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Law of Large Numbers

Infinite Sequence of random variables

T, Ty, ...

We are interested in what happens to T,, as n — oc.
Why even think about this?
For fun.

And because T;, could be a sequence of statistics, numbers
computed from sample data.

For example, T}, = X,, = %Z?:l X;.

n is the sample size.

n — oo is an approximation of what happens for large
samples.

Good things should happen when estimates are based on
more information.



Law of Large Numbers

Convergence

o Convergence of T;, as n — oo is not an ordinary limit,
because probability is involved.

o There are several different types of convergence.

o We will work with convergence in probability and
convergence in distribution.



Law of Large Numbers

Convergence in Probability to a random variable

Definition: The sequence of random variables X7, Xo, ... is said
to converge in probability to the random variable Y if for all
€>0, lim P{|X, —Y]|>e} =0, and we write X,, 2 V.

n—oo

I Xn —Y|<e & —e<X,-Y<e
& Y—e< X, <Y +e€




Law of Large Numbers

Convergence in Probability to a constant

More immediate applications in statistics: We will focus on this.

Definition: The sequence of random variables 717,75, ... is said
to converge in probability to the constant ¢ if for all € > 0,

lim P{|T,, —c| > €} =0

n—o0

. P
and we write T;,, — c.

T, —cl<e & —e<T,—c<e
S c—e<T,<c+e




Law of Large Numbers

Example: T}, ~ U(—+, 1)

n’n
Convergence in probability means lim,—, P{|T, —c| > €} =0

Ty is uniform on (—1,1). Height of the density is 2.

%) Height of the density is 1
l) Height of the density is 5
Eventually, 1 < ¢ and P{|T, — 0| > €} =0, forever.

Eventually means for all n > %

° 1
e Tj is uniform on (—3,
° l

T3 is uniform on (—3



Law of Large Numbers

Example: X, ..., X, are independent U(0, §)

Convergence in probability means limy,—,oc P{|T:, —c| > €} =0

For 0 <z < 6,
Fy(z) = o gdt=%.

Yn = maxl(XZ)
FYn (y) = (%)n

( | )
T x v
0— ¢ 0 0+ €

P{Yon—0l=€e} = F, (0-¢)

0—e¢
0
So the observed maximum data value goes in probability to 6,
the theoretical maximum data value.

< 1.

— 0 Dbecause



Law of Large Numbers

Markov’s inequality: Theorem 3.6.1

A stepping stone

Let Y be a random variable with P(Y > 0) = 1. Then for any
a>0,EY)>aP(Y >a).

Proof (for continuous random variables):

EY) = /OOO yf(y)dy

[ uswrans [ urway
|t

|ty

_ / y

= aPY>a) N

Y

v



Law of Large Numbers

The Variance Rule
Not in the text, I believe

Let T,T5, ... be a sequence of random variables, and let ¢
be a constant. If

e lim E(X,)=cand

n—oo

o lim Var(X,)=0

n—oo

Then T, Boe

10 /28



Law of Large Numbers

Proof of the Variance Rule
Using Markov’s inequality: F(Y) > a P(Y > a)

Seek to show Ve > 0, lim P{|T, — c¢| > €} = 0. Denote E(T,) by pin.
n—oo

In Markov’s inequality, let Y = (T}, — ¢)?, and a = €2.

E((T, —¢)?] > €éP{(T, —c)*> ¢}

= E@P{|T, —c| > €}, so
1
0 < P{T,—c|l>e} < SE[(Tn — )]
€

S BT~ o+ pin Y]

= G BI(T 1) + 2T~ ) (1 — ) + s — )]

= 6% (E(Tn — pin)? + 2(pin — &) E(Ty, — 11n) + E(pn — ¢)?)

