CHAPTER 6

Introduction
to Statistical
Inference

6.1 Point Estimation

The first five chapters of this book deal with certain concepts
and problems of probability theory. Throughout we have carefully
distinguished between a sample space ¢ of outcomes and the space &/
of one or more random variables defined on ¥. With this chapter we
begin a study of some problems in statistics and here we are more
interested in the number (or numbers) by which an outcome is
represented than we are in the outcome itself. Accordingly, we shall
“adopt a frequently used convention. We shall refer to a random
variable X as the outcome of a random experiment and we shall refer
to the space of X as the sample space. Were it not so awkward, we
would call X the numerical outcome. Once the experiment has been
performed and it is found that X = x, we shall call x the experimental
value of X for that performance of the experiment.
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This convenient tei‘minology can be used to advantage in more
general situations. To illustrate this, let a random experiment be
repeated » independent times and under identical conditions. Then
the random variables X, X;,..., X, (each of which assigns a
numerical value to an outcome) constitute (Section 4.1) the
observations of a random sample. If we are more concerned with the
numerical representations of the outcomes than withgthe outcomes
themselves, it seems natural to refer to X, X;, ..., X, as the outcomes.
And what more appropriate name can we give to the space of a random
sample than the sample space? Once the experiment has been
performed the indicated number of times and it is found that X, = x,,
X,=x,,...,X,=x,, we shall refer to x,,x; ...,x, as the
experimental values of X, X3, ..., X, or as the sample data.

We shall use the terminology of the two preceding paragraphs, and
in this section we shall give some examples of szatistical inference. These
examples will be built around the notion of a point estimate of an
unknown parameter in a p.d.f.

Let a random variable X have a p.d.f. that is of known functional
form but in which the p.d.f. depends upon an unknown parameter 6
that may have any value in a set Q. This will be denoted by writing the
p.d.f. in the form f(x; 0), 6 € Q. The set Q will be called the parameter
space. Thus we are confronted, not with one distribution of probability,
but with a family of distributions. To each value of 8, 8 € Q, there
corresponds one member of the family. A family of probability density
functions will be denoted by the symbol {f(x; ) : 6 € Q}. Any member
of this family of probability density functions will be denoted by the
symbol f(x; 6), 6 € Q. We shall continue to use the special symbols that
have been adopted for the normal, the chi-square, and the binomial
distributions. We may, for instance, have the family {N(9, 1): 6 € Q},
where Q is the set —o0 < § < c0. One member of this family of
distributions is the distribution that is N(0, 1). Any arbitrary member
is N(8,1), —o0 <8 < o0.

Let us consider a family of probability density functions
{f(x;60):0eQ}. It may be that the experimenter needs to select
precisely one member of the family as being the p.d.f. of his random
variable. That is, he needs a point estimate of 8. Let X, X, ..., X,
denote a random sample from a distribution that has a p.d.f. whichiis
one member (but which member we do not know) of the family
{f(x; 0): 8 € Q} of probability density functions. That is, our sample
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arises from a distribution that has the p.d.f. f(x; 0):0 Q. Our
problem is that of defining a statistic Y, = u,(X;, X;,..., X,), so
that if x,,x,,...,x, are the observed experimental values of
X, Xa, ..., X,, then the number y, = u,(x,, x,, . . ., X,) will be a good
point estimate of 6.

The following illustration should help motivate one principle that
is often used in finding point estimates.

Example 1. Let X, X,,...,X, denote a random sample from the
distribution with p.d.f.

f)=061-6)""* x=0,1,
=0 elsewhere,

where 0 < 0 < 1. The probability that X, = x,;, X;=x,,..., X, = Xx, is the
joint p.d.f. ‘

6411 — 6)! ~X1872(1 — 6)! =2 - ¢a(1 — B)! ~*r = GF¥(1 — Oy~ EX,

where x; equals zeroor 1,i =1, 2, . . ., n. This probability, which is the joint
pd.f. of X,, X,,..., X,, may be regarded as a function of 6 and, when so
regarded, is denoted by L(f) and called the likelihood function. That is,

L@ =051 — "% 0<f<].

We might ask what value of 8 would maximize the probability L(6) of
obtaining this particular observed sample x,, x3, ..., x,. Certainly, this
maximizing value of 6 would seemingly be a good estimate of 6 because it
would provide the largest probability of this particular sample. Since the
likelihood function L(f) and its logarithm, In L(6), are maximized for the same
value 0, either L(0) or In L(f) can be used. Here

In L(6) = (i x,-) In 8 + (n — i x,-) In(1 —6);

1 I
so we have
din L) XX n—Lx
d ~ 0  1-—6

provided that 8 is not equal to zero or 1. This is equivalent to the equation

(1 —O)Zx —o(n—)": )

=0,

n

whose solution for 8 is Z x;/n. That Zx/n actually maximizes L(f) and

In L(0) can be easily checked even in the cases in which all of x, s Xay oo ey Xp
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equal zero together or 1 together. That is. Y x;/n is the value of 8 that
|

maximizes L(8). The corresponding statistic,

& =
RN

is called the maximum likelihood estimator of 6. The observed value of 4,
namely Y x;/n, is called the maximum likelihood estimate of 8. For a simple

| .
example, suppose thatn = 3,andx, = 1, x, = 0, x; = 1, then L(8) = 6*(1 — 8)
and the observed § = 2 is the maximum likelihood estimate of .

The principle of the method of maximum likelihood can now be
formulated easily. Consider a random sample X, X,, ..., X, from a
distribution having p.d.f. f(x;0), 8Q. The joint p.d.f. of
X, Xy oo, X, 08 f(x; O)f(xy; 0) - - - f(x,; 0). This joint p.d.f. may be
regarded as a function of 6. When so regarded, it is called the likelihood
function L of the random sample, and we write

L(01 X1 X3y 000y xn) =f(X|; O)f(xI, 9) o 'f(x,,.', 0)" 0 € Q

Suppose that we can find a riontrivial function of x,, x,, . . ., x,, say
u(x,, x,, . . ., x,),such that, when 8 is replaced by u(x,, x, . . . , x,), the
likelihood function L is maximized. That is, L[u(x,, x;,....X,):
Xy, X2, ..., X,]is atleast as great as L(0; x,, x,, . . ., x,) forevery § € Q.
Then the statistic u(X,, X,, . . ., X,) will becalled a maximum likelihood
estimator (hereafter abbreviated m.l.e.) of  and will be denoted by the
symbol§ = u(X,, X,, .. ., X,). Weremark that in many instances there
will be a unique m.l.e. fofa parameter 6, and often it may be obtained
by the process of differentiation.

Example 2. Let X\, X,,..., X, be a random sample from the normal
distribution N(8, 1), —0 < # < . Here

n n L 2
L0, x), x50 ..., X)) = (\/Il—n) CXP[_ﬁ(X' _ )] ]

This function L can be maximized by setting the first derivative of L, with
respect to 8, equal to zero and solving the resulting equation for 8. We note,
however, that each of the functions L and In L is maximized at the same value
of 8. So it may be easier to solve

din L(B; x,, x5, ....X,)
do

=0.
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For this example,

din L(O; x,, x;3,...,x,) &
0 _;(x,—(’)f,

If this derivative is equated to zero, the solution for the parameter 0 is

U(X|, Xgy o ey Xp) = Z x;/n. That ): x,;/n actually maximizes-L is easily shown.
Thus the statistic

é*= u(Xh XZ! SIS

:I'—

=22 X
1
is the unique m.l.e. of the mean 6.

It is interesting to note that in both Examples 1 and 2, it is true that
E(G) 0. That is, in each of these cases, the expected value of the
estimator is equal to the corresponding parameter, which leads to the
following definition.

Definition 1. Any statistic whose mathematical expectation is equal
to a parameter 8 is called an unbiased estimator of the parameter .
Otherwise, the statistic is said to be biased.

Example 3. Let
foa®=-, 0<x<6 0<0< oo,

=0 elsewhere,

and let X}, X;, ..., X, denote a random sample from this distribution. Note
that we have taken 0 < x < 0 instead of 0 < x < 0 s0 as to avoid a discussion
of supremum versus maximum. Here

1
o’
which is an ever-decreasing function of 6. The maximum of such functions
cannot be found by differentiation but by selecting 6 as small as possible. Now
0 > each x;; in particular, then, > max (x;). Thus L can be made no larger
than

L@; x,,x,5,...,x,)= O<x; <0,

1
[max (x,)]"
and the umque m.Le. § of @ in this example is the nth order statistic max (X; ).
It can be shown that E[max (X;)] = n0/(n + 1). Thus, in this instance, the
m.l.e. of the parameter 0 is biased. That is, the property of unbiasedness is not
in general a property of a m.l.e.
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While the m.Le. 8 of 8 in Example 3 is a biased estimator, results
in Chapter 5 show that the nth order statistic § = max (X)) = Y,
converges in probability to 8. Thus, in accordance with the following
definition, we say that § = Y, is a consistent estimator of 6.

Definition 2. Any statistic that converges in probability to a
parameter 8 is called a consistent estimator of that parameter 6.

Consistency is a desirable property of an estimator; and, in all cases
of practical interest, maximum likelihood estimators are consistent.

The preceding definitions and properties are easily generalized. Let
X,Y,...,Z denote random variables that may or may not
be independent and that may or may not be identically distributed. Let
the joint p.d.f. g(x,y,...,2 0,0, ...,0,), 0,0, ...,0,)€Q,
depend on m parameters. This joint p.d.f., when regarded as a
function of (0,,0,,...,0,)eQ, is called the likelihood function
of the random variables. Then those functions u,(x,y, ..., 2),
w(x,y,...,2), ..., un(x,7,...,2) that maximize this likelihood
function with respect to 0,,6,,...,0,, respectively, define the
maximum likelihood estimators

b=uXY,....2), b=uwuXVY.. .., 2,...,
6,=u,X,Y,...,2)
of the m parameters.

Example 4. Let X, X,,..., X, denote a random -sample from a
distribution thatis N(8,, 8,), — 0 < 8, < 0,0 < 8, < co. Weshall find §, and
6,, the maximum likelihood estimators of 8, and 6,. The logarithm of the
likelihood function may be written in the form

3 x,' - 0 2
In L0, 0 Xy, .. -, X,) = MY
19 V29 Ay ¢ o« g Ap) — 262 2 .
We observe that we may maximize by differentiation. We have
" (x; — " (x; — 6,)?
amL_;p ) o FETH
0, 0, 80, 202 20,

If we equate these partial derivatives to zero and solve simultaneously the two
N n
equations thus obtained, the solutions for 8, and 8, are found tobe ¥ x;/n =

n 1
and ) (x;—Xx)*/n =45, respectively. It can be verified that these
i
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solutions maximize L. Thus the maximum likelihood estimators of 6, =
and 8, = ¢” are, respectively, the mean and the variance of the sample, namely
0, = X and 0, = S®. Whereas 0, is an unbiased estimator of 6,, the estimator
5 S? is biased because

By =% E(,,a ) -2 E(HS:) L=l =16

0’ n g n n

However, in Chapter 5 it has been shown that §, = X and 8, = S? converge
in probability to 6, and 6,, respectively, and thus they are consistent estimators
of 0| and 02.

Suppose that we wish to estimate a function of 8, say h(6). For
convenience, let us say that n = h(0) defines a one-to-one
transformation. Then the value of #, say 7, that maximizes the
likelihood function L(#), or equnvalently L[# = h~\(n)], is selected so
that § = h~'(5), where § is the m.l.e. of 6. Thus A is taken so that
fi = h(f); that is,

h/(E) = h(f).

This result is called the invariance property of a maximum likelihood
estim_ator. Forillustration, ify = 6, where @ is the mean of N(, 1), then
fi = X°. While there is a little complication if #(6) is not one-to-one, we
still use the fact that 5 = h(0). Thus if X is the mean of the sample from
b(1, 0), so that § = X and if y = 6(1 — 6), then 7. = X(1 — X). These
ideas can be extended to more than one parameter. For illustration, in
Example 4, if n = 0, + 2\/0_2, then § = X + 2S.

