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1This slide show is an open-source document. See last slide for copyright
information.
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Random Variable: The idea

The idea of a random variable is a measurement conducted on
the elements of the sample space.

S could be the set of Canadian households, all equally
likely to be sampled. X(s) is the number of people in
household s.

Toss a coin with P (Head) = p, three times.
S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.
X(s) is the number of Heads for outcome s.

X(s) could be one if s is employed, and zero if s is
unemployed.
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Formal Definition of a random variable

A random variable is a function from S to the set
of real numbers.

This is consistent with the idea of measurement.

It takes an element s, and assigns a numerical value to it.

This is why we were writing X(s).

Often, a random variable is denoted by X,

But it’s really the function X(s).
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Probability statements about a random variable

The probability that X(s) will take on various numerical values
is determined by the probability measure on the subsets of S.

P (X = 2) = P{s ∈ S : X(s) = 2}

P (X = x) = P{s ∈ S : X(s) = x}
There is a critical difference between capital X and little x.

P (X ∈ B) = P{s ∈ S : X(s) ∈ B}
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Example

Toss a fair coin twice.

P{HH} = P{HT} = P{TH} = P{TT} = 1
4 .

Let X equal the number of heads.

P (X = 0) = P{TT} = 1
4 .

P (X = 1) = P{HT, TH} = 1
2 .

P (X = 2) = P{HH} = 1
4 .
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Distribution of a random variable
Leaves out some technicalities

The distribution of a random variable X is the collection of
probabilities P (X ∈ B) for all B ⊆ R.
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Discrete Random Variables

The random variable X is said to be discrete if there exist
distinct x1, x2, . . . (perhaps only finitely many) with

P (X = xj) > 0 for all j, and∑∞
j=0 P (X = xj) = 1.

A better definition (for some people): The random variable
X : S → R is said to be discrete if its range is countable.
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Not all random variables are discrete

The random variable X is said to be discrete if there exist
distinct x1, x2, . . . (perhaps only finitely many) with

P (X = xj) > 0 for all j, and∑∞
j=0 P (X = xj) = 1.

Let the random variable X take values in (0, 1), with
P (X ∈ B) = length of B ∩ (0, 1). Because P (X = x) = 0 for all
real x, the random variable X is not discrete.
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Probability Function of a discrete random variable
Also called the probability mass function

Suppose the random variable X takes on the values x1, . . . , xn
or x1, x2, . . . with non-zero probability. The probability function
of X is written

p
X
(x) = P (X = x)

for all real x.

For the 2 fair coins example, pX (0) = 1
4 , pX (1) = 1

2 and
pX (2) = 1

4 .

pX (14) = 0.
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Cumulative Distribution Function

The cumulative distribution function of a random variable X is

defined by

F
X
(x) = P (X ≤ x)

Note that X is the random variable, and x is a particular
numerical value.

F (x) is defined for all real x.

F (x) is non-decreasing. This is because

If x1 < x2, {s : X(s) ≤ x1} ⊆ {s : X(s) ≤ x2}.
limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

11 / 27



Random Variables Common Discrete Distributions

Cumulative distribution function for the coin toss
example
Fig. 2.5.1 on page 65 gets only part marks. CDFs are right continuous.
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Common Discrete Distributions

The Degenerate distribution

The Bernoulli distribution

The Binomial distribution

The Geometric distribution

The Negative Binomial distribution

The Poisson distribution

The Hypergeometric distribution
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Degenerate distribution
Example 2.3.1

p
X
(x) =

{
1 for x = c

0 for x 6= c
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The Bernoulli Distribution
Example 2.3.2

Simple probability model: Toss a coin with P (Head) = θ,
one time. Let X equal the number of heads.

Probability (mass) function of X:

pX (x) =

{
θx(1− θ)1−x for x = 0 or