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1This slide show is an open-source document. See last slide for copyright
information.
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Joint Distributions: The idea

A single random variable is a measurement conducted on
the elements of the sample space.

More than one measurement can be taken on the same
s ∈ S.

For example, X is height, and Y is weight.

Of course more than two measurements are possible.

Most real data sets have dozens of measurements on each
sampling unit.

Technically, a pair of jointly distributed random variables
is a function from S to R2.
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Probability

As with single random variables, the joint probability

distribution of a set of random variables comes from the

underlying probability distribution defined on the subsets of S.

P ((X, Y ) ∈ C) = P {s ∈ S : (X(s), Y (s)) ∈ C}
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Joint Cumulative Distribution Functions

Whether X and Y are discrete or continuous, their joint

distribution is defined by

F (x, y) = P{X ≤ x, Y ≤ y}
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Joint Probability Function
Probability Mass Function

p(x, y) = P (X = x, Y = y)
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Example

The discrete random variables X and Y have joint distribution

x = 1 x = 2 x = 3

y = 1 3/12 1/12 3/12
y = 2 1/12 3/12 1/12

What is P (Y = 1)? pY (1) = 3
12 + 1

12 + 3
12 = 7

12

What is P (Y = 2)? pY (2) = 1
12 + 3

12 + 1
12 = 5

12

What is P (X = 2)? pX (2) = 1
12 + 3

12 = 4
12
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Marginal distributions

x = 1 x = 2 x = 3 pY (y)

y = 1 3/12 1/12 3/12 7/12
y = 2 1/12 3/12 1/12 5/12

pX (x) 4/12 4/12 4/12 1.00

Give the marginal distribution of Y .

pY (y) =



7
12 for y = 1

5
12 for y = 2

0 Otherwise

Notation: pX,Y (1, 2) = 1/12
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In general

pX (x) =
∑

y pX,Y (x, y)

pY (y) =
∑

x pX,Y (x, y)

Two-dimensional, three-dimensional marginals etc. are
obtained by summing over the other variables.

Implicitly, the summation is over values where the joint
probability is non-zero.

pX (x) =
∑

{y: p(x,y)>0}

p(x, y)
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Multinomial Distribution
Begin with an example

A six-sided die is rolled n times.

The die is not necessarily fair.

Probabilities are θj for j = 1, . . . , 6.

Want probability of n1 ones, . . . , n6 sixes.

The probability of any particular string is
θn1
1 θn2

2 θn3
3 θn4

4 θn5
5 θn6

6 .

How many ways are there to choose n1 positions for the
ones, n2 positions for the twos, etc.?(

n
n1 ··· n6

)
= n!

n1! ··· n6!
, so

P (X1 = n1, X2 = n2, . . . , X6 = n6) =

(
n

n1 · · · n6

)
θn1
1 · · · θ

n6
6
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Multinomial Distribution in General

p(n1, . . . , nr) =


(

n
n1 ··· nr

)
θn1
1 · · · θnr

r for (n1, . . . , nr) ∈ A

0 Otherwise

where (n1, . . . , nr) ∈ A means

nj ≥ 0 for j = 1, . . . , r and∑r
j=1 nj = n.

If we count the number of people (in a random sample) in r
different occupational categories, the multinomial is a
reasonable model for the counts.
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Continuous Jointly Distributed Random Variables

Joint density of (X,Y ) is not a curve, but a surface.

x

y

D
ensity

Probability is volume rather than area.

This is multivariable calculus.

We need a quick lesson.
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Partial Derivatives

x

y

z

z = F(x,y)

Think of holding x fixed at some value, disregarding all other
points.

Literally slice the surface with a plane at x.

The cut mark on the surface is a function of y.

It’s just F (x, y) treating x as a fixed constant.

You can differentiate that function.
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Vocabulary: “Partial derivatives”

Consider a function of several variables, like g(x1, x2, x3).

Differentiate with respect to one of the variables, treating
the others as fixed constants.

Call the result a partial derivative.
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Notation for partial derivatives

∂
∂x2

g(x1, x2, x3) or ∂f
∂x2

means differentiate g(x1, x2, x3) with
respect to x2, holding x1 and x3 constant.

∂2

∂x1∂x2
g(x1, x2, x3) or ∂2f

∂x1∂x2
means first differentiate with

respect to x2 holding x1 and x3 constant, and then
differentiate the result with respect to x1, holding x2 and
x3 constant.