Sometimes it is impossible to find maximum likelihood estimators
in a convenient closed form and numerical methods must be used to
maximize the likelihood function. For illustration, suppose.that
X\, X2, ..., X, is a random sample from a gamma distribution with
parameters « = 0, and § = 0,, where 8, > 0, 8, > 0. It is difficult to
maximize

| n s
L@0,,0,;x,,...,x,)= [W{I (x,xy "+ x, )"~ lexp (—Z x,~/02)
1)Y2 1 &

with respect to 8, and 6,, owing to the presence of the gamma function

I'(6,). Thus numerical methods must be used to maximize L once

Xy, X3, - - - » X, are observed. : 2
There are other ways, however, to obtain easnly point estimates of
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6, and 8,. For illustration, in the gamma distribution situation, let us
simply equate the first two moments of the distribution to the
corresponding moments of the sample. This seems like a reasonable
way in which to find estimators, since the empirical distribution F,(x)
converges in probability to F(x), and hence corresponding moments
should be about equal. Here in this illustration we have

0]02#?, 0|0§=S2,

the solutions of which are

S2

0.| = ? and 52 = I—,’

We say that these latter two statistics, §, and 0,, are respective
estimators of 8, and 0, found. by the merhod of moments.

To generalize the discussion of the preceding paragraph, let
X, X5, ..., X, be a random sample of size n from a distribution with
pd.f. f(x;0,,0,,...,0), (0, ...,0)eQ. The expectation E(X*) is
frequently called the kth moment of the distribution, k = 1,2,3,....

n

The sum M, =) Xi/n is the kth moment of the sample,

1
k=1,2,3,.... The method of moments can be described as follows.
Equate E(X*) to M,, beginning with k = 1 and continuing until there
are enough equations to provide unique solutions for 8,,0,, .. ., 0,,
say h(M,, M,,...),i=1,2,...,r, respectively. It should be noted
that this could be done in an equivalent manner by equating u = E(X)

to ¥and E[(X — pTto Y. (X, — X)"/n, k = 2, 3, and so on until unique
|

solutions for 6,,0,, ..., 0, are obtained. This alternative procedure
was used in the preceding illustration. In most practical cases, the
estimator §, = h(M,, M,, . . . ) of §;, found by the method of moments,

is a consistent estimator of 6, i=1,2,...,r.
EXERCISES
6.1. Let X, X,,..., X, represent a random sample from each of the

distributions having the following probability density functions:

@) f(x;0)=0ex!, x=0,1,2,...,0 <0< oo, zero elsewhere, where
A0;0) = 1.

(b) f(x;0)=06x"1,0<x< 1,0 <8 < o0, zero elsewhere.

©) f(x;80)= (/e ,0 <x < 0,0 < § < oo, zero elsewhere.
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@) fx; ) =3P —0<x<00, —0<f<00.
(€ fix;0)=e""9 0 <x< o0, —a0 <8 < o0, zero elsewhere.
In each case find the m.le. § of 6.

6.2. Let X, X;,..., X, be i.i.d.,, each with the distribution having p.d.f.
f(x;6,,0,) = (1/8)e=*-2 9 < x < a0, ~00 <O <00, 0<6,<c0,
zero elsewhere. Find the maximum likelihood estimators of 6, and 0,.

6.3. LetY, < Y, < -+ < Y,bethe order statistics of a random sample from
a distribution with p.d.f. f(x;0)=1,0—-1<x<0+1 —o00 < < oo,
zero elsewhere. Show that every statistic u(X,, X5, . .., X,) such that

Y,—i1<uX,Xs,.... X, )<Y +3

is a m.le. of 6. In particular, (4Y, + 2Y, + 1)/6, (Y, + Y,)/2, and 2Y, +
4Y, — 1)/6 are three such statistics. Thus uniqueness is not in general a
property of a m.l.e.

6.4. Let X, X;, and X, have the multinomial distribution in which n = 25,
k = 4, and the unknown probabilities are 6,, 8,, and 0,, respectively.
Here we can, for convenience, let X,=25—X,— X,— X, and
0,=1—0,— 0, — 0,. If the observed values of the random variables are

x; =4, x,=11, and x; = 7, find the maximum likelihood estimates of 6,,
0,, and 6,.

6.5. The Pareto distribution is frequently used as a model in study of incomes
and has the distribution function

Hx;6,,6,)=1~—(0,/x)", 0, < x, zero elsewhere,
where 6, >0 and 6,> 0.

If X,,X;,...,X, is a random sample from this distribution, find the
maximum likelihood estimators of 6, and 6,.

6.6. Let Y, be a statistic such that lim E(Y,) = 6 and lim &} = 0.Prove that

n-+a0 n—qo

Y, is a consistent estimator of 6.
Hint: Pr(|Y, — 0] = ¢) < EY(Y, — 0)]]/¢® and E|(Y, — Q)’] =[E(Y, — O)]
+ tﬁ,". Why?

6.7. For each of the distributions in Exercise 6.1, find an estimator of 8 by
the method of moments and show that it is consistent.

6.8. If a random sample of size n is taken from a distribution having p.d.f.
f(x; 0) = 2x/6%,0 < x < 0, zero elsewhere, find:
(ay The m.le. § for 6.
(b) The constant ¢ so that E(cf) = 6.
(c) The m.Le. for the median of the distribution.
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6.9. Let X,. X,,..., X, be iid., each with a distribution with p.d.f.
fix: 0) =(1/8)e~*%, 0 < x < =, zeroelsewhere. Find them.l.e. of Pr (X < 2).

6.10. Let X have a binomial distribution with parameters » and p. The
variance of Xjn is p(1 — p)/n. this is sometimes estimated by the m.l.e.

%(l - %()/n Is this an unbiased estimator of p(1 — p)/n? If not, can you

construct one by multiplying this one by a constant?
6.11. Let the table
X . 0 1 2 3 4 5

Frequency | 6 10 14 13 6 I

represent a summary of a sample of size 50 from a binomial distribution
having n = 5. Find the m.Le. of Pr (X = 3).

6.12. Let Y, < Y, < --- < Y, be the order statistics of a random sample of
size n from the uniform distribution of the continuous type over the closed
interval [0 — p, 8 + p]. Find the maximum likelihood estimators for 8 and
p. Are these two unbiased estimators?

6.13. Let X, X, X;. X, X be a random sample from a Cauchy distribution
with median 8, that is, with p.d.f.

| |

ﬂX.,e):;m, — W< x <00,
where —w<l<ow. If x=—-194, x,=059, x3= —5.98,
xg= —0.08, xs = — 0.77, find by numerical methods the m.l.e. of 4.

6.2 Confidence Intervals for Means

Suppose that we are willing to accept as a fact that the (numerical)
outcome X of a random experiment is a random variable that has a
normal distribution with known variance ¢ but unknown mean ..
That is, u is some constant, but its value is unknown. To elicit some
information about u, we decide to repeat the random experiment
under identical conditions » independent times, n being a fixed
positive integer. Let the random variables X,, X,, ..., X, denote,
respectively, the outcomes to be obtained on these n repetitions of the
experiment. If our assumptions are fulfilled, we then have under
consideration a random sample X,, X,, ..., X, from a distribution
that is N(u, 6?), ¢ known. Consider the maximum likelihood estima-
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tor of u, namely ji = X. Of course, X is N(i1, 6%/n) and (X — u)/(a/\/r;)

is N(0, 1). Thus
Pr (—-2 < X—p < 2) = 0.954.
a/\/;

However, the events

a/\/r;
—20 = 20
< X-—-—u<——,
| Jn Jn
and
X — ﬁ <pu< X+ 20
n n
are equivalent. Thus these events have the same probability. That is,

Pr(X——2—<y X+ﬁ) 0.954.

Jn Jn

Since o is a known number, each of the random variables X — 20/f
and X + 20/\/;1 is a statistic. The interval (X — 20/\/;1 X+ 20/\/;1)
is a random interval. In this case, both end points of the interval are
statistics. The immediately preceding probability statement can be
read: Prior to the repeated independent performances of the random
experiment, the probability is 0.954 that the random interval
(X — 20/\/n, X + 20/,/n) includes the unknown fixed point (par-
ameter) u.

Up to this point, only probability has been involved;
the determination of the p.df. of X and the determination of
the random interval were problems of probability. Now the
problem becomes statistical. Suppose the experiment yields
X,=x,Xo=x,,...,X,=x,. Then the sample value of X is
X=(x;+x;+ -+ + x,)/n, a known number. Moreover, since o
is known, the interval (x — 20/\/;1, x+ 20/\/;1) has known
endpoints. Obviously, we cannot say that 0.954 is the probability that
the particular interval (x — 20/\/;1, x+ 20/\/;1) includes the
parameter u, for u, although unknown, is some constant, and this
_ particular interval either does or does not include u. However, the
* fact that we had such a high probability, prior to the performance of
the experiment, that the random interval (X — 20/\/;, X+ 20/-\/;)
includes the fixed point (parameter) u, leads us to have some
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reliance on the particular interval (¥ — 26/\/n, % + 2a/y/n). This
reliance is reflected by calling the known interval (X — 2a/\/;,
x+ 20/\/;) a 95.4 percent confidence interval for u. The number 0.954
is called the confidence coefficient. The confidence coefficient is equal
to the probability that the random interval includes the parameter. One
may, of course, obtain an 80, a 90, or a 99 percent confidence interval
for u by using 1.282, 1.645, or 2.576, respectively, instead of the
constant 2.

A statistical inference of this sort is an example of interval
.estimation of a parameter. Note that the interval estimate of u is found
by taking a good (here maximum likelihood) estimate x of y and adding
and subtracting twice the standard deviation of X, namely
20'/\/;, which is small if n is large. If ¢ were not known, the end points
of the random interval would not be statistics. Although the prob-
ability statement about the random interval remains valid, the sample
data would not yield an interval with known end points.

Example 1. If in the preceding discussion n = 40, 6> = 10, and x = 7.164,
then(7.164 — 1. 282f 7.164 + 1. 282f ), or(6.523, 7.805), is an 80 percent
confidence interval for u. Thus we have an interval estimate of u.

In the next example we show how the central limit theorem may
be used to help us find an approximate confidence interval for u when
our sample arises from a distribution that is not normal.

Example 2. Let X denote the mean of a random sample of size 25 from
a distribution having variance ¢’ = 100, and mean u. Since a/\/; =2,
then approximately

Y —
Pr (—1.96 <

5 H . 1.96) =0.95,

or
Pr(X —3.92 <u< X+ 3.92) =0.95.

Let the observed mean of the sample be x = 67.53. Accordingly, the interval
from x — 3.92 = 63.61 to x + 3.92 = 71.45 is an approximate 95 percent
confidence interval for the mean u.

Let us now turn to the problem of finding a confidence interval for
the mean u of a normal distribution when we are not so fortunate as
‘to know the variance ¢>. From Section 4.8, we know that

JrX—pje _ X—u
\/nSZ/[aZ(n -l S//n-

has a r-distribution with n — 1 degrees of freedom, whatever the value
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of 6* > 0. For a given positive integer n and a probability of 0.95, say,
we can find a number b from Table IV in Appendix B, such that

X—u )
Prl]-b<—————<b
( S/ /n—1
which can be written in the form

Pr(A_’— bS <p< X+ bS )=0.95.
n—1 n—1

= (.95,

Then the interval [X — (bS//n — 1), X + (bS//n — 1)] is a random
interval having probability 0.95 of including the unknown fixed point
(parameter) u. If the experimental values of X,, X;,..., X, are

n n
X), X3, . .5 X, With & =) (x; —Xx)*/n, where X =) x;/n, then the
| 1

interval [x = (bs/\/n — 1), x + (bs/\/n — 1)]is a 95 percent confidence
interval for u for every 62 > 0. Again this interval estimate of u is found
by addmg and subtracting a quantity, here bs/~ /n — 1, to the point
estimate Xx.

Example 3. If in the preceding discussion n = 10, x = 3.22, and s = 1.17,
then the interval [3.22 — (2.262)(1.17)//9, 3.22 + (2.262)(1.17)//9] or
(2.34, 4.10) is a 95 percent confidence interval for pu.

