Name _____

Student Number _____

STA 260 S 2020 Test 1A

Tutorial Section (Circle One)

TUT0101	TUT0102	TUT0103	TUT0104
Tues. 3-4	Tues. 4-5	Wed. 5-6	Wed. 5-6
IB 200	IB 200	IB 220	IB 200
Dashvin	Karan	Marie	Karan
TUT0105	TUT0106	TUT0107	TUT0108
Wed. 6-7	Fri. 3-4	Fri. 4-5	Fri. 5-6
DV 1148	IB 200	IB 200	IB 200
Karan	Michael	Michael	Marie

Question	Value	Score		
1	20			
2	20			
3	20			
4	20			
5	20			
Total = 100 Points				

1. (20 points) The continuous random variable X has density $f_X(x) = -\ln(x) I(0 < x < 1)$. Let $Y = -\ln(X)$. Find the density $f_Y(y)$. Show your work and **circle your final answer**.

- 2. (20 points) Let X_1, \ldots, X_n be independent discrete random variables with probability mass function $p_X(x|\theta) = \theta I(x = 3) + (1 \theta) I(x = 5)$. A proposed estimator is $\widehat{\Theta}_n = \frac{1}{2}(5 \overline{X}_n)$.
 - (a) Is $\widehat{\Theta}_n$ unbiased? Write **Biased**, **Unbiased** or **Impossible to answer**, and show your work. If it's impossible to answer, explain why.

(b) Is $\widehat{\Theta}_n$ consistent? Write **Consistent**, **Not consistent** or **Impossible to answer**, and show your work. If it's impossible to answer, explain why.

- 3. Let X_1, \ldots, X_n be independent but *not* identically distributed random variables, with $X_i \sim \text{Gamma}(\alpha, \lambda_i)$. The parameter α is unknown, while $\lambda_1, \ldots, \lambda_n$ are known constants. A proposed estimator is $\hat{\alpha}_n = \frac{1}{n} \sum_{i=1}^n \lambda_i X_i$.
 - (a) (8 points) Is $\hat{\alpha}_n$ unbiased? Write **Biased**, **Unbiased** or **Impossible to answer**, and show your work. If it's impossible to answer, explain why.

(b) (12 points) Is $\hat{\alpha}_n$ consistent? Write **Consistent**, **Not consistent** or **Impossible to answer**, and show your work. If it's impossible to answer, explain why.

- 4. Let X_1, \ldots, X_n be a random sample from a Normal (μ, σ^2) distribution.
 - (a) (15 points) Find the distribution of the sample mean \overline{X}_n . Show your work. Circle the final answer, which includes the parameters of the distribution.

Continue your answer to Question 4a if necessary.

(b) (5 points) State the distribution of $W = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}$, including the parameters. Justify your answer by quoting a single fact from the formula sheet.

- 5. Let X_1, \ldots, X_n be a random sample from a Normal $(\mu, \sigma^2 = 4)$ distribution. The expected value μ is unknown, but the variance is known to be $\sigma^2 = 4$.
 - (a) (15 points) Derive an *exact* $(1 \alpha)100\%$ confidence interval for μ . Exact means the probability that the interval will contain μ is *exactly* 1α , and you are *not* using the Central Limit Theorem. You are also not using the *t* distribution, because that's after Test One. Your final answer is two formulas, one for the upper confidence limit, and one for the lower confidence limit. Show your work. **Circle the formulas.**

Continue Question 5a if necessary.

(b) (5 points) Still for the normal model with unknown μ and $\sigma^2 = 4$, a random sample of size n = 125 yields a sample mean of $\overline{x}_n = 18.2$. Give a 95% confidence interval for μ . Your answer is a pair of numbers, a lower confidence limit and an upper confidence limit. **Circle your answer**.