When the derivatives are continuous functions, order of
partial differentiation does not matter.
∂2

∂x2
1
g(x1, x2, x3) or ∂2f

∂x2
1

means differentiate twice with

respect to x1, holding x2 and x3 constant.
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Example: g(x1, x2) = x2
1e

7x2

∂g

∂x1
= 2x1e

7x2

∂2g

∂x1∂x2
=

∂

∂x1
x217e

7x2

= 14x1e
7x2

∂2g

∂x22
=

∂

∂x2
x217e

7x2

= 7x21
∂

∂x2
e7x2

= 49x21e
7x2
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Multiple integration

∫ ∫
A
f(x, y) dx dy is the volume under the surface f(x, y), over

the region A in the x, y plane.

∫ b

a

∫ d

c
f(x, y) dx dy =

∫ b

a

(∫ d

c
f(x, y) dx

)
dy

Recipe:

Do the inner integral first, integrating from c to d, and
treating y as a fixed constant.

Then integrate the resulting function of y, from a to b.

This yields volume under the surface f(x, y), sitting over
the region defined by c < x < d and a < y < b.
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Multiple integration can be pretty mechanical∫ b

a

(∫ d

c

f(x, y) dx

)
dy

Do the innermost integral first and work your way out,
treating the other variables as constants at each step.

If you are integrating over finite intervals, switch order of
integration freely.

If the quantity being integrated is non-negative, you may
switch order of integration and the result is the same, even
if the answer is “infinity.” Thank you, Mr. Fubini.

There is one thing you often need to watch out for.
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Region of integration∫ b

a

(∫ d

c

f(x, y) dx

)
dy

If the function f(x, y) is a case function that is zero for
some values of x and y, you need to take care that you are
integrating over the correct region.

You may need to sketch the region of integration.
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Example

f (x, y) =

{
xy2 for x < y

0 elsewhere

Find

∫ 1

0

∫ 1

0
f(x, y) dy dx.

∫ 1

0

∫ 1

0
xy2 dy dx =

1

6
, but that’s not the right answer.

f(x, y) only equals xy2 for x < y.
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Sketch the region of integration
For x < y

As x goes from 0 to 1, y goes from x to 1.∫ 1

0

∫ 1

0
f(x, y) dy dx =

∫ 1

0

∫ 1

x
xy2 dy dx
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The calculation

∫ 1

0

∫ 1

0

f(x, y) dy dx =

∫ 1

0

∫ 1

x

xy2 dy dx

=

∫ 1

0

x

∫ 1

x

y2 dy dx

=

∫ 1

0

x
y3

3

∣∣∣∣1
x

dx

=
1

3

∫ 1

0

x(1− x3) dx

=
1

3

∫ 1

0

(x− x4) dx

=
1

3
(
x2

2
− x5

5
)

∣∣∣∣1
0

=
1

3
(
1

2
− 1

5
) =

1

10

And not 1
6 . More examples will be given.
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Joint CDFs

Let the continuous random variables X and Y have joint

density function f(x, y). Then

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f(s, t) dt ds

The notation extends to larger numbers of variables.

23 / 27



Joint Distributions Discrete Distributions Continuous Distributions

Fundamental Theorem of Calculus

f (x, y) =
∂2

∂x∂y
F (x, y)

At points where the derivatives exist and f(x, y) is continuous.
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Marginal distributions and densities
Integrate out the other variable(s)

f
X
(x) =

∫ ∞
−∞

f
X,Y

(x, y) dy

f
Y
(y) =

∫ ∞
−∞

f
X,Y

(x, y) dx

Analogous to pX (x) =
∑

y pX,Y (x, y)
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Show lim
y→∞

F
X,Y

(x, y) = F
X
(x).

Using: If A1 ⊆ A2 ⊆ A3 ⊆ . . . and A = ∪∞
n=1An, then lim

n→∞
P (An) = P (A)

Let

A1 = {s ∈ S : X(s) ≤ x, Y (s) ≤ 1}
A2 = {s ∈ S : X(s) ≤ x, Y (s) ≤ 2}
A3 = {s ∈ S : X(s) ≤ x, Y (s) ≤ 3}

...

A = {s ∈ S : X(s) ≤ x}

Clearly A1 ⊆ A2 ⊆ A3 ⊆ . . . and A = ∪∞k=1Ak. Then

lim
y→∞

FX,Y (x, y) = lim
n→∞

FX,Y (x, n)

= lim
n→∞

P (An)

= P (A)

= FX (x) �
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f19
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