Remark. If one wishes to find a confidence interval for u and if the
variance ¢’ of the nonnormal distribution is unknown (unlike Example 2 of
this section), he may with large samples proceed as follows. If certain weak
conditions are satisfied, then S?, the variance of a random sample of size n > 2,

- converges in probability to ¢2. Then in

JrX - s _/n—- (X 1)
V18 (n — 1a?

the numerator of the left-hand member has a llmltmg distribution that is
N(0, 1) and the denominator of that member converges in probability to 1.
Thus ./n — 1(X — p)/S has a limiting distribution that is N(0, 1). This fact
enables us to find approximate confidence intervals for 4 when our conditions
are satisfied. This procedure works particularly well when the underlying
nonnormal distribution is symmetric, because then X and 5? are uncorrelated
(the proof of which is beyond the level of the text). As the underlying
distribution becomes more skewed, however, the sample size must be larger
to achieve good approximations to the desired probabilities. A similar
procedure can be followed in the next section when seeking confidence
intervals for the difference of the means of two nonnormal distributions.
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We shall now consider the problem of determining a confidence
interval for the unknown parameter p of a binomial distribution when
the parameter n is known. Let Y be b(n, p), where 0 < p < 1 and n is
known. Then p is the mean of Y/n. We shall use a result of Example
1, Section 5.5, to find an approximate 95.4 percent confidence interval
for the mean p. There we found that

Pr|:—2< Y—np <2]=0.954,
Jn(Y/n)(1 — Y/n)

approximately. Since
Y —np __ Um—p
JnYim(d = Y/n)  /(Y/n)(1 = Y/n)/n

the probability statement above can easily be written in the form

Pr [X_ 2\/(Y/n)(l — Y/n) <p<¥y 2\ﬁY/n)(l - Y/n)]= 0.954.
n n n n

approximately. Thus, for large n, if the experimental value of Y is y,
the interval

[g , \/(y/n)(l —ym oy, 2\'/<y/n)(1 - y/n)]
n n n n

provides an approximate 95.4 percent confidence interval for p.

A more complicated approximate 95.4 percent confidence interval
can be obtained from the fact that Z = (Y — np)/./np(1 — p) has a
limiting distribution that is N(0, 1), and the fact that the event
—2 < Z < 2 is equivalent to the event

Y+2-2/[Y(n— Y)/n]+ | Y +2+2/[Y(n— Y)/n]+ 1
n+4 <p< n+4 )

)

The first of these facts was established in Chapter 5, and the proof of
inequalities (1) is left as an exercise. Thus an experimental value y of
Y may be used in inequalities (1) to determine an approximate 95.4
percent confidence interval for p.

If one wishes a 95 percent confidence interval for p that does not
depend upon limiting distribution theory, he or she may use the
following approach. (This approach is quite general and can be used
in other instances; see Exercise 6.21.) Determine two increasing
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functions of p, say ¢,( p) and c,(p), such that for each value of p we have,
at least approximately,

Prci(p) < Y < ¢3(p)] = 0.95.

The reason that this may be approximate is due to the fact that ¥ has
a distribution of the discrete type and thus it is, in general, impossible
to achieve the probability 0.95 exactly. With ¢,(p) and c,(p) increasing
functions, they have single-valued inverses, say d,(y) and d,(y),
respectively. Thus the events ¢,(p) < Y < ¢;(p) and dy(Y) < p < d,(Y)
are equivalent and we have, at least approximately,

Pri{d,(Y) < p < d,(Y)] =0.95.

In the case of the binomial distribution, the functions ¢, ( p), c;(p), d:(¥),
and d,(y) cannot be found explicitly, but a number of books provide
tables of d,(y) and d,(y) for various values of n.

Example 4. 1f, in the preceding discussion, we take n = 100 and y = 20, the
first approximate 95.4 percent confidence interval is given by
0.2 - 2\/(0.2)(0.8)/100, 02+ 2\/(0.2)(0.8)/100) or (0.12,0.28). The ap-
proximate 95.4 percent confidence interval provided by inequalities (1) is

22 — 2,/(1600/100) + 1 22 + 2,/(1600/100) + 1
104 ’ 104

or (0.13, 0.29). By referring to the appropriate tables found elsewhere, we find
that an approximate 95 percent confidence interval has the limits d,(20) = 0.13
and 4,(20) = 0.29. Thus, in this example, we see that all three methods yield
results that are in substantial agreement.

Remark. The fact that the variance of Y/n is a function of p caused us
some difficulty in finding a confidence interval for p. Another way of handling
the problem is to try to find a function w(Y/n) of Y/n, whose variance is
essentially free of p. In Section 5.4, we proved that

(Y) , \/?
uil— | = arcsin —_
n n

has an approximate normal distribution with mean arcsin \/p_r and variance
1/4n. Hence we could find an approximate 95.4 percent confidence interval by
using

Pr (_2  aresin Y/n — arcsin \/p < 2) 0954

J1/4n

and solving the inequalities for p.

Example 5. Suppose that we sample from a distribution with unknown
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mean g and variance ¢? = 225, We want to find the sample size n so that x + 1
(which means x — 1 to x + 1) serves as a 95 percent confidence interval
for u. Using the fact that the sample mean of the observations, X, is
approximately N(u, o?/n), we see that the interval given by x + 1.96(1 5/\/71)
will serve as an approximate 95 percent confidence interval for u. That is, we

want ,
l.96(£) ~
N

or, equivalently,
n=294, and thus n~ 864.36

or n = 865 because n must be an integer. Suppose, however, we could not
afford to take 865 observations. In that case, the accuracy or confidence level
could possibly be relaxed some. For illustration, rather than requiring x + 1
to be a 95 percent confidence interval for u, possibly x + 2 would be a
satisfactory 80 percent one. If this modification is acceptable, we now have

15
1.282( =} =2
(\/E)

or, equivalently,
n=9615 and n=x924.

Since n must be an integer, we would probably use 93 in practice. Most likely,
the persons involved in this project would find this is a more reasonable sample
size.

EXERCISES

6.14. Let the observed value of the mean X of a random sample of size 20 from
a distribution that is N(u, 80) be 81.2. Find a 95 percent confidence interval
for u. :

6.15. Let X be the mean of a random sample of size n from a distribution that
is N(u, 9). Find nsuchthatPr (X — 1 < u < X + 1) = 0.90, approximately.

6.16. Let a random sample of size 17 from the normal distribution N(u, o?)
yield x = 4.7and s> = 5.76. Determine a 90 percent confidence interval for

u.
6.17. Let X denote the mean of a random sample of size n from a distribution

that has mean p and variance ¢° = 10. Find n so that the probability is
approximately 0.954 that the random interval (X — 4, X + 1) includes p.
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6.18. Let X, X,, ..., X;bearandom sample of size 9 from a distribution that

is N(u, o).

(a) If g is known, find the length of a 95 percent confidence interval for u
if this interval is based on the random variable \/5(? — u)/o.

(b) If g is unknown, find the expected value of the length of a 95 percent
confidence interval for u if this interval is based on the random variable
3 = py/S. ‘

Hint: Write E(S) = (a//n)E[(nS?*/0?)"?].

(c) Compare these two answers.

6.19. Let X,, X;,..., X,, X, ., bearandom sample of sizen + 1,n > 1, from
a distribution that is N(, 0?). Let ¥ = 3" X,/nand §2 = 3 (X, — X)¥n. Find
1 1

the constant c so that the statistic ¢(X — X, ,)/S has a t-distribution. If
n =8, determine k such that Pr(X —kS < X, < X + kS) = 0.80. The
observed interval (x — ks, x + ks) is often called an 80 percent prediction
interval for X,.

6.20. Let Y be b(300, p). If the observed value of Y is y =75, find an
approximate 90 percent confidence interval for p.

6.21. Let X be the mean of a random sample of size n from a distribution that
is N(u, 0?), where the positive variance o? is known. Use the fact that
©(2) — ®(—2) = 0954 to find, for each u, c,(u) and c;(u) such that
Pr [c,(4) < X < ¢,(u)] = 0.954. Note that ¢,(u) and c;(u) are increasing
functions of u. Solve for the respective functions d,(x) and d,(x); thus we
also have that Pr[d,(X) < u < d\(X)] =0.954. Compare this with the
answer obtained previously in the text.

6.22. In the notation of the discussion of the confidence interval for p, show
that the event —2 < Z < 2 is equivalent to inequalities (1).
Hint: First observe that —2 < Z < 2 is equivalent to Z? < 4, which can
be written as an inequality involving a quadratic expression in p.

6.23. Let X denote the mean of a random sample of size 25 from a
gamma-type distribution with « =4 and f > 0. Use the central limit
theorem to find an approximate 0.954 confidence interval for u, the mean
of the gamma distribution.

Hint: Base the confidence interval on the random variable
(X — 4B)/(48%/25)'2 = 5X/2B — 10.

6.24. Let x be the observed mean of a random sample of size n from a
distribution having mean u and known variance o2. Find # so that x — ¢/4
to X + o/4 is an approximate 95 percent confidence interval for u.

6.25. Assume a binomial model for a certain random variable. If we desire
a 90 percent confidence interval for p that is at most 0.02 in length, find n.
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Hint: Note that \/(y/n)(l —y/n) < /@A =I.

6.26. It is known that a random variable X has a Poisson distribution with
parameter u. A sample of 200 observations from this population has a mean
equal to 3.4. Construct an approximate 90 percent confidence interval
for pu.

6.27. LetY, < Y, < --- < Y,denote the order statistics of a random sample
of size n from a distribution that has p.d.f. f(x) = 3x%/#*, 0 < x < 0, zero
elsewhere. .

(a) Show that Pr(c < Y,/0 <1)=1—¢*, where 0 <c < 1.
(b) If n is 4 and if the observed value of Y, is 2.3, what is a 95 percent
confidence interval for 6?

6.28. Let X, X3, ..., X, be a random sample from N(u, ¢?), where both
parameters u and ¢° are unknown. A confidence interval for ¢* can be found
as follows. We know that nS?/¢? is x’(n — 1). Thus we can find constants
a and b so that Pr (nS%/6? < b) = 0.975 and Pr (a < nS?/a? < b) = 0.95.
(a) Show that this second probability statement can be written as

Pr (nS%/b < 6? < nS*a) = 0.95.
(b) If n=9 and s* = 7.63, find a 95 percent confidence interval for &2
(c) If u is known, how would you modify the preceding procedure for
finding a confidence interval for ¢*?

6.29. LetX,, X,, ..., X,bearandom sample from a gamma distribution with
known parameter a = 3 and unknown f > 0."Discuss the construction of
a confidence interval for f. .
Hint: What is the distribution of 2 ) X;/B? Follow the procedure
outlined in Exercise 6.28. i=1

6.3 Confidence Intervals for Differences of Means

The random variable T may also be used to obtain a confidence
interval for the difference u, — u, between the means of two normal
distributions, say N(u,, 6%) and N(u,, ¢%), when the distributions have
the same, but unknown, variance a2,

Remark. Let X have a normal distribution with unknown parameters g,
and ¢%. A modification can be made in conducting the experiment so that the
variance of the distribution will remain the same but the mean of the
distribution will be changed; say, increased. After the modification has been
effected, let the random variable be denoted by Y, and let Y have a normal
distribution with unknown parameters u, and ¢2. Naturally, it is hoped that
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u, is greater than y,, that is, that u, — u, < 0. Accordingly, one seeks a
confidence interval for u, — y, in order to make a statistical inference.

A confidence interval for u, — u, may be obtained as follows: Let
X, X...,X,and Y,, Y,, ..., Y, denote, respectively, independent
random samples from the two distributions, N(y,, 6°) and N(y,, ¢7),
respectively. Denote the means of the samples by X and ¥ and the
variances of the samples by 5% and 52, respectively. It should be noted
that these four statistics are independent. The independence of X and
S? (and, inferentially that of ¥ and S2) was established in Section 4.8;
the assumption that the two samples are independent accounts for the
independence of the others. Thus X and Y are normally and
independently distributed with means y, and y, and variances ¢*/n and
a*/m, respectively. In accordance with Section 4.7, their difference
X — Y is normally distributed with mean u, — u, and variance
a*/n + ¢*/m. Then the random variable

(f‘_’—}—’)"'(ﬂl—ﬂz)

Jain+ alm

is normally distributed with zero mean and unit variance. This random
variable may serve as the numerator of a T random variable. Further,
nS?/o? and mS3/c* have independent chi-square distributions with
n — 1 and m — 1 degrees of freedom, respectively, so that their sum
(nS? + mS?%)/6* has a chi-square distribution with n + m — 2 degrees
of freedom, provided thatm + n — 2 > 0. Because of the independence
of X, Y, §2, and S, it is seen that

\/ nS; + mS;
N (m+m=2)

may serve as the denominator of a T random variable. That is, the
random variable

T; (1‘_"‘}_’)"'(#1—#2)

nS? + mS} 1.1
n+m—2\n m

has a t-distribution with n + m — 2 degrees of freedom. As in the
previous section, we can (once n and m are specified positive integers
with n + m — 2 > 0) find a positive number b from Table IV of
Appendix B such that ‘

Pr(—b< T <b)=0.9s5.
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nSt+mSif1 1
RK \/n+m 2( +E ’

this probability may be written in the form
PriX — ¥Y)— bR <y, — u, < (X — )+ bR] = 0.95.

