1,0), where 
PIO' ... ,Pic - 1,0 are specified numbers. It is desired to test Ho against all 
alternatives. 

If the hypothesis Ho is true, the random variable 

has an approximate < chi-square distribution with k - I degrees of 
freedom. Since, when Ho is true, npiO is the expected value of Xi' one 
would feel intuitively that experimental values of QIc _ I should not be 
too large if Ho is true. With this in mind, we may use Table II of 
Appendix B, with k - 1 degrees of freedom, and find c so that 
Pr (QIc _ I > c) = ct, where ct is the desired significance level of the test. 
If. then. the hypothesis Ho is rejected when the observed value of QIc I 

is at least as great as c, the test of Ho will have a significance level that 
is approximately equal to ct. 

Some illustrative examples follow. 

Example I. One of the first six positive integers is to be chosen by a 
random experiment (perhaps by the cast of a die). Let Ai = {x : ~= i}, 
i = 1, 2, ... , 6. The hypothesis Ho: P(A;) = PiO = t, i = 1, 2 •... , 6, will be 
tested, at the approximate 5 percent significance level, against all alternatives. 
To make the test, the random experiment will be repeated, under the same 
conditions, 60 independenttimes.ln thisexalllple k = 6and np.o = 60(~) = 10, 
i = J, 2 •...• 6. Let XI denote the frequency with which the random 
experiment terminates with the outcome in Aj , i = 1, 2, ... ,6, and Jet 

6 

Qs = L (X, 10)2/10. If Ho is true, Table II, with k - 1 = 6 -1 = 5 degrees 
I 

. of freedom, shows that we have Pr (Qs 11.1) = 0.05. Now suppose that 
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the experimental frequencies of Ab A2, ••• , A6 are, respectively, 13. 19, II, 
8, 5, and 4. The observed value of Qs is 

(13 - 10)2 (19 - 10)2 (II - 10)2 (8 - 10)2 
10 + 10 + 10 + 10 

(5 - 10)2 (4 - 10)2 
+ 10 + 10 = 15.6 

• 
Since 15.6> 11.1, the hypothesis P(Aj) =~,; = 1,2, ... ,6, is rejected at the 
(approximate) 5 percent significance level. 

EXll1IIple 2. A point is to be selected from the unit interval {x : 0 < x < I} 
by a random process. Let AI = {x: 0 < x <H, A2 = {x: * < x :S.4}, A3 = 
{x : ! < x S;; n, and A4 = {x : ~ < x < I}. Let the probabilities Ph ; = I, 2, 3, 4, 
assigned to these sets under the hypothesis be determined by the p.d.f. 2x, 
o < x < 1, zero elsewhere. Then these probabilities are, respectively, 

1
1/4 

PIO = 0 2x dx = I~' P 
_ 3 

20 - j(j, P 
_ 7 

40 -16' 

Thus the hypothesis to be tested is that PI, P2, P3, and P4 = 1 - PI - P2 - P3 
have the' preceding val,ues in a multinomial distribution with k = 4. This 
hypothesis is to be tested at an approximate 0.025 significance level by 
repeating the random experiment n = 80 independent times under the same 
conditions. Here the np,o, ; = 1,2,3,4, are, respectively, 5, 15, 25, and 35. 
Suppose the observed frequeacies of A" A2, A3, and A4 are 6, 18, 20, and 

4 

36, respectively. Then the observed value of Q3 = I (Xi - npiQ)2/(npiO) is 
1 . 

(6 - 5)2 (18 - 15)2 (20 - 25)2 (36 - 35)2 _ 64 _ 3 
5 . + 15. + 25 + 35 - 35 -. 1.8. ' 

approximately. From Table II, with 4 - I = 3 degrees ~f freedom, the value 
corresponding to a 0.025 significance level is c = 9.35. Since the observed 
value of Q3 is less than 9.35, the hypothesis is accepted at the (approximate) 
0.025 level of significance. 