= (BT~ o) 20— )(ET,) — 1) + (i — )
1
>

(E(Tn - Nn)2 +0+ (pn — 8)2)



Law of Large Numbers

Continuing the proof

Have
0 < P{T,—c|>¢}
1
< 5 (BT = pn)? + (40 = ©)%)
€
1
) (VGT(T”I) + (,Un - 6)2) , so that
0 < lim P{|Tn, —c| > €}
n—oo
2
< nhﬁn;o 6—2 (Var( )+ (i — €) )
L 2
= 3 (Jim Var(@) + im (o — o)
1 2
= = ( lim Var(T,) + (hm fn — lim c) >
€ n—00 "0
1
= = (0+(C—C)2) =0
Squeeze. [ |



Law of Large Numbers

The Law of Large Numbers

That is, the “Weak” Law of Large Numbers

Theorem: Let X1,..., X, be independent random variables

with expected value p and variance o2. Then the sample mean

Proof: E(X,) = p and Var(X,) :7%2

Asn — o0, E(X,) = pand Var(X,)

— 0.
So by the Variance Rule, X,, = p. |

The implications are huge.



Law of Large Numbers

Probability is long-run relative frequency
Sometimes offered as a definition of probability!

This follows from the Law of Large Numbers.
Repeat some process over and over a lot of times, and count how
many times the event A occurs. Independently for i =1,...,n,
o Let X;(s)=1if se€ A, and X;(s) =01if s ¢ A.
@ So X; is an indicator for the event A.
e X, is Bernoulli, with P(X; =1) =6 = P(A).
EX) =} jzplx)=0-(1—-60)+1-0=0.
X, is the proportion of times the event occurs in n
independent trials.

The proportion of successes converges in probability to
P(A).




Law of Large Numbers

More comments

o Law of Large Numbers is the basis of using simulation to
estimate probabilities.

Have things like 1 37 | X2 B p(X?)
In fact, + 31, g(X;) & Elg(X)]

Convergence in probability also applies to vectors of
random variables, like (X,,Y,) 2 (c1, c2).



Law of Large Numbers

Theorem
Continuous Mapping Theorem for convergence in probability

Let g(z) be a function that is continuous at = = ¢. If T, 5 ¢,
then g(T,,) 2 g(c).

Examples:

o A Geometric distribution has expected value 1%09.

g(X,) =1/(1 + X,,) converges in probability to

1 1
1+ E(X) 1+ 150

@ A Uniform(0, §) distribution has expected value 6/2. So
2X, 5 2E(X;) =28 =9
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Law of Large Numbers

Background

For the proof of the continuous mapping theorem

o T, & ¢ means that for all € > 0,

nl;n;OP{|Tn —c|>ep=0

& lim P{|T,— ¢ <e} =1
n—oo

( | )
\ | J
c— € c c+ €

@ g(x) continuous at ¢ means that for all € > 0, there exists
d > 0 such that if |z — ¢| < J, then |g(z) — g(c)| <.



Law of Large Numbers

Proof of the Continuous Mapping Theorem

For convergence in probability

Have T, 5 ¢ and g(x) continuous at ¢. Seek to show that for all € > 0,
limy, 00 P{|9(T7) — g(c)| < €} = 1. Let € > 0 be given.

g(x) continuous at ¢ means there exists § > 0 such that for s € S, if

| X (s) — | <0, then |g(X,(s)) — g(c)| < e. That is,

If sp € {s:|Xn(s) —c| <8}, then sg € {s: |g(Xn(s)) — g(c)| < €}.
This is the definition of containment:

{s:[Xn(s) —cf <0} S {s:|9(Xn(s)) —g(c)| <€}
= P(IXa | <) < P(lg(X0) — g(0)] <€) <1
= nli_)rroloP(|Xn —c/ <d) < nh—>HoloP(|g(Xn) —g(c) <e) <1

I
1

Squeeze B



Central Limit Theorem

Convergence in distribution

Another mode of convergence

Definition: Let the random variables X7, X5 ... have cumulative
distribution functions Fy (z), Fy (z)..., and let the random
variable X have cumulative distribution function F, (z). The
(sequence of) random variable(s) X, is said to converge in
distribution to X if

lim F, (z) = F,(x)

n—o00 Xn

at every point where F, (z) is continuous, and we write
X, % X

19 /28



Central Limit Theorem

Example: Convergence to a Bernoulli with p = %

lim, 0 Fyy (7) = Fyx (z) at all continuity points of Fy (z)

1/2 forz=1
Py, () =< 1/2 forz=1+1

0  Otherwise
n=1 | + '
0 1 2
n=2 e e
0 1 2
n=3 e e
0 1 2

o For z <0, limy 00 Fy (z) =0
e For 0 <z < 1, limy 00 Fy ()
o For z > 1, limy s Fy () =
e What happens at z = 0 and

20 /28



Central Limit Theorem

Convergence to a constant

Consider a “degenerate” random variable X with P(X =¢) = 1.