It follows that the random interval

s nSi+mS; (1 1Y)
[(X—“—b\/m(ﬁ;)’ |
(f—?)+b‘ nS? + mS? 1+l
n+m—2\n m

has probability 0.95 of including the unknown fixed point (4, — y,). As
usual, the experimental values of X, Y, §?, and 52, namely X, 3, 5%, and
53, will provide a 95 percent confidence interval for y, — y, when the
variances of the two normal distributions are unknown but equal. A
consideration of the difficulty encountered when the unknown

variances of the two normal distributions are not equal is a551gned to
one of the exercises.

If we set

Example 1. It may be verified that if in the preceding discussion.n = 10,
m=7Xx=42y =3.4,5s} =49, 52 = 32, then the interval (—5.16, 6.76) is a
90 percent confidence interval for y, — u,.

Let Y, and Y, be two independent random variables with binomial
distributions b(n,, p,) and b(n,, p,), respectively. Let us now turn to the
problem of finding a confidence interval for the difference p, — p, of
the means of Y,/n, and Y,/n, when n, and n, are known. Since the mean
and the variance of Y,/n, — Y,/n, are, respectively, p, — p. and
pi(1 = p)/ny + p,(1 — p;)/n,, then the random variable glven by the
ratio

(Y,/n, — Y,/n;) — (p _‘Pz)
\/Pl(l —p)/m + p(1 — py)/n;

has mean Zero and vanance 1 for all positive integers n, ‘and n,. More-
over, since both Y, and Y, have approximate normal distributions
for large n, and n,, one suspects that the ratio has an approximate
normal distribution. This: is actually the case, but it will not be
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proved here. Moreover, if n,/n, = ¢, where cis a fixed positive constant,
the result of Exercise 6.36 shows that the random variable

(Yy/m)(1 = Yy/m)/m + (Ya/n))(1 — Y, /n))/m,
(1 = p)/n + p,(1 — p)/n,
converges in probability to 1 as n,— o (and thus n,— o0, since

m/n, = c,c>0). In accordance with Theorem 6, Section 5.5, the
random variable

(1)

_ (Yi/m — Ya/n;) — (py — p,)
= U ,

w

where

U= /(Yi/m)(1 = Y,/n)n + (Yo/n)(1 — Ya/n)/ny,

has a limiting distribution that is N(0, 1). The event —2 < W < 2, the
probability of which is approximately equal to 0.954, is equivalent to
the event

Y, 1 Y. b Y, [ Y 2

n—l-—n—z—2U<p| — D) <n—|—n—2+2U.
Accordingly, the experimental values y, and y, of Y, and Y;,
respectively, will provide an approximate 95.4 percent confidence
interval for p, — p,.

Example 2. If, in the preceding discussion, we take n, = 100, n, = 400,
y = 30, y, = 80, then the experimental values of Y,/n, — Y,/n,and U are 0.1

and ./(0.3)(0.7)/100 + (0.2)(0.8)/400 = 0.05, respectively. Thus the interval
(0, 0.2) is an approximate 95.4 percent confidence interval for p, — p,.

EXERCISES

6.30. Let two independent random samples, each of size 10, from two normal
distributions N(u,, 0?) and N(u,, o) yield x = 4.8, & =8.64, y = 5.6,
s2 = 7.88. Find a 95 percent confidence interval for u, — u,.

6.31. Let two independent random variables Y, and Y,, with binomial
distributions that have parameters n, = n, = 100, p,, and p,, respectively,
be observed to be equal to y, = 50 and y, = 40. Determine an approximate
90 percent confidence interval for p, — p,.

6.32. Discuss the problem of finding a confidence interval for the difference
#y — j, between the two means of two normal distributions if the variances
o? and o7 are known but not necessarily equal. -
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6.33. Discuss Exercise 6.32 when it is assumed that the variances are unknown
and unequal. This is a very difficult problem, and the discussion
should point out exactly where the difficulty lies. If, however, the variances
are unknown but their ratio a7 /o3 is a known constant k, then a statistic that
is a T random variable can again be used. Why?

6.34. As an illustration of Exercise 6.33, one can let X, X5, ..., Xy and
Y,,Y,, ..., Y,, represent two independent random samples from the
respective normal distributions N(y,, 6?) and N(u,, 63). It is given that
o = 302, but o2 is unknown. Define a random variable which has a
t-distribution that can be used to find a 95 percent interval for u, — u,.

6.35. Let X and Y be the means of two independent random samples, each
of size n, from the respective distributions N(u,, 6°) and N(u,, 6°), where the
common variance is known. Find »n such that

Pr(X—Y—o6/5<p—pu<X—Y+a/5) =090
6.36. Under the conditions given, show that the random variable defined by
ratio (1) of the text converges in probability to 1.

6.37. Let X\, X,,...,X,and Y, Y,, ..., Y, be two independent random
samples from the respective normal distributions N(y,, 6?) and N(u,, 63),
where the four parameters are unknown. To construct a confidence interval
for the ratio, ai/a2, of the variances, form the quotient of the two
independent chi-square variables, each divided by its degrees of freedom,

namely
S2
e
o

3
ST
";/(n— )
o)

where S? and S? are the respective sample variances.

(a) What kind of distribution does F have?

(b) From the appropriate table, a and b can be found so that
Pr(F < b)=0.975 and Pr(a < F < b) = 0.95.

(c) Rewrite the second probability statement as

2/ — 1 2 2(n — 1
Pr aﬁj/(n—._)<ﬁ<bM =0'95_
mS3jm—1) o} mSijim—1)
The observed values, s? and s, can be inserted in these inequalities to
provide a 95 percent confidence interval for a3 /a3.

6.4 Tests of Statistical Hypotheses

The two principal areas of statistical inference are the areas of
estimation of parameters and of tests of statistical hypotheses. The
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problem of estimation of parameters, both point and interval esti-
mation, has been treated. In Sections 6.4 and 6.5 some aspects
of statistical hypotheses and tests of statistical hypotheses will
be considered. The subject will be introduced by way of example.

Example 1. Let it be known that the outcome X of a random experiment
is N(0, 100). For instance, X may denote a score on a test, which score
we assume to be normally distributed with mean 6 and variance 100. Let
us say the past experience with this random experiment indicates that
0 = 75. Suppose, owing possibly to some research in the area pertaining to
this experiment, some changes are made in the method of performing
this random experiment. It is then suspected that no longer does 8 = 75
but that now 6 > 75. There is as yet no formal experimental evidence
that 6 > 75; hence the statement 6 > 75 is a conjecture or a statistical
hypothesis. In admitting that the statistical hypothesis 6 > 75 may be false,
we allow, in effect, the possibility that § < 75. Thus there are actually two
statistical hypotheses. First, that the unknown parameter 8 < 75; that is,
there has been no increase in 6. Second, that the unknown parameter
6 > 75. Accordingly, the parameter space is Q = {#: —o0c <8 < ©}. We
denote the first of these hypotheses by the symbols Hy:0 <75 and the
second by the symbols H,: 8 > 75. Since the values 8 > 75 are alternatives
to those where 0 < 75, the hypothesis H,: 6 > 75 is called the alternative
hypothesis. Needless to say, H, could be called the alternative to H;;
however, the conjecture, here 8 > 75, that is made by the research worker
is usually taken to be the alternative hypothesis. In any case the problem
is to decide which of these hypotheses is to be accepted. To reach a decision,
the random experiment is to be repeated a number of independent times,
say n, and the results observed. That is, we consider a random sample
X\, X5, ..., X, from a distribution that is N(6, 100), and we devise a rule
that will tell us what decision to make once the experimental values,
say X, Xx;, ..., X, have been determined. Such a rule is called a test of
the hypothesis H,: 0 <75 against the alternative hypothesis H,: 0 > 75.
There is no bound on the number of rules or tests that can be con-
structed. We shall consider three such tests. Our tests will be constructed
around the following notion. We shall partition the sample space &/ into a
subset C and its complement C*. If the experimental values of X, X, ..., X,,
say x|, X, - . . , X,, are such that the point (x,, x,, . . ., x,) € C, we shall reject
the hypothesis H, (accept the hypothesis H)). If we have (x|, x,, . . ., x,) € C*,
we shall accept the hypothesis Hj (reject the hypothesis H,).

Test 1. Let n = 25. The sample space .« is the set

{(xl,X2,...,x25):—w <x,~<00,i=l,2,...,25}.
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Let the subset C of the sample space be

C= {(x“ X3y oo ny X25) X + X5 +--- 4 X35 > (25)(75)}.

We shall reject the hypothesis H, if and only if our 25 experimental values are
such that (x|, x5, ..., x35) € C. If (x), X3, . . ., X35) is not an element of C, we
shall accept the hypothesis H;. This subset C of the sample space that leads
to the rejection of the hypothesis Hy : 8 < 75iscalled the crmcal region of Test

1. Now Z x; > (25)(75) if and only if X > 75, where X = Z x;/25. Thus we can

much more conveniently say that we shall reject the hypothesns H,:0 < 75and
accept the hypothesis H, : 8 > 75 if and only if the experimentally determined
value of the sample mean X is greater than 75. If X < 75, we accept the
hypothesis H,: 0 < 75. Our test then amounts to this: We shall reject the
hypothesis H; : 8 < 75 if the mean of the sample exceeds the maximum value
of the mean of the distribution when the hypothesis H is true.

It would help us to evaluate a test of a statistical hypothesis if we knew
the probability of rejecting that hypothesis (and hence of accepting the
alternative hypothesis). In our Test 1, this means that we want to compute the
probability

Pr(X,,..., Xys) e C]=Pr(X > 75).

Obviously, this probability is a function of the parameter # and we shall denote
it by K, (). The function K,(6) = Pr (X > 75) is called the power function of
Test 1, and the value of the power function at a parameter point is called the
power of Test 1 at that point. Because X is N(6, 4), we have

X—-0 75-96 75— 0
K.(B)—Pr( 5> )—l—d)( 5 )

So, for illustration, we have, by Table III of Appendix B, that the power at
8 =75 is K,(75) = 0.500. Other powers are K,(73) = 0.159, K,(77) = 0.841,
and K,(79) = 0.977. The graph of K,(6) of Test 1 is depicted in Figure 6.1.
Among other things, this means that, if § = 75, the probability of rejecting
the hypothesis H;:60 < 75 is . That is, if 8§ =75 so that H, is true, the

K(9)

3

|
75 77 79

FIGURE 6.1

0 71 73
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probability of rejecting this true hypothesis H, is 3. Many statisticians and
research workers find it very undesirable to have such a high probability as
lassigned to this kind of mistake: namely the rejection of H, when Hjis a true
hypothesis. Thus Test 1 does not appear to be a very satisfactory test. Let us
try to devise another test that does not have this objectionable feature. We
shall do this by making it more difficult to reject the hypothesis H;, with the
hope that this will give a smaller probability of rejecting H, when that
hypothesis is true.

Test 2. Let n = 25. We shall reject the hypothesis H, : < 75 and accept
the hypothesis H, : 8 > 75 if and only if x > 78. Here the critical region is
C= {(x,, o> Xs) P X+ 4 X35> (25)(78)). The power function of
Test 2 is, because Xis N(G 4), .

78 -0

K,0) =Pr(X > 785 =1- Q(—2—)L ?

Some values of the power function of Test 2 are K,(73) = 0.006,
Ky(75) = 0.067, Ky(77) = 0.309, and K,(79) = 0.691. That is, if § = 75, the
probability of rejecting H, : 8 5 75 is 0.067; this is much more desirable than
the correspondmg probability ! that resulted from Test 1. However, if H, is
false and, in fact, 6 = 77, the probability of rejecting H, : 0 <75 (and hence
of accepting H,:0 > 75) is only 0.309. In certain instances, this low
probability 0.309 of a correct decision (the acceptance of H, when H, is true)
is objectionable. That is, Test 2 is not wholly satisfactory. Perhaps we can
overcome the undesirable features of Tests 1 and 2 if we proceed as in Test 3.

