STA 260s20 Assignment Ten: More Estimation¹

The following homework problems are not to be handed in. They are preparation for the final exam. Please try each question before looking at the solution. Use the formula sheet.

- 1. Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution with parameter θ .
 - (a) Give a one-dimensional sufficient statistic for θ . Show your work and circle your answer.
 - (b) Calculate your sufficient statistic for the following set of data: 1 0 1 0 0. Your answer is a single number; circle it. My answer is 2, but yours may be different and still correct, if you arrived at another sufficient statistic.
- 2. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter λ .
 - (a) Give a one-dimensional sufficient statistic for λ . In addition to being sufficient, your answer must also be an unbiased estimator. Show your work and circle your answer. You do not need to prove that your estimator is unbiased.
 - (b) Calculate your sufficient statistic for the following set of data: 14 10 8 8. Your answer is a single number; circle it. My answer is 10.
- 3. Let X_1, \ldots, X_n be a random sample from a Gamma distribution with parameters $\alpha = \theta$ and $\lambda = \frac{1}{2}$.
 - (a) Give a one-dimensional sufficient statistic for θ .
 - (b) Calculate your sufficient statistic for the following set of data: 0.706 2.154 2.367 4.039 2.155 1.678. Your answer is a single number; circle it. My answer is 52.57288, but yours may be different and still correct, if you arrived at another sufficient statistic.
- 4. Let X_1, \ldots, X_n be a random sample from a uniform distribution with parameters L and R.
 - (a) Give a two-dimensional sufficient statistic for (L, R). Show your work and circle your answer.
 - (b) Calculate your sufficient statistic for the following set of data: 5.103 6.400 5.415 4.198 4.817 5.907. Your answer is a pair of numbers; circle them. My answer is (4.198, 6.4), but yours may be different and still correct, if you arrived at another sufficient statistic.

¹Copyright information is at the end of the last page.

- 5. Let X_1, \ldots, X_n be a random sample from a normal distribution with parameters μ and σ^2 .
 - (a) Give a two-dimensional sufficient statistic for (μ, σ^2) . In addition to being sufficient, your statistics must also be unbiased estimators. Show your work and circle your answer. You do not need to prove that your estimators are unbiased.
 - (b) Calculate your sufficient statistic for the following set of data: 100.3 100.6 96.5 99.3 104.1. Your answer is a pair of numbers; circle them. My answer is (100.16, 7.468).
- 6. Let X_1, \ldots, X_n be a random sample from a distribution with density

$$f(x|\theta,\delta) = \frac{1}{\theta}e^{-\frac{x-\delta}{\theta}}I(x \ge \delta),$$

where $\theta > 0$ and δ is any real number.

- (a) Give a two-dimensional sufficient statistic for (θ, δ) . Show your work and circle your answer.
- (b) Calculate your sufficient statistic for the following set of data: 11.03 10.34 11.26 10.02 10.42 10.58. Your answer is a pair of numbers; circle them. My answer is (63.65, 10.02), but yours may be different and still correct, if you arrived at another sufficient statistic.
- 7. Let X_1, \ldots, X_n be a random sample from a discrete distribution with probability mass function $p(x|\theta)$. Show that $E(\ell'(\theta, \mathbf{X})) = 0$. Assume that $\frac{\partial}{\partial \theta}$ can be passed through summation signs with respect to x; this is a "regularity condition". Start with $E\left(\frac{\partial}{\partial \theta} \ln p(X_i|\theta)\right)$.
- 8. Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution with parameter θ .
 - (a) Suggest a reasonable estimator of θ ; call it $\widehat{\Theta}_n$. Is $\widehat{\Theta}_n$ an unbiased estimator of θ ? Just answer Yes or No.
 - (b) What is $Var(\widehat{\Theta}_n)$? Show a little work this time.
 - (c) Find the Cramér-Rao lower bound on the variance for this problem.
 - (d) Comparing the variance of $\widehat{\Theta}_n$ to the Cramér-Rao lower bound, is $\widehat{\Theta}_n$ a Minimum Variance Unbiased Estimator? Answer Yes or No.

- 9. Let X_1, \ldots, X_n be a random sample from a normal distribution with $\mu = 0$ and unknown variance $\theta > 0$. Consider the Method of Moments estimator $\widehat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$.
 - (a) Is $\widehat{\Theta}_n$ an unbiased estimator? Show your work and answer Yes or No.
 - (b) What is $Var(\widehat{\Theta}_n)$? Hint: What is the distribution of $\frac{1}{\theta} \sum_{i=1}^n X_i^2$?
 - (c) Find the Cramér-Rao lower bound on the variance for this problem.
 - (d) Comparing the variance of $\widehat{\Theta}_n$ to the Cramér-Rao lower bound, is $\widehat{\Theta}_n$ a Minimum Variance Unbiased Estimator?
- 10. Let X_1, \ldots, X_n be a random sample from a Geometric distribution with parameter θ .
 - (a) Derive the maximum likelihood estimate of θ . Show your work. The answer is a formula. Don't bother with the second derivative test.
 - (b) A sample of size n = 100 yields $\overline{x}_n = 0.85$. Give the MLE and a 95% confidence interval for θ . The MLE is a number, and the confidence interval is a pair of numbers, a lower confidence limit and an upper confidence limit. Use the Central Limit Theorem for MLEs.
- 11. As in Question 9, suppose we have data from a normal distribution with mean zero and variance θ . A random sample of size n = 120 yields $\sum_{i=1}^{n} x_i^2 = 480.38$. Please obtain a 95% confidence interval for θ in two ways.
 - (a) Using the Central Limit Theorem for MLEs. This gives you an *approximate* 95% confidence interval.
 - (b) Using the chi-squared distribution. This yields an *exact* confidence interval.

The two intervals should be fairly close.

12. Since the model of Question 9 is so appealing, consider these two test statistics for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

(a) $Y = \frac{1}{\theta_0} \sum_{i=1}^n X_i^2$ Reject when $Y \ge \chi_{1-\alpha}^2(n)$ (b) $Z_n = \frac{\sqrt{n}(\widehat{\Theta}_n - \theta)}{\sqrt{1/I(\theta_0)}}$ Reject when $Z_n \ge z_{1-\alpha}$

Find the power of each test for $H_0: \theta \leq 4$ and n = 120 when the true value of θ is 4.25. For each test, show your work and use R to obtain the power, a number between zero and one. Include the R command in your answer; it's very short, like pnorm(something).

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/260s20