( | )
\ I 7

c—€ c c+ e
Suppose X,, converges in probability to c.

@ Then for any x > ¢, )y (x) — 1 for € small enough.
@ And for any z < ¢, Fy (v) — 0 for € small enough.
@ So X, converges in distribution to c.

Suppose X,, converges in distribution to ¢, so that F, (z) — 1 for all
r>cand Fy (z) — 0 for all z < c. Let e >0 be given.

P{|X,—c<e} = Plc—e<X,<c+e}
= Fy (c+e)—F, (c—¢)so
nll)rr;OPﬂXn —c<e = nh_)H;oFxn (c+e) —nlgr;oFXn (c—e)
- 1-0=1

And X,, converges in probability to c. 21/28



Central Limit Theorem

Comment

e Convergence in probability might seem redundant, because
it’s just convergence in distribution to a constant.

o But that’s only true when the convergence is to a constant.

e Convergence in probability to a non-degenerate random
variable implies convergence in distribution.

o But convergence in distribution does not imply convergence
in probability when the convergence is to a non-degenerate
variable.
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Central Limit Theorem

Big Theorem about convergence in distribution
Theorem 4.4.2 in the text

Let the random variables X1, X5 ... have cumulative
distribution functions F, (x), F_(x)... and
1 2

moment-generating functions M, (), My (?)....
Let the random variable X have cumulative distribution
function F, (z) and moment-generating function M (¢).
If

lim M, (t) = M,(t)

n—oo

for all ¢ in an open interval containing ¢ = 0, then X,, converges
in distribution to X.

The idea is that convergence of moment-generating functions
implies convergence of distribution functions. This makes sense
because moment-generating functions and distribution functions
are one-to-one.



Central Limit Theorem

Example: Poisson approximation to the binomial
We did this before with probability mass functions and it was a challenge.

Let X,, be a binomial (n, p,) random variable with p,, = %,
that n — oo and p — 0 in such a way that the value of np, = A

remains fixed. Find the limiting distribution of X,.

Recalling that the MGF of a Poisson is eMe'=1) and
(1 + %)n — e’

SO

M, (t) = (Bt +1-06)"

MGEF of Poisson(\). 24 /28



Central Limit Theorem

The Central Limit Theorem

Proved using limiting moment-generating functions

Let X1,..., X, be independent random variables from a
distribution with expected value p and variance o?. Then

VX — 1) 4

Z, =Y 4 7 L N(0,1)
g

In practice, Z, is often treated as standard normal for n > 25,
although the n required for an accurate approximation really
depends on the distribution.



Central Limit Theorem

Sometimes we say the distribution of the sample mean

is approximately normal, or “asymptotically” normal.

o This is justified by the Central Limit Theorem.

e But it does not mean that X,, converges in distribution to
a normal random variable.

e The Law of Large Numbers says that X,, converges in
probability to a constant, pu.

e So X,, converges to p in distribution as well.

e That is, X,, converges in distribution to a degenerate
random variable with all its probability at u.

26 /28



Central Limit Tt

Why would we say that for large n, the sample mean is

approximately N (u, 07—12)7

Have Z,, = M converging to Z ~ N(0,1).

Pr{X, <z} = pT{\/ﬁ(Yn—u) <x/ﬁ(w—u)}

o - o

~ pr{ < M) g (V)

g g

Suppose Y is ezactly N (pu, %2)

Pr{y <z} = pr{\/ﬁ(i—u)gj/—\/%}

_ PT{ZHS ﬁ(w—u)} :q)<\/ﬁ(:r—u))

g



Central Limit Theorem

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IATEX source code is available from the course
website:

http://www.utstat.toronto.edu/~brunner/oldclass/256£19
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