Test 3. Let us first select a power function K;(6) that has the features of
a small value at 6 = 75 and a large value at 8 = 77. For instance, take
K3(75) = 0.159 and K;(77) = 0.841. To determine a test with such a power
function, let us reject H; : @ < 75 if and only if the experimental value X of the
mean of a random sample of size n is greater than some constant c. Thus the
critical region is C= {(x|, X3, -..,X): X+ X3+ + -+ X, > nc}.
should be noted that the sample size n and the constant ¢ have not been
determined as yet. However, since X is N(6, 100/n), the power function is

K@) =Pr(¥>c)=1— 6‘9).
() (X >¢) (lO/f

The conditions K;(75) = 0. 159 and K;(77) = 0.841 require that

1 —® — =0.159, 1 =0— = (.841.
(10/ﬁ) (10/ﬁ)

Equivalently, from Table III of Appendix B, we have
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The solution to these two equations in 7 and cis n = 100, ¢ = 76. With these
values of » and ¢, other powers of Test 3 are K,;(73) =0.001 and
K;(79) = 0.999. It is important to observe that although Test 3 has a more
desirable power function than those of Tests | and 2;'a certain “price” has
been paid—a sample size of n = 100 is required in Test 3, whereas we had
n = 25 in the earlier tests.

Remark. Throughout the text we frequently say that we accept the
hypothesis H, if we do not reject H, in favor of H,. If this decision is made,
it certainly does not mean that H, is true or that we even believe that it is true.
All it means is, based upon the data at hand, that we are not convinced that
the hypothesis H,is wrong. Accordingly, the statement ‘“We accept H,” would
possibly be better read as “We do not reject H,.”” However, because it is in
fairly common use, we use the statement ‘“We accept H,,” but read it with this
remark in mind.

. We have now illustrated the following cdngepts:

1. A statistical hypothesis. .

2. A test of a hypothesis against an alternative hypothesis and the
associated concept of the critical region of the test.

3. The power of a test.

These concepts will now be formally defined.

Definition 3. A sraristical hypothesis is an assertion about the
distribution of one or more random variables. If the statistical
hypothesis completely specifies the distribution, it is called a simple
statistical hypothesis; if it does not, it is called a composite statistical
hypothesis.

If we refer to Example 1, we see that both H,:8 <75 and
H, : 8 > 75 are composite statistical hypotheses, since neither of them
completely specifies the distribution. If there, instead of H; : 0 < 75, we
had H,:0 =75, then H, would have been a simple statistical
hypothesis. - :

Definition 4. A test of a statistical hypothesis is a rule which, when
the experimental sample values have been obtained, leads to a decision
to accept or to reject the hypothesis under consideration.

Definition 5. Let C be that subset of the sample space which, in
accordance with a prescribed test, leads to the rejection of the
hypothesis under consideration. Then C is called the critical region of
the test.
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Definition 6. The power function of a test of a statistical hypothesis
H, against an alternative hypothesis H, is that function, defined for
all distributions under consideration, which yields the probability that
the sample point falls in the critical region C of the test, that is, a
function that yields the probability of rejecting the hypothesis under
consideration. The value of the power function at a parameter point
is called the power of the test at that point.

Definition 7. Let H, denote a hypothesis that is to be tested against
an alternative hypothesis H, in accordance with a prescribed test. The
significance level of the test (or the size of the critical region C) is the
maximum value (actually supremum) of the power function of the test
when H, is true.

If we refer agam to Example l we see that the significance levels
of Tests 1, 2, and 3 of that example are 0.500, 0.067, and 0.159,
respectively. An additional example may help clarify these definitions.

Example 2. It is known that the random variable X hasa p.d.f. of the form
S(x;0) = %e""", 0<x< o,

=0 elsewhere.

It is-desired to test the simple hypothesis H,: 8 = 2 against the alternative
simple hypothesis H,:0 =4. Thus Q= {0:6=2,4}. A random sample
X, X, of size n = 2 will be used. The test to be used is defined by taking the
critical region to be C = {(x,. x;): 9.5 < x, + x; < o0 }. The power function
of the test and the significance level of the test will be determined.

There are but two probability density functions under consideration,
namely, f(x; 2) specified by H, and f{(x; 4) specified by H,. Thus the power
function is defined at but two points § = 2 and @ = 4. The power function of
the test is given by Pr [(X), X;) € C]. If H,is true, that is, 8§ = 2, the joint p.d.f.
of X, and X, is

S(x1; 2)f(xy; 2) = Yot +x2/2 0<x, <o, 0<x;<o00,
=0 elsewhere,
and

Pr(X,, X;)e C]=1-Pr[(X,, X;) e (*]

9.5 ~%5- Xy .
=1 —-J J‘ je” X2 gy, dx,
, 0o

= 0.05, approximately.
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If H, is true, that is, 8 = 4, the joint p.d.f. of X, and X, is -
Sx; Hxy;8) = e O+ Q<X <0, 0<x,< 0,
=0 elsewhere,

and
.3 M5 - X7
Pr[(X,,X))eCl=1— f r ee K1 +X08 dx, dx,
0

= 0.31, apﬁroximately

Thus the power of the test is given by 0.05 for 8 = 2 and by 0.31 for § = 4.
That is, the probability of rejecting H, when H, is true is 0.05, and the
probability of rejecting H, when H, is false is 0.31. Since the significance level
of this test (or the size of the critical region) is the power of the test when H,
is true, the significance level of this test is 0.05.

The fact that the power of this test, when 6 = 4, is only 0.31 immediately
suggests that a search be made for another test which, with the same power
when 8 = 2, would have a power greater than 0.31 when 6 = 4. However later,
it will be clear that such a search would be fruitless. That is, there is no test
with a significance level of 0.05 and based on a random sample of size n = 2
that has greater power at § = 4. The only manner in which the situation may
be improved is to have recourse to a random sample of size n greater than 2.

Our computations of the powers of this test at the two points § = 2 and
0 = 4 were purposely done the hard way to focus attention on fundamental
concepts. A procedure that is computationally simpler is the following. When
the hypothesis H, is true, the random variable X is ¥*(2). Thus the random
variable X, + X, = Y, say, is yX(4). Accordingly, the power of the test when
H, is true is given by -

Pr(Y>95)=1—Pr(¥<95)=1-095=0.05,

from Table Il of Appendix B. When the hypothesis H, is true, the random
variable X/2 is y%(2); so the random variable (X, + X,)/2 = Z, say, is x*(4).
Accordingly, the power of the test when H, is true is given by

Pr(X, + X, > 9.5) = Pr (Z > 4.75)

ao
— J~ %ze"/z dZ..
4.75

which is equal to 0.31, approximately.

Remark. The rejection of the hypothesis H, when that hypothesis is true
is, of course, an incorrect decision or an error. This incorrect decision is often
called a type 1 error; accordingly, the significance level of the test is the
probability of committing an error of type I. The acceptance of H, when H,
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is false (M, is true) is called an error of type Il. Thus the probability.of a
type II error is 1 minus the power of the test when H, is true. Frequently, it
is disconcerting to the student to discover that there are so many names for
the same thing. However, since all of them are used in the statistical literature,
we feel obligated to point out that “significance level,” “size of the critical
region,” “power of the test when H, is true,” and “‘the probability of
committing an error of type I”’ are all equivalent. -

EXERCISES

6.38. Let X have a p.d.f. of the form f{x;0) =0x""',0<x <1, zero
elsewhere, where 8 € {6 : § = 1, 2}. To test the simple hypothesis Hy: § = 1
against the alternative simple hypothesis H,:0 =2, use a random
sample X,, X, of size n=2 and define the critical region to be
C = {(xy, X1) : 3 < x, x,}. Find the power function of the test.

6.39. Let X have a binomial distribution with parameters n = 10 and
pe{p:p=1%3}. The simple hypothesns H,:p =1 is rejected, and the
alternative simple hypothesns H, : p = jis accepted, if the observed value of
X,, a random sample of size 1, is less than or equal to 3. Find the power
function of the test.

6.40. Let X, X,bearandom sample of sizen = . 2 from the distribution having

p.d.f. f{x; 6) = (1/6)e~*,0 < x < 0, zero elsewhere. We reject H,:0 = 2

and accept H, : 0 = 1 if the observed values of X, X, say x,, x,, are such
that

S5 2)f(x,; 2)
f(xl: l)f(xbl) = 2

Here Q = {0: 6 = 1, 2}. Find the significance level of the test and the power
of the test when H, is false.

6.41. Sketch, as in Figure 6.1, the graphs of the power functions of Tests 1,
2, and 3 of Example 1 of thls section.

6.42. Let usassume that the life of a tire in miles, say X, is normally distributed
with mean 0 and standard deviation 5000. Past experience indicates that
0 = 30,000. The manufacturer claims that the tires made by a new process
have mean 6 > 30,000, and it is very possible that 8§ = 35,000. Let us check
his claim by testing H,:0 = 30,000 against. H,: 0 > 30,000. We shall
observe n independent values of X, say x|, ..., x,, and we shall reject H,
(thus accept H)) if and only if x > ¢. Determine 7 and ¢ so.that the power
function K(6) of the test has_the values - K(30,000) =0.01 and
K(35,000) = 0.98.

6.43. Let X have a Poisson distribution with mean 6. Consider the simple
hypothesis H,: 8 = } and the alternative composite hypothesis H, : § < 1.
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ThusQ = {0:0 <8 <1}.LetX,,..., X,, denote a random sample of size
12 from this distribution. We reject H, if and only if the observed value of
Y=X +- .-+ X,; <2. If K(8) is the power function of the test, find the
powers K(3), K(3), K(3), K(3), and K(5;). Sketch the graph of K(6). What is
the significance level of the test?

6.44. Let Y have a binomial distribution with parameters n and p. We reject
Hy:p =3 and accept H,:p > if Y > c. Find n and ¢ to give a power
function K(p) which is such that K(})=0.10 and K@3) = 0.95,
approximately.

6.45. Let Y, <Y, < Y, < Y, bethe order statistics of a random sample of size
n=4 from a. distribution with p.df. f(x;0) =1/, 0 <x <0, zero
elsewhere, where 0 < 0. The hypothesis H, : 0 = lisrejectedand H,: 0 > 1
accepted if the observed Y, > c.

(a) Find the constant ¢ so that the significance level is a = 0.05.
(b) Determine the power function of the test.

6.5 Additional Comments About Statistical Tests

All of the alternative hypotheses considered in Section 6.4 were
one-sided hypotheses. For illustration, in Exercise 6.42 we tested
H,: 0 = 30,000 against the one-sided alternative H,:8 > 30,000,
where 0 is the mean of a normal distribution having standard deviation
¢ = 5000. The test associated with this situation, namely reject H,, if
and only if the sample mean X > c, is a one-sided test. For convenience,
we often call Hy: 8 = 30,000 the null hypothesis because, as in this
exercise, it suggests that the new process has not changed the mean of
the distribution. That is, the new process has been used without
consequence if in fact the mean still equals 30,000; hence the
terminology null hypothesis is appropriate. So in Exercise 6.42 we are
testing a simple null hypothesis against a composite one-sided
alternative with a one-sided test.

This does suggest that there could be two-sided alternative
hypotheses. For illustration, in Exercise 6.42, suppose there is the
possibility that the new process might decrease the mean. That is, say
that we simply do not know whether with the new process 8 > 30,000
or § < 30,000; or there has been no change and the null hypothesis
H, : 6 = 30,000 is still true. Then we would want to test H,, : § = 30,000
against the two-sided alternative H, : 8 # 30,000. To help see how to
construct a two-sided test for H,, against H,, consider the following
argument.
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In dealing with a test of H,:8 = 30,000 against the one-sided
alternative 6 > 30,000, we used X > c or, equivalently,

X — 30,000 — 30,000

Z = 2 =0q, .
a/\/_ a/\/_

where since X is N(6 = 30,000, ¢*/n) under H,, Z is N(0, 1); and we
could select ¢; = 1.645 to have a test of significance level « = 0.05. That
is, if X'is 1 .6450/\/; greater than the mean 6 = 30,000, we would reject
H, and accept H, and the significance level would be equal to a« = 0.05.
To test H,: 8 = 30,000 against H, : 6 # 30,000, let us again use X
through Z and reject H, if X or Z is too large or too small. Namely,

if we reject H, and accept H, when

_ l)? — 30,000
|ZI - a/\/;l-

the significance level « = 0.05 because this is the probability of
|Z] = 1.96 when H, is true.