Thus far we have used the 'chi-square test when the hypothesis Ho ' 
is a simple hypothesis. More often we encounter hypotheses Ho in 
which the multinomial probabilities PI, P2, ... ,Pk are not completely 
specified by the hypotliesis Ho. That is, under Ho, these probabilities 
are functions of unknown parameters. For illustration, suppose that 
a certain random variable Y can take on any real value. Let us partition 
the space {y: - 00 < y < oo} into k mutually disjoint· sets 
Ab A2 , ••• , Ak so that the events AI> A2 , ••• , Ak are mutually exclu-
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sive and exhaustive. Let Ho be the hypothesis that Y is N(Il,,r) with 
Il and q2 unspecified. Then each 

Pi = I fo exp [-(y - p)'/2a'1 dy. 
At 2n: (1 

; = I, 2, ... , k, 

'is a function of the unknown parameters J1. and (12. Suppose that we take 
a random sample Y1, ••• , Yn of size n from this distribution. If we let 
Xi denote the frequency of Ai. i = 1, 2, ... , k, so that 
XI + ... + Xk = n, the random variable 

cannot be computed once XI, ... , X k have been observed, since each 
Pi, and hence Qk _ I, is a function of the unknown parameters Il and (12. 

There is a way out of our trouble', however. We have noted that 
Qk I is a function of J1. and (12. Accordingly, choose the values of Il and 
q2 that minimize Qk _ I' Obviously, 'these values depend upon the " 
observed XI = XI, ••• , Xk = Xk and are called minimum chi-square 
estimates of J1. and (12. These point estimates of Il and (12 enable us to 
compute numerically the estimates of each Pi' Accordingly, if these 
values are used, Qk _ • can be computed once Y., Y2, ... , Yn, and hence 
XI' X2 , ••• , Xb are observed. However, a very important aspect of the 
fact, which we accept without proof, is that now Qk I is approximately 
"t(k - 3). That is, the number of degrees of freedom of the limiting 
chi-square distribution of Qk _ 1 is reduced by one for each parameter 
estimated by the experimental data. This statement applies not only to 
the-problem at hand but also to more general situations. Two examples 
will now be given. The first of these examples will deal with the test of 
the hypothesis that two multinominaldistributions are the same. 

Remark. In many instances, such as that involving the mean Jl and the 
variance (12 of a normal distribution, minimum chi-square estimates are 
difficult to compute. Hence other estimates, such as the maximum likelihood - -estimates p. = Yand U2 = S2, are used to evaluate Pi and Qk _ I' In general, 
QIc _ I is not minimized by maximum likelihood estimates, and thus its 
computed value is somewhat greater than-it would be if minimum chi-square 
estimates were used. Hence, when comparing it to a critical value listed in the' 
chi-square table with k - 3 degrees of freedom, there is a greater chance of 
rejecting than there would be if the actual minimum of Qk _ I is used. 



Sec. 6.6) Chi-SqlUlre Tests 299 

Accordingly, the approximate significance level of such a test will be some­
what higher than that value found in the table. This modification should be 
kept in mind and, if at all possible, each Pi should be estimated using the 
frequencies XI, ... , Xk rather' than using directly the observations 
Y" Yz, ••. , Yn of the random sample. 

Example 3. Let us consider two multinomial distributions with pa­
rameters n}, PI}, PZ}, ... ,Pk}, j = I, 2, respectively. Let Xi" i = I, 2, ... , k, 
j = 1, 2, represent the corresponding frequencies. Ifni and n2 are large and the 
observations from one distribution are independent of those from the other, 
the random variable 

is the sum of two independent random variables, each of which we treat as 
though it were x2(k - I); that is, the random variable is approximately 
X2(2k ..,.. 2). Consider the hypothesis 

Ho : PI\ = P12, P21 = P22, .•• ,PH = Pk2, 

where each Pil = Pi2, i = 1,2, ... , k, is unspecified. Thus we need point esti­
mates of these parameters. The maximum likelihood estimator of Pil = Pi2, 
based upon the frequencies Xii' is (Xii + Xi2 )/(nl + n2), i = I, 2, ... ,k. Note . 
that we need only k - 1 point estimates, because we have a point estimate of 
Pkl = Pk2 once we have point estimates of the first k - 1 probabilities. In 
accordance with the fact that has been stated, the random variable 

± f {XI} - n,[(X" + Xi2 )/(nl + n2)]}2 

, I i = I nj[(Xil + Xd/(nl + n2)] 

has an approximate X2 distribution with 2k - 2 - (k - 1) = k - 1 degrees of 
freedom. Thus we are able to test the hypothesis that two multinomial 
distributions are the same; this hypothesis is rejected when the computed value 
of this random variable is at least as great as an appropriate number from 
Table II, with k - 1 degrees of freedom. 

