Sample Questions: Joint Distributions Part One

STA256 Fall 2019. Copyright information is at the end of the last page.

- 1. The discrete random variables x and y have joint probability mass function $p_{X,Y} = cxy$ for x = 1, 2, 3, y = 1, 2, and zero otherwise.
 - (a) Find the value of the constant c and calculate the marginal probability functions.

(b) What is $F_x(x)$?

2. The discrete random variables x and y have joint distribution

Give the following. The answers are numbers.

- (a) $F_{X,Y}(1,1)$ $F_{X,Y}(2,2)$
- (b) $F_{X,Y}(1.5,4)$ $F_{X,Y}(-1,3)$
- (c) $F_{X,Y}(4,4)$ $F_{X,Y}(6,1.82)$
- (d) $F_{X,Y}(4,19)$ $F_{X,Y}(0,0)$

	x = 1	x = 2	x = 3
y = 2	3/12	1/12	3/12
y = 1	1/12	3/12	1/12

3. A jar contains 30 red marbles, 50 green marbles and 20 blue marbles. A sample of 15 marbles is selected *with replacement*. Let X be the number of red marbles and Y be the number of blue marbles. What is the joint probability mass function of X and Y?

p(x, y) =

4. This time the selection is without replacement. Again, what is the joint probability mass function of X and Y?

p(x, y) =

5. Let
$$f_{X,Y}(x,y) = \begin{cases} c(x+y) & \text{for } 0 \le x \le 1 \text{ and } 0 \le y \le x \\ 0 & \text{otherwise} \end{cases}$$

(a) Find the constant c.

(b) What is $f_x(x)$?

6. The continuous random variables X and Y have joint cumulative distribution function

$$F_{X,Y}(x,y) = \begin{cases} x^3 - x^3 e^{-y/4} & \text{for } 0 \le x \le 1 \text{ and } y \ge 0\\ 1 - e^{-y/4} & \text{for } x > 1 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) What is $F_{_{X,Y}}(\frac{1}{2},3)$?
- (b) What is $F_{X,Y}(2,3)$?
- (c) What is $F_{X,Y}(-1,3)$?
- (d) What is $f_{X,Y}(x,y)$?

7. Still for the joint distribution with

$$F_{X,Y}(x,y) = \begin{cases} x^3 - x^3 e^{-y/4} & \text{for } 0 \le x \le 1 \text{ and } y \ge 0\\ 1 - e^{-y/4} & \text{for } x > 1 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases} \text{ and } f_{X,Y}(x,y) = \begin{cases} 3x^2 \frac{1}{4} e^{-y/4} & \text{for } 0 \le x \le 1 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

(a) Obtain $f_{_X}(x)$ by integrating out y.

(b) Calculate $F_{X}(x)$ by taking limits.

(c) Obtain $f_{\scriptscriptstyle X}(x)$ from $F_{\scriptscriptstyle X}(x)$.

For
$$F_{x,y}(x,y) = \begin{cases} x^3 - x^3 e^{-y/4} & \text{for } 0 \le x \le 1 \text{ and } y \ge 0\\ 1 - e^{-y/4} & \text{for } x > 1 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 and $f_{x,y}(x,y) = \begin{cases} 3x^2 \frac{1}{4} e^{-y/4} & \text{for } 0 \le x \le 1 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$

(d) Obtain $f_{_{Y}}(y)$ by integrating out x.

(e) Obtain $F_{\scriptscriptstyle Y}(y)$ by taking limits.

(f) Obtain $f_{_Y}(y)$ from $F_{_Y}(y)$.

8. Let
$$f_{X,Y}(x,y) = \begin{cases} 2e^{-(x+y)} & \text{for } 0 \le x \le y \text{ and } y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Obtain $f_X(x)$.

9. Let
$$f_{X,Y}(x,y) = \begin{cases} \frac{xy}{16} & \text{for } 0 \le x \le 2 \text{ and } 0 \le y \le 4 \\ 0 & \text{otherwise} \end{cases}$$

Find $P(Y < X^2)$. The answer is a number.

10. Let
$$f_{X,Y}(x,y) = \begin{cases} 4xy e^{-(x^2+y^2)} & \text{for } x \ge 0 \text{ and } y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Find P(Y > X). The answer is a number.

This handout was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

 $[\]tt http://www.utstat.toronto.edu/~brunner/oldclass/256f19$