It is interesting to note that the latter test is the equivalent of
saying that we reject H, and accept H, if 30,000 is not in the (two-
sided) confidence interval for the mean 8. Or equivalently, if

> 1.96,

X — 1.96 == < 30,000 < X + 1.96 -2,
Jn Jn
then we accept H;:6 = 30,000 because those two inequalities are
equivalent to

‘ — 30,000 <19,

o/ \/_

which leads to the acceptance of H, : 8 = 30,000.

Once we recognize this relationship between confidence intervals
and tests of hypotheses, we can use all those statistics that we used to
construct confidence intervals to test hypotheses, not only against
" two-sided alternatives but one-sided ones as well. Without listing all
of these in a table, we give enough of them so that the principle can
be understood.

E.rample 1. Let X and S?be the mean and the variance of a random sample

of size n coming from N(u,o?). To test, at significance level a = 0.05,
H,: u = p, against the two-sided alternative H, : M # Ho, reject if

= |——|2b
o ‘S/\/n—l =
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where b is the 97.5th percentile of the t-distribution with n — 1 degrees of
freedom.

Example 2. Let independent random samples be taken from N(y,, 0%) and
N(p,, 6%), respectively. Say these have the respective sample characteristics n,
X, 8§ and m, Y, S3. At a = 0.05, reject Hy : y, = p, and accept the one-sided
alternative H, : y, > p, if

T— X—-Y-0 > e

nST+mSif1 1
n+m-—2 n+m

Note that X — ¥ hés a normal distribution \!vitht,rhean zero under H,. So ¢
is taken as the 95th percentile of a t-distribution with n + m — 2 degrees of
freedom to provide a = 0.05. '

Example 3. Say Y is b(n, p). To test H, : p = p,against H, : p < p,, we use
either

g Hm—p o, m -

Po

= 2 <c
Vel = po)in V(XY In)(1 = Y[m)/n
If nis large, both Z, and Z, have approximate standard normal distributions
provided that Hy: p = p, is true. Hence c'is taken to be — 1.645 to give an
approximate significance level of a = 0.05. Some statisticians use Z, and
others Z,. We do not have strong preference one way or the other because
the two methods provide about the same numerical result. As one might
suspect, using Z, provides better probabilities for power calculations if the
true p is close to p, while Z, is better if H, is clearly false. However, with a
two-sided alternative hypothesis, Z, does provide a better relationship with
the confidence interval for p. That is, |Z,| < 2 is equivalent to p, being in the
interval from

Y_, J(Y/n)(l —Yim Y., fr/n)(l ~ ¥
n n n n

which is the interval that provides 295.4 percent confidence interval for p as
considered in Sectlon 6.2.

In closmg this section, we introduce the conccpts of randomtzed
tests and p-values through an example and remarks that follow the
example.

Example 4. Let X,, X, . . .. Xjg'be a random sample of size n = 10 from
a Poisson distribution with mean 8. A critical region for testing H,: 0 = 0.1

against H,:0 > 0.1 isgiven by Y = Z X; > 3. The statistic Y has a Poisson

iw]
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distribution with mean 108. Thus, with 8 = 0.1 so that the mean of Yis 1, the
significance level of the test is

Pr(Y>3)=1-Pr(¥ <2)=1-—0.920 = 0.080.

10
If the critical region defined by ) x; > 4 is used, the significance level is
|

a=Pr(Y=4)=1—-Pr(Y<3)=1-0.981=0.019.

If a significance level of about « = 0.05, say, is desired, most statisticians
would use one of these tests; that is, they would adjust the significance level
to that of one of these convenient tests. However a SIgmﬁcance level of

a = 0.05 can be achieved exactly by rejecting H, if Z x; > 4orif Z x; = 3and

an auxiliary independent random expenment resulted in* success > where the
probability of success is selected to be equal to

0.050 —0.019 _ 31
0.080 — 0.019 61"

This is due to the fact that, when 8 = 0.1 so that the mean of Yis 1,
Pr (Y > 4) + Pr (Y = 3 and success) = 0.019 + Pr (Y = 3) Pr (Success)
=0.019 + (0.061) 3} = 0.05.

The process of performing the auxiliary experiment to decide whether to reject
or not when Y = 3 is sometimes referred to as a randomized test.

Remarks. Not many statisticians like randomized tests in practice,
because the use of them means that two statisticians could make the same
assumptions, observe the same data, apply the same test, and yet make
different decisions. Hence they usually adjust their significance level so as not
to randomize. As a matter of fact, many statisticians report what are
commonly called p-values (for probability values). For illustration, if in
Example 4 the observed Yis y = 4, the p-value is 0.019; and if it is y = 3, the
p-value is 0. 080 That is, the p-value is the observed “tail” probability of a
statistic being at least as extreme as the particular observed value when H, is
true. Hence, more generally, if Y = u(X,, X,, . .., X,)is the statistic to be used
in a test of H, and if the critical region is of the form

u(x;, x3,...,%,)<c,
an observed value w(xy, X35 ..., %) =4 would mean that the
p-value = Pr (Y < d; Hy).

That is, if G(p) is the distribution function of Y = u(X,, X, . . ., X,), provided
that H, is true, the p-value is equal to G(d) in this case. However,
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G(Y), in the continuous case, is uniformly distributed on the unit interval, so
an observed value G(d) < 0.05 would be equivalent to selecting ¢, so .that

Pru(X,, X3, ..., X,) <c¢; H)] =0.05

and observing that d < ¢. Most computer programs automatically print out
the p-value of a test.

Example 5. Let X,, X,,. .., X5 be a random sample from N(u, ¢* = 4).
To test Hy:u =77 against the one-sided alternative hypothesis H,:
u < 77, say we observe the 25 values and determine that x = 76.1. The
variance of X is ¢/n = 4/25 = 0.16; so we know that Z = (X — 77)/0.4
18 N(0, 1) provided that u = 77. Since the observed value of this test statistic
is z=(76.1 —77)/0.4 = —2.25, the p-value of the test is ®(—2.25) =
1 —0.988 = 0.012. Accordingly, if we were using a significance level of

= 0.05, we would reject H, and accept H,: u < 77 because 0.012 < 0.05.

EXERCISES

6.46. Assumg that the weight of cereal in a “10-ounce box” is N(u, ¢?). To
test Hy: u = 10.1 against H, : u > 10.1, we take a random sample of size -
n = 16 and observe that x = 10.4 and s = 0.4.
(a) Do we accept or reject H, at the 5 percent significance level?
(b) What is the approximate p-value of this test?

6.47. Each of 51 golfers hit three golf balls of brand X and three golf balls
of brand Y in a random order. Let X; and Y, equal the averages of the
distances traveled by the brand X and brand Y golf balls hit by the ith golfer,
i=1,2,...,51. Let W,=X,— Y, i=1,2,...,51. Test Hy:py =0
against H, : u, > 0, where u, is the mean of the differences. If w = 2.07 and
s2 = 84.63, would H, be accepted or rejected at an a = 0.05 significance
level? What is the p-value of this test?

6.48. Among the data collected for the World Health Organization air quality

monitoring project is a measure of suspended particles in ug/m’. Let X and

Y equal the concentration of suspended particles in ug/m? in the city center

(commercial district) for Melbourne and Houston, respectively. Using

n = 13 observations of X and m = 16 observations of Y, we shall test

Hy: uy= uyagainst H,: uy < uy.

(a) Define the test statistic and critical region, assuming that the variances
are equal. Let a = 0.05. '

(b) Ifx = 72.9,5, = 25.6,y = 81.7,and s, = 28.3, calculate the value of the
test statistic and state your conclusion.

6.49. Let p equal the proportion of drivers who use a seat belt in a state that
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does not have a mandatory seat belt law. It was claimed that p = 0.14. An
advertising campaign was conducted to increase this proportion. Two
months after the campaign, y = 104 out of a random sample of n = 590
drivers were wearing their seat belts. Was the campaign successful?

(a) Define the null and alternative hypotheses.

(b) Define a critical region with an & = 0.01 significance level.

(c) Determine the approximate p-value and state your conclusion.

6.50. A machine shop that manufactures toggle levers has both a day
and a night shift. A toggle lever is defective if a standard nut cannot be
screwed onto the threads. Let p, and p, be the proportion of defective levers
among those manufactured by the day and night shifts, respectively. We
shall test the null hypothesis, H, : p, = p,, against a two-sided alternative
hypothesis based on two random samples, each of 1000 levers taken from
the production of the respective shifts.

(a) Define the test statistic which has an approximate N(0, 1) distribution.
Sketch a standard normal p.d.f. illustrating the critical region having
a = 0.05.

(b) If y, = 37 and y, = 53 defectives were observed for the day and night
shifts, respectively, calculate the value of the test statistic and the
approximate p-value (note that this is a two-sided test). Locate the
calculated test statistic on your figure in part (a) and state your
conclusion,

6.51. In Exercise 6.28 we found a confidence interval for the variance o2 using
the variance S? of a random sample of size n arising from N(y, o%), where
the mean yu is unknown. In testing H, : 6 = o3 against H, : ¢* > o3, use the
critical region defined by nS?/a} > c. That is, reject H; and accept H, if
S? > co}/n. If n = 13 and the significance level a = 0.025, determine c.

6.52. In Exercise 6.37, in finding a confidence interval for the ratio of
the variances of two normal distributions, we used a statistic
[nS3/(n — 1))/[mS2/(m — 1)], which has an F-distribution when those two
variances are equal. If we denote that statistic by F, we can test H, : 6> = o2
against H, : 7 > o3 using the critical region F > ¢. If n = 13, m = 11, and
o = 0.05, find c.

6.6 Chi-Square Tests

In this section we introduce tests of statistical hypotheses called
chi-square tests. A test of this sort was originally proposed by Karl
Pearsonin 1900, and it provided one of the earlier methods of statistical
inference.
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Let the random variable X; be N(u,, 62), i=1,2,...,n, and let
X\, X,, ..., X, be mutually independent. Thus the joint p.d.f. of these
variables is

2
1 I (Xi— Wi
G0, a."(zn)nlzexp [—2-21:( o, ) an — 0 <Xx; < 0.

The random variable that is defined by the exponent (apart from
the coefficient —3) is ) (X; — p;)*/6?, and this random variable is y*(n).
1

In Section 4.10 we generalized this joint normal distribution
of probability to n random variables that are dependent and we call the
distribution a multivariate normal distribution. In Section 10.8, it will
be shown that a certain exponent in the joint p.d.f. (apart from a
coefficient of —3) defines a random variable that is y*(n). This fact is
the mathematical basis of the chi-square tests.

Let us now discuss some random variables that have approximate
chi-square distributions. Let X, be b(n, p,). Since the random variable
Y= (X, —np)//np(1 — p\) has, as n— o0, a limiting distribution
that is N(0, 1), we would strongly suspect that the limiting distribution
of Z = Y?is y%(1). This is, in fact, the case, as will now be shown. If
G, (y) represents the distribution function of Y, we know that

lim G,(y) =®(y), —o<y<oo,
where ®(y) is the distribution function of a distribution that is N(0, 1).
Let H,(z) represent, for each positive integer n, the distribution
function of Z = Y2 Thus, if z > 0,
H()=Pr(Z<z)=Pr{—/z<Y< /2

= G,(/2) - G.l(—/2)-].

Accordingly, since ®(y) is everywhere continuous,
lim H,(z) = ®(/2) — ®(—+/2)

=2J.ﬁ 1 e~ dw
0 V2m
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If we change the variable of integration in this last integral by writing
w? = p, then

i M) = J r(ll)zwz ol e d,
0 2

provided that z > 0. If z < 0, then lim H,(z) = 0. Thus lim H,(2) is

n— o n—0

equal to the distribution function of a random variable that is x*(1).
This is the desired result.