The second example deals with the subject of contingency tables. 

Example 4. Let the result of a random experiment be classified by two 
attributes (such as the color of the hair and the color of the eyes). That is, one 
attribute of the outcome is one and only one of certain mutually exclusive and 
exhaustive events, say AI, A2, ••• , Aa; and the other attribute of the outcome 
is also one and only one of certain mutually exclusive and exhaustive events, 
say Bh B2, ••• ,Bb• Let Pu == P(A, n B), i = 1,2, ... ,a; j = 1,2, ... ,b. 
The random experiment is to be repeated n independent times 
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and Xij will denote.the frequency of the event Ai n Bj • Since there are k = ab 
such events as Ai n B;, the random variable 

Q 
= .f ~ (Xjj - npij)2 

ab-I £... £... 
j=li=1 npii 

has an approximate chi-square distribution with ab - I degrees of freedom, 
provided that n is large. Suppose that we wish to test the independence of 
the A attribute and the B attribute; that is, we wish to test the hypothesis 
Ho: P(A; ('\ Bj ) = P(A;)P(B), i = 1,2, ... ,a;j = 1,2, ... , b. Let us deI.l0te 
P(A j ) by Pi. and P(Bj) by P.j; thus 

and 

b 

Pi. = r Pij' 
j=1 

Q 

P.j = r Pij' 
i- 1 

b a b a 

I = L L Pij = L P.j = L Pi.' 
j=li=1 j=1 ;=1 

Then the hypothesis can be formulated as Ho: Po = Pi.P.}, i = 1,2, ... ,a; 
j = 1,2, ... , b. To test Ho, we can use Qob-I with Pij replaced by Pi.P.}· 
But if Pi., i = 1,2, ... ,a, and P. j' j = 1,2, ... ,b, are unknown, as they 
frequently are in applications, we cannot compute Qab _ 1 once the frequencies 
are observed. In such a case we estimate these unknown parameters by 

X. 
A I. 

Pi. =n' 
and 

X· 
A • J 
P·j=n' 

b 

where Xi. = L Xij' 
j 1 

Q 

where X. j = L Xij' 
i = 1 

i = 1, 2, ... , a, 

j = 1,2, ... , b. 

Since LPi. = LP.) = I, we have estimated only a - I + b - I = a + b - 2 
i ' j 

parameters. So if these estimates are used in Qob-I, with Pij = Pi.P.}, then, 
according to the rule that has been stated in this section, the random variable 

t t (Xi.I~- n(Xi./n)(X.l!n~j2 
j II-I n(X;jn)(X.j!n) 

has an approximate chi-square distribution with ab - I - (a + b - 2) = 
(a - 1 )(b - I) degrees of freedom provided that Ho is true. The hypothesis Ho 
is then rejected if the computed value of this statistic exceeds the constant c, 
where c is selected from Table II so that the'test has the desired significance 
level IX. 

In each of the four examples of this section, we have indicated that 
the -statistic used to test the hypothesis Ho has an approximate 
chi-square distribution, provided that n is sufficiently large and Ho is 
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true. To compute the power of any of these tests for values of the 
parameters not described by Ho, we need the distribution of the statistic 
when Ho is not true. In each of these cases, the statistic has an 
approximate distribution called a noncentral chi-square distri­
bution. The noncentral chi-square distribution will be discussed in 
Section to.3. 