Let us now return to the random variable X, which is b(n, p,). Let
X, =n— X, and let p, = 1 — p,. If we denote Y? by Q, instead of Z,
we see that 0, may be written as

0, = (X, — np,} _ (X, —np,} (X, —np,)
! np,(1 — p,) np, n(l — p,)

X, —np))’ + (X, — np,)’
np, np;

because (X; — np,)’ = (n — X; — n + np,)* = (X, — np,)*. Since Q, has
a limiting chi-square distribution with 1 degree of freedom, we say,
when n is a positive integer, that Q, has an approximate chi-square
distribution with 1 degree of freedom. This result can be generalized
as follows.

Let X,, X,,..., X,_, have a multinomial distribution with the
parameters n, p,, ..., Px_, as in Section 3.1. As a convenience, let
Xc=n—(X\+---+X,_,) and let po=1—(p+ -+ pi_1)
Define Q; _, by

— _2
00, = i (X; — np;) _

i=1 np;

It is proved in a more advanced course that, as n— o0, Qs _, has a
limiting distribution that is x*(k — 1). If we accept this fact, we can say
that Q,_, has an approximate chi-square distribution with k — 1
degrees of freedom when 7 is a positive integer. Some writers caution
the user of this approximation to be certain that n is large enough that
eachnp,i=1,2,..., k,isatleast equal to 5. In any case it is important
to realize that Q, _, does not have a chi-square distribution, only an
approximate chi-square distribution.

The random variable O, _, may serve as the basis of the tests of
certain statistical hypotheses which we now discuss. Let the sample
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space &/ of a random experiment be the union of a finite number
k of mutually disjoint sets 4,, 4,, . . ., A,. Furthermore, let P(4,) = p,,
i=1,2,...,k, where py=1—-p, —---—p,_,, so that p; is the
probability that the outcome of the random experiment is an element
of the set 4,. The random experiment is to be repeated »n independent
times and X; will represent the number of times the outcome is an
element of the set 4;,. Thatis, X, X,,.... X, =n—X,— - — X, _,
are the frequencies with which the outcome is, respectively, an element
of A, Ay, ..., A,. Then the joint p.d.f. of X|. X,,..., X,_, is the

multinomial p.d.f. with the parameters n, p,, . . ., p,_,. Consider the
simple hypothesis (concerning this multinomial p.d.f.) Hy: p, = pis,
Pr=Pwus- s Pi—1=Pi—1o P =Pwo=1—pro— "+ — Ppc_1p), Where

Pios - - - » Pk 10 are specified numbers. It is desired to test H,against all
alternatives.
If the hypothesis H, is true, the random variable

k(X — npa)?
Qk—l=z——( i)

i npio

has an approximate chi-square distribution with k — 1 degrees of
freedom. Since, when H, is true, np;, is the expected value of X;, one
would feel intuitively that experimental values of Q, _ , should not be
too large if H, is true. With this in mind, we may use Table II of
Appendix B, with k — 1 degrees of freedom, and find ¢ so that
Pr (Q._, = ¢) = a, where a is the desired significance level of the test.
If, then, the hypothesis H, is rejected when the observed value of Q, _,
is at least as great as c, the test of H; will have a significance level that
is approximately equal to a.
Some illustrative examples follow.

Example 1. One of the first six positive integers is to be chosen by a
random experiment (perhaps by the cast of a die). Let 4,= {x:x =1},
i=1,2,...,6. The hypothesis Hy: P(A;) = po=1¢. i=1,2,...,6, will be
tested, at the approximate 5 percentsignificance level, against all alternatives.
To make the test, the random experiment will be repeated, under the same
conditions, 60 independent times. In thisexample k = 6and np,, = 60(}) = 10,
i=1,2,...,6. Let X, denote the frequency with which the random
experiment terminates with the outcome in A4,, i=1,2,....6, and let

6 .
Qs = Y (X, — 10)%/10. If Hy is true, Table I[, withk — 1 = 6 — 1 = 5 degrees
[

. of freedom, shows that we have Pr (Q; > 11.1) = 0.05. Now suppose that
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the experimental frequencies of 4,, 4, . . ., A, are, respectively, 13, 19, 11,
8, 5, and 4. The observed value of Q; is

(13-10 (19—107 (11 —10¢ (8 — 10y
ot 10 T 10 Tt 10

(5—10 (4— 10
710 T 10

L

= 15.6

Since 15.6 > 11.1, the hypothesis P(4;) =4, i=1,2,..., 6, is rejected at the
(approximate) 5 percent significance level. :

Example 2. A point is to be selected from the unit interval {x: 0 < x < 1}
by a random process. Let 4, ={x:0<x <}, 4,={x:i<x<l}, 4, =
{x:3<x<3},and 4, = {x:3 < x < 1}. Let the probabilities p;, i = 1, 2, 3, 4,
assigned to these sets under the hypothesis be determined by the p.d.f. 2x,
0 < x < 1, zero elsewhere. Then these probabilities are, respectively,

14
: 1 3 5 _ 1
P10=J 2de'—'-‘ﬁ, P = 15 Pw = 1& Puw = 15
)

Thus the hypothesis to be tested is that p,, p,, p;,and p,=1—p, — p, — p;

have the preceding values in a multinomial distribution with k = 4. This

hypothesis is to be tested at an approximate 0.025 significance level by

repeating the random experiment » = 80 independent times under the same

conditions. Here the np,, i =1, 2, 3, 4, are, respectively, S, 15, 25, and 35.

Suppose the observed frequencies of 4|, 4,, 4;, and A4, are 6, 18, 20, and
4

36, respectively. Then the observed value of Q; =Y (X; — np,)*/(np,) is
| \

(6—57 (18—15° (20—25% (36—35° o4 E

sttt 3 Tl
approximately. From Table II, with 4 — | = 3 degrees of freedom, the value
corresponding to a 0.025 significance level is ¢ = 9.35. Since the observed
value of Q, is less than 9.35, the hypothesis is accepted at the (approximate)
0.025 level of significance.

Thus far we have used the chi-square test when the hypothesis H,,
is a simple hypothesis. More often we encounter hypotheses H, in
which the multinomial probabilities p,, p, . . . , p; are not completely
specified by the hypothesis H,. That is, under H,, these probabilities
are functions of unknown parameters. For illustration, suppose that
acertain random variable Y can take on any real value. Let us partition
the space {y: —ow <y< o} into k& mutually disjoint - sets
Ay, A,, ..., A; so that the events 4,, A,, ..., A, are mutually exclu-



298 Introduction to Statistical Inference [Ch. 6

sive and exhaustive. Let H, be the hypothesis that Y is N(u, 0%) with
p and ¢? unspecified. Then each

1
= exp [—(y — u)*/2a%] dy, i=1,2,...,k,
,[,./21“7

'is a function of the unknown parameters u and 62. Suppose that we take

a random sample Y,, ..., Y, of size n from this distribution. If we let
X; denote the frequency of A, i=1,2,...,k, so that
X, + ---+ X, = n, the random variable

k (X, — np)?
Qi1 = i; Er—
cannot be computed once Xj, . . ., X, have been observed, since each

p;, and hence Q, _ ,, is a function of the unknown parameters x and a°.
There is 2 way out of our trouble, however. We have noted that
O« -1 is a function of 4 and 2. Accordingly, choose the values of u and
¢* that minimize Q,_,. Obviously, these values depend upon the -
observed X, = x,,..., X, = x, and are called minimum chi-square
estimates of u and a%. These point estimates of u and ¢ enable us to
compute numerically the estimates of each p;,. Accordingly, if these
values are used, 0, _, canbe computedonge Y|, ¥,, ..., ¥,.and hence
X, X,, ..., X, are observed. However, a very important aspect of the
fact, which we accept without proof, is that now @, _ | is approximately
x*(k — 3). That is, the number of degrees of freedom of the limiting
chi-square distribution of Q, _, is reduced by one for each parameter
estimated by the experimental data. This statement applies not only to
the problem at hand but also to more general situations. Two examples
will now be given. The first of these examples will deal with the test of
the hypothesis that two multinominal distributions are the same.

Remark. In many instances, such as that involving the mean yu and the
variance ¢ of a normal distribution, minimum chi-square estimates are
difficult to compute. Hence other estimates, such as the maximum likelihood
estimates ji = ¥ and o= S?, are used to evaluate p, and @, _,. In general,
Q, - is not minimized by maximum likelihood estimates, and thus its
computed value is somewhat greater than it would be if minimum chi-square
estimates were used. Hence, when comparing it to a critical value listed in the -
chi-square table with & — 3 degrees of freedom, there is a greater chance of
rejecting than there would be if the actual minimum of Q,_, is used.
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Accordingly, the approximate significance level of such a test will be some-
what higher than that value found in the table. This modification should be
kept in mind and, if at all possible, each p; should be estimated using the
frequencies X,,..., X, rather than using directly the observations
Y, Y, ..., Y, of the random sample.

Example 3. Let us consider two multinomial distributions with pa-
rameters n;, py, Py, - - -, Pij» J = 1, 2, respectively. Let X, i=1,2,...,k,
Jj =1, 2, represent the corresponding frequencies. If n, and n, are large and the
observations from one distribution are independent of those from the other,
the random variable

2 & (X;— npy)

Jeli=1 n;p;;

is the sum of two independent random variables, each of which we treat as
though it were y%(k — 1); that is, the random variable is approximately
x’(2k — 2). Consider the hypothesis

Hy:piy=pu.pu=Pns- s P = Pia»

where each p, = p,, i= 1,2, ..., k, is unspecified. Thus we need point esti-
mates of these parameters. The maximum likelihood estimator of p,;, = p,,
based upon the frequencies X;;, is (X, + X;)/(n, +m,), i=1,2,...,k. Note .
that we need only k — 1 point estimates, because we have a point estimate of
Pr1 = Pxz Once we have point estimates of the first k — 1 probabilities. In
accordance with the fact that has been stated, the random variable

22: 5 {X,; — nl(Xa + X2)/(n) + ny)])?
j=li=1 n{( Xy + Xi)/(ny + my)]

has an approximate y? distribution with 2k — 2 — (k — 1) = k — | degrees of
freedom. Thus we are able to test the hypothesis that two multinomial
distributions are the same; this hypothesis is rejected when the computed value
of this random variable is at least as great as an appropriate number from
Table II, with £k — 1 degrees of freedom.

The second example deals with the subject of contingency tables.

Example 4. Let the result of a random experiment be classified by two
attributes (such as the color of the hair and the color of the eyes). That is, one
attribute of the outcome is one and only one of certain mutually exclusive and
exhaustive events, say A4,, A,, . . ., A,; and the other attribute of the outcome
is also one and only one of certain mutually exclusive and exhaustive events,
say B, B,,...,B,. Let p;=P(4,n B), i=1,2,...,a, j=12,...,b
The random experiment is to be rtepeated n independent times
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and X; will denote the frequency of the event 4; N B;. Since there are k = ab
such events as A; n B;, the random variable
b & (Xij_”!’ij)2
Qa1 = jgl igl np;

has an approximate chi-square distribution with ab — 1 degrees of freedom,
provided that n is large. Suppose that we wish to test the independence of
the A attribute and the B attribute; that is, we wish to test the hypothesis
Hy: P(A; n B)=P(A)P(B),i=1,2,...,a;j=1,2,...,b. Let us denote
P(A;)) by p;. and P(B;) by p_; thus

b a
= 'Zl Pijs P.;i= Z Pij»
j=

i=

and

l_z Zpu ZP; '_2;17:'.-

j=1li=1

Then the hypothesis can be formulated as Hy:py=pip.pi=12,...,a
j=12,. b To test H,, we can use Q,_, with p; replaced by p, p. ;.
Butif p,,i=1,2,...,a,and p ;, j=1,2,..., b, are unknown, as they
frequently arein appllcations, we cannot compute Q,, _ , once the frequencies
are observed. In such a case we estimate these unknown parameters by

. X :
pi.=_n—’ where X ]Zl Xl]’ 1= 1, 2,..-,01
and
X

- )

p.j=—7, where X, Z

s J=12...,b.

SmceZp, Zp, I, we have estimated onlya— 1 +b—1=a+ b -2

parameters So if these estimates are used in @Q,,_,, with p; = p; p_;, then,
according to the rule that has been stated in this section, the random variable

X — n(X;./n)(X_ ,/n)}
2:l :gl n(X;,/m)}(X_;/n) ’

has an approximate chi-square distribution with ab— 1 —(a+ b —2)=
(a — 1)(b — 1) degrees of freedom provided that H, is true. The hypothesis H,
is then rejected if the computed value of this statistic exceeds the constant ¢,

where ¢ is selected from Table II so that the test has the desired significance
level o

In each of the four examples of this section, we have indicated that
the ‘statistic used to test the hypothesis H, has an approximate
chi-square distribution, provided that n is sufficiently large and H, is
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true. To compute the power of any of these tests for values of the
parameters not described by H,, we need the distribution of the statistic
when H, is not true. In each of these cases, the statistic has an
approximate distribution called a noncentral chi-square distri-
bution. The noncentral chi-square distribution will be discussed in
Section 10.3.

EXERCISES

6.53. A number is to be selected from the interval {x:0 <x <2} by a
random process. Let A4;={x:(i—1)2<x<i/2}, i=1,2,3, and let
A, = {x:3 < x < 2}. A certain hypothesis assigns probabilities p; to these
sets in accordance with p,, = {,. (3)(2 — x) dx, i = 1, 2, 3, 4, This hypothesis
(concerning the multinomial p.d.f. with k = 4) is to be tested, at the 5
percent level of significance, by a chi-square test. If the observed frequencies
of the sets 4, i = 1, 2, 3, 4, are, respectively, 30, 30, 10, 10, would H, be
accepted at the (approximate) 5 percent level of significance?

6.54. Let the following sets be defined: A4, ={x:—00 <x <0},
A={x:i—-2<x<i-1},i=2,...,7, and 4g={x:6<x< o0} A
certain hypothesis assigns probabilities p,, to these sets 4, in accordance
with

1 (x — 3)2:| .
Plo="[ eXpI:—*—-— dx, i=12,...,78.
L, 2/2n 2(4)

This hypothesis (concerning the multinomial p.d.f. with & = 8) is to be
tested, at the 5 percent level of significance, by a chi-square test. If the
observed frequenciesof the.sets A, i = 1, 2, . . ., 8, are, respectively, 60, 96,
140, 210, 172, 160, 88, and 74, would H, be accepted at the (approximate)
5 percent level of significance?

6.55. A die was cast n = 120 independent times and the following data
resulted:

Spots up ‘ 1 2 3 4 5 6

Frequency lb 20 20 20 20  40-b

If we use a chi-square test, for what values of 5 would the hypothesis that
the die is unbiased be rejected at the 0.025 significance level?

6.56. Consider the problem from genetics of crossing two types of peas.
The Mendelian theory states that the probabilities of the classifications
(a) round and yellow, (b) wrinkled and yellow, (c) round and green, and
(d) wrinkled and green are %, &, &, and |, respectively. If, from 160
independent observations, the observed frequencies of these respective
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classifications are 86, 35, 26, and 13, are these data consistent with the
Mendelian theory? That is, test, with « = 0.01, the hypothesis that the
respective probabilities are %, &, %, and .

6.57. Two different teaching procedures were used on two different groups
of students. Each group contained 100 students of about the same ability.
At the end of the term, an evaluating team assigned a letter grade to each
student. The results were tabulated as follows.

Grade

Group A B C D F Total

I 15 25 32 17 11 100
II 9 18 29 28 16 100

If we consider these data to be independent observations from two
respective multinomial distributions with k = 5, test, at the 5 percent
significance level, the hypothesis that the two distributions are the same
(and hence the two teaching procedures are equally effective).

6.58. Let theresult of a random experiment be classified as one of the mutually
exclusive and exhaustive ways A,, 4,, 4, and also as one of the mutually
exclusive and exhaustive ways B,, B,, B, B,. Two hundred independent
trials of the experiment result in the following data:

B, B, B, B,

A, 10 21 15 6
A, | 11 27 21 13
A, 6 19 27 24

Test, at the 0.05 significance level, the hypothesis of independence of the
A attribute and the B attribute, namely H,: P(4; n B;)) = P(A)P(B)),
i=1,2,3andj=1,2,3,4, against the alternative of dependence.

6.59. A certain genetic model suggests that the probabilities of a particular
trinomial distribution are, respectively, p, = p?, p,=2p(l — p), and
ps=(1—p), where 0 <p< 1. If X, X,, X; represent the respective
frequencies in n independent trials, explain how we could check on the
adequacy of the genetic model.

6.60. Let the result of a random experiment be classified as one of the mutually
exclusive and exhaustive ways A4,, 4,, 4; and also as one of the
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mutually and exhaustive ways B,, B,, B;, B,. Say that 180 independent

trials of the experiment result in the following frequencies:

Bl Bz B3 ' B4
A | 15=3k | 15—k | 15+k | 15+ 3k
A, 15 15 15 15
A | 15+3%k | 154k [ 15—k | 15-3k

where k is one of the integers 0, 1, 2, 3, 4, 5. What is the smallest value of
k that will lead to the rejection of the independence of the A4 attribute and
the B attribute at the a = 0.05 significance level?

6.61. It is proposed to fit the Poisson distribution to the following data

x ‘ 0 1 2 3 3<x

Frequency I 20 40 16 18 6

(a) Compute the corresponding chi-square go‘odness-‘fjf-ﬁt statistic.
Hint: In computing the mean, treat 3 < x as x = 4.

(b) How many degrees of freedom are associated with this chi-square?

(c) Do these data result in the rejection of the Poisson model at thea = 0.05
significance level?

ADDITIONAL EXERCISES

6.62. Let Y, < Y, <--- <Y, be the order statistics of a random sample of
size n from the distribution having p.d.f. f(x) = 2x/6% 0 < x < 0, zero
elsewhere. '

(@ If0<c<1,showthatPr(c< Y, /0 < 1)=1— .
(b) If n=5 and if the observed value of Y, is 1.8, find a 99 percent
confidence interval for 6.

6.63. 1f 0.35, 0.92, 0.56, and 0.71 are the four observed values of a random
sample from a distribution having p.d.f. f(x;0) = 0x*~', 0 < x < 1, zero
elsewhere, find an estimate for 6.

6.64. Let the table
x ’ 0 1 2 3 4 5

Frequency I 6 10 14 13 6 1
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represent a summary of a random sample of size 50 from a Poisson
distribution. Find the maximum likelihood estimate of Pr (X = 2).

6.65. Let X be N(u, 100). To test H,: u = 80 against H,: u > 80, let the
critical region be defined by C = {(x,, x5, . .., x35) : X > 83}, where x is the
sample mean of a random sample of size » = 25 from this distribution.
(a) How is the power function K(u) defined for this test?

(b) What is the significance level of this test?

(c) What are the values of K(80), K(83), and K(86)?
(d) Sketch the graph of the power function.

(e) What is the p-value corresponding to x = 83.41?

6.66. Let X equal the yield of alfalfa in tons per acre per year. Assume that
X is N(1.5,0.09). It is hoped that new fertilizer will increase the average
yield. We shall test the null hypothesis H, : u = 1.5 against the alternative
hypothesis ‘H,: u > 1.5. Assume that the variance continues to equal
¢’ = 0.09 with the new fertilizer. Using X, the mean of a random sample
of size n, as the test statistic, reject H, if x > c. Find n and ¢ so that the
power function K(u) = Pr (X = c¢: u) is such that a = K(1.5) = 0.05 and
K(1.7) = 0.95.

6.67. A random sample of 100 observations from a Poisson distribution has
a mean equal to 6.25. Construct an approximate 95 percent confidence
interval for the mean of the distribution.

6.68. Say that a random sample of size 25 is taken from a binomial
distribution with parameters » = 5 and p. These data are then lost, but we
recall that the relative frequency of the value 5 was . Under these

conditions, how would you estimate p? Is this suggested estimate unbiased?

6.69. When 100 tacks were thrown on a table, 60 of them landed point up.
Obtain a 95 percent confidence interval for the probability that a tack of
this type will land point-up. Assume independence.

6.70. Let X\, X,, ..., X; be a random sample of size » = 8 from a Poisson
distribution with mean u. Reject the simple null hypothesis H, : u = 0.5and
8

accept H, : u > 0.5 if the observed sum Y x; > 8.

i=1
(a) Compute the significance level a of the test.
(b) Find the power functlon K(u) of the test as a sum of Poisson
probabilities. |
(c) Using the Appendix, determine K(0.75), K(1), and K(1.25).

6.71. Let p denote the probability that, for a particular tennis player, the ’
first serve is good. Since p = 0.40, this player decided to take lessons in
order to increase p. When the lessons are completed, the hypothesis
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Hy,: p = 0.40 will be tested against H, : p > 0.40 based on n = 25 trials. Let

y equal the number of first serves that are good, and let the critical region

be defined by C = {y:y > 13}.

(a) Determine & = Pr (Y > 13; p = 0.40).

(b) Find B=Pr(Y <13) when p=0.60; that is, f=Pr(Y <12
p = 0.60).

6.72. The mean birth weight in the United States is 4 = 3315 grams with a
standard deviation of @ = 575. Let X equal the birth weight in grams in
Jerusalem. Assume that the distribution of X is N(y, ¢?). We shall test

the null hypothesis Hj,:u = 3315 against the alternative hypothesis

H, : p < 3315 using a random sample of size n = 30.

(@) Define a critical region that has a significance level of a = 0.05.

(b) If the random sample of n = 30 yielded x = 3189 and s = 488, what is
your conclusion?

(c) What is the approximate p-value of your test?

6.73. Let Y, < Y, < - .- < Y; be the order statistics of a random sample of
size. 5 from the distribution having p.d.f. f(x) =exp[—(x — 8)/B]/B,
0 < x < oo, zero elsewhere. Discuss the construction of a 90 percent
confidence interval for g if 8 is known.

6.74. Threeindependent random samples, each of size 6, are drawn from three
normal distributions having common unknown variance. We find the three
sample variances to be 10, 14, and 8, respectively.

(a) Compute an unbiased estimate of the common variance.
(b) Determine a 90 percent confidence interval for the common variance.

6.75. Let X;, X,, ..., X, be a random sample from N(y, ¢?).

(a) If the constant b is defined by the equation Pr (X < b) = 0.90, find the
m.l.e. of b.

(b) If ¢ is given constant, find the m.l.e. of Pr (X < ¢).

6.76. Let X,, X,,and X;and §2, $2, and S? denote the means and the variances
of three independent random samples, each of size 10, from a normal
distribution with mean u and variance a°. Find the constant ¢ so that

p ( X, + X, -2k,
r
J105% + 1082 + 108?

< c) = 0.95.

6.77. Let Y be 5(192, p). We reject Hy: p = 0.75 and accept H,:p > 0.75
if and only if Y > 152. Use the normal approximation to determine:
(@) a =Pr (Y > 152; p=0.75).
(b) B =Pr(Y < 152) when p = 0.80.

6.78. Let Y be (100, p). To test H, : p = 0.08 against H, : p < 0.08, we reject
H, and accept H, if and only if Y < 6.
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(a) Determine the significance level a of the test.
(b) Find the probability of the type II error if in fact p = 0.04.

6.79. Let X, X,, ..., X, be a random sample from a Bernoulli distribution
with parameter p. If p is restricted so that we know that < p < 1, find the
m.l.e. of this parameter.

6.80. Consider two Bernoulli distributions with unknown parameters p, and
P2, respectively. If Y and Z equal the numbers of successes in two
independent random samples, each of sample size n, from the respective
distributions, determine the maximum likelihood estimators of p, and p, if
we know that 0 < p, < p, < 1.

681. Let (X}, Y)), (X3, Y,),...,(X,, Y,) be ni.i.d. pairs of random vari-
ables, each with the bivariate normal distribution having five par-
ameters yu,, u,, 61, o2, and p. .

(a) Show that Z, = X, — Y, is N(u, ¢?), where u = u, — pt, and ¢ = a3 —
2p00,+a3,i=1,2,...,n

(b) Since all five parameters are unknown, y and ¢? are unknown. To test
Hy:u=0(Hy: u, = u,) against H,: u > 0 (H, : 4) > u), construct a
t-test based upon the mean and the variance of the n differences
Z\,,2Z,,...,2Z, This is often called a paired t-test.



	6 Introduction to Statistical Inference
	6.1 Point Estimation
	6.2 Confidence
	6.3 Confidence Intervals for Difference of Means
	6.4 Tests of Statistical Hypotheses
	6.5 Additional Comments About Statistical Tests
	6.6 Chi-Square Tests