EXERCISES 

6.53. A number is to be selected from the interval {x: 0 < x < 2} by a 
random process. Let Ai = {x: (i - 1)/2 < x <iI2}, i = 1,2,3, and let 
A4 = {x : ~ < x < 2}. A certain hypothesis assigns probabilities PiO to these 
sets in accordance with Pm = fA; 0)(2 - x) dx, i = 1, 2, 3, 4. This hypothesis 
(concerning the multinomial p.d.f. with k = 4) is to be tested, at the 5 
percent level of significance, by a chi-square test. If the observed frequencies 
of the sets Ah i = 1,2,3,4, are, respectively. 30, 30, 10, 10, would Ho be 
accepted at the (approximate) 5 percent level of significance? 

6.54. Let the following sets be defined: A I = {x: - 00 < x < O}, 
Ai = {x: i - 2 < x < i-I}, i = 2, ... , 7, and A8 = {x: 6 < x < oo}. A 
certain hypothesis assigns probabilities Pm to these sets Ai in accordance 
with 

Pro = L 2~ exp [ - (x 2(4:),] dx, i = 1,2, ... , 7, 8. 

This hypothesis (concerning the multinomial p.d.f. with k = 8) is to be 
tested, at the 5 percent level of significance, by a chi-square test. If the 
observed frequencies of the. sets Ai, i = I, 2, ... , 8, are, respectively, 60, 96, 
140,210, 172, 160,88, and 74, would Ho be accepted at the (approximate) 
5 percent level of significance? 

6.55. A die was cast n = 120 independent times and the following data 
resulted: 

Spots up 

I ~ 
2 3 4 5 6 

6.56. Consider the problem from genetics of crossing two types of peas. 
The Mendelian theory states that the probabilities of the classifications 
(a) round and yellow, (b) wrinkled and yellow, (c) round and green, and 
(d) wrinkled and green are ~, t6' I~' and /6' respectively. If, from 160 
independent observations, the observed frequencies of these respective 
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classifications are 86, 35, 26, and 13, are these data consistent with the 
Mendelian theory? That is, test, with 0: = 0.01, the hypothesis that the 

. b b'I' , 9 3 3 d I respective pro a 1 ltles are Tii' Tii. 16' an 16' 

6.57. Two different teaching procedures were used on two different groups 
of students. Each group contained 100 students of about the same ability. 
At the end of the term, an evaluating team assigned a letter grade to each 
student. The results were tabulated as follows. 

Group A 

I 15 
II 9 

B 

25 
18 

Grade 

c 

32 
29 

D 

17 
28 

F 

11 
16 

Total 

tOO 
100 

If we consider these data to be independent observations from two 
respective multinomial distributions with k = 5, test, at the 5 percent 
significance level, the hypothesis that the two di~tributions are the same 
(and hence the two teaching procedures are equal1y effective). 

6.58. Let the result of a random experiment be classified as one of the mutually 
exclusive and exhaustive ways At. A2• A3 and also as one of the mutually 
exclusive and exhaustive wa.ys BJ, B2, B3 , B4 • Two hundred independent 
trials of the experiment result in the following data: 

10 
II 
6 

21 
27 
19 

15 
21 
27 

6 
13 
24 

Test, at the 0.05 significance level, the hypothesis of independence of the 
A attribute and the B attribute, namely Ho: P(A j (\ Bj) = P(Ai)P(Bj ), 

i = I, 2, 3 and j = 1, 2, 3, 4, against the alternative of dependence. 

6.59. A certain genetic model suggests that the probabilities of a particular 
trinomial distribution are, respectively, PI = p2, P2 = 2p(1 - p), and 
P3 = (1 - p)2, where 0 < P < 1. If Xl> X2, X3 represent the respective 
frequencies in n independent trials, explain how we could check on the 
adequacy of the genetic model. 

6.fiG. Let the result of a random experiment be classified as one of the mutually 
exclusive and exhaustive ways A" A2, A3 and also as one of the 
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mutually and exhaustive ways B1, Bh B3, B4• Say that 180 independent 
trials of the experiment result in the following frequencies: 

15 - 3k 15 -k 15 +k 15 + 3k 

15 15 15 15 

15 + 3k 15 +k 15 -k 15 - 3k 

where k is one of the integers 0, 1, 2, 3, 4, 5. What is the smallest value of 
k that will lead to the rejection of the independence of the A attribute and 
the B attribute at the ex = 0.05 significance level? 

6.61. It is proposed to fit the Poisson distribution to the following data 

x o 1 2 3 3<x 

Frequency 20 40 16 18 6 

(a) Compute the ~orresponding chi-square goodness~f-fit statistic. 
Hint: In computing the mean, treat 3 < x as x = 4. 

(b) How many degrees of freedom are associated with this chi-square? 
(c) Do these data result in the rejection of the Poisson model at the ex = 0.05 

significance level? 

ADDITIONAL EXERCISES 

6.62. Let Y. < Y2 < ... < Y" be the order statistics of a random sample of 
size n from the distribution having p.d.f. f(x) = 2x/(J2, 0 < x < (J, zero 
elsewhere. . 
(a) If 0 < c < 1, show that Pr (c < YII/(J < 1) = I - Cl". 
(b) If n = 5 and if the observed value of YII is 1.8, find a 99 percent 

confidence interval for (J. 

6.63. If 0.35, 0.92, 0.56, and 0.71 are the four observed values of a random 
sample from a distribution having p.d.f. f(x; (J) = (JxS - 1, 0 < x < 1, zero 
elsewhere, find an estimate for (J. 

6.64. Let the table 

x o 1 2 3 4 5 

Frequency 6 10 14 13 6 1 
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represent a summary of a random sample of size 50 from a Poisson 
distribution. Find the maximum likelihood estimate of Pr (X = 2). 

6.65. Let X be N(p" 100). To test Ho: p, = 80 against HI : p, > 80, let the 
critical region be defined by C = {(Xh X2, ••• , X2S) : X > 83}, where x is the 
sample mean of a random sample of size n = 25 from this distribution. 
(a) How is the power function K(p,) defined for this test? 
(b) What is the significance level of this test? 
(c) What are the values of K(80), K(83), and K(86)? 
(d) Sketch the graph of the power function. 
(e) What is the p-value corresponding to x = 83.41? 

6.66. Let X equal the yield of alfalfa in tons per acre per year. Assume that 
X is N(1.5, 0.09). It is hoped t)lat new fertilizer will increase the average 
yield. We shall test the null hypothesis Ho : p, = 1.5 against the alternative 
hypothesis HI : p, > 1.5. Assume that the variance continues to equal 
(/2 = 0.09 with the new fertilizer. Using X, the mean of a random sample 
of size n, as the test statistic, reject Ho if x > c. Find nand c so that the 
power function K(p,) = Pr (X;::: c : p,) is such that a; = K(1.5) = 0.05 and 
K(1.7) = 0.95. 

• 
6.67. A random sample of 100 observations from a Poisson distribution has 

a mean equal to 6.25. Construct an approximate 95 percent confidence 
interval for the mean of the distribution. 

6.68. Say that a random sample of size 25 is taken from a binomial 
distribution with parameters n = 5 and p. These data are then lost. but we 
recall that the relative frequency of the value 5 was -!so Under these 
conditions, how would you estimate p? Is this suggested estimate unbiased? 

6.69. When 100 tacks were thrown on a table, 60 of them landed point up. 
Obtain a 95 percent confidence interval for the probability that a tack of 
this type will land point- up. Assume independence. 

6.70. Let XI' X2 • •••• 'Xs be a random sample of size n = 8 from a Poisson 
distribution with mean p,. Reject the simple null hypothesis Ho : p, = 0.5 and 

8 

accept HI: p, > 0.5 if the observed sum L Xi > 8. 
i.: I 

(a) Compute the significance level a; of the test. 
(b) Find the power function K(p) of the test as a sum of Poisson 

probabilities. ! 

(c) Using the Appendix, determine K(O.75). K( I). and K( 1.25). 

6.71. Let p denote the probability that. for a particular tennis player. the 
first serve is good. Since p = 0.40, this player decided to take lessons in 
order to increase p. When the lessons are completed. the hypothesis 
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Ho : P = 0.40 will be tested against HI : P > 0.40 based on n = 25 trials. Let 
y equal the number of first serves that are good, and let the critical region 
be defined by C = {y: y > 13}. 
(a) Determine a = Pr (Y ~ 13; P = 0.40). 
(b) Find P = Pr (Y < 13) when P = 0.60; that is, P = Pr (Y < 12; 

P = 0.60). 

6.72. The mean birth weight in the United States is j.t = 3315 grams with a 
standard deviation of (1 = 575. Let X equal the birth weight in grams in 
Jerusalem. Assume that the distribution of X is N(j.t, (12). We shall test 
the null hypothesis Ho: j.t = 3315 against the alternative hypothesis 
H, : j.t < 3315 using a random sample of size n = 30. 
(a) Define a critical region that has a significance level of a = 0.05. 
(b) If the random sample of n = 30 yielded x = 3189 and s = 488, what is 

your conclusion? 
(c) What is the approximate p-value of your test? 

6.73. Let YI < Y2 < ... < Ys be the order statistics of a random sample of 
size.5 from the distribution having p.d.f. I(x) = exp [-(x - (J)/{J]IP, 
(J < x < 00, zero elsewhere. Discuss the construction of a 90 percent 
confidence interval for P if (J is known. 

6.74. Three independent random samples, each of size 6, are drawn from three 
normal distributions having common unknown variance. We find the three 
sample variances to be 10, 14, and 8, respectively. 
(a) Compute an unbiased estimate of the common variance. 
(b) Determine a 90 percent confidence interval for the common variance. 

6.75. Let XI, X2, ••• , Xn be a random sample from N(j.t, al). 
(a) If the constant b is defined by the equation Pr (X < b) = 0.90, find the 

m.l.e. of b. 
(b) If c is given constant, 'find the m.l.e. of Pr (X < e). 

6.76. Let X" X2, and X3 and S~, S~, and S; denote the means and the variances 
of three independent random samples, each of size 10, from a normal 
distribution with mean j.t and variance (12. Find the constant e so that 

Pr < c = 0.95. (
XI + X2 - 2X3 ) 

J IOsi + 10Si + 1051 

6.77. Let Y be b(192, pl. We reject Ho : p = 0.75 and accept HI : p > 0.75 
if and only if Y > 152. Use the normal approximation to determine: 
(a) (X = Pr (Y > 152; p = 0.75). 
(b) P = Pr (Y < 152) when p = 0.80. 

6.78. Let Y be b(lOO, pl. To test Ho : p ,0.08 against HI : p < 0.08, we reject 
Ho and accept HI if and only if Y < 6. 
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(a) Determine the significance level IX of the test. 
(b) Find the probability of the type II error if in fact p = 0.04. 

6.79. Let X., X 2 , ••• ,Xn be a random sample from a Bernoulli distribution 
with parameter p. If p is restricted so that we know that! < p < t. find the 
m.l.e. of this parameter. 

6.80. Consider two Bernoulli distributions with unknown parameters PI and 
P2, respectively. If Y and Z equal the numbers of successes in two 
independent random samples, each of sample size n, from the respective 
distributions, determine the maximum likelihood estimators of PI and P2 if 
we know that 0 <PI < P2 s: 1. 

6.81. Let (X., YI ), (X2• Yl) • ... , (Xn' Yn) be n Li.d. pairs of random vari­
ables, each with the bivariate normal distribution having five par­
ameters J.l h J.l2, O'r, ~, and p. 
(a) Show that Z, = X; - Y; is N(J.l, 0-2), where J.l = J.l1 - J.l2 and 0'2 = O'r -

2pO'I0'1 + ~, i = 1,2, ... ,n. 
(b) Since all five parameters are unknown, J.l and u2 are unknown. To test 

Ho : J.l = 0 (Ho : J.l1 = J.l2) against HI : IL > 0 (H, : ILl > IL2), construct a 
t-test based upon the mean and the variance of the n differences 
ZI, Z2, ... ,Zn' This is often called a paired t-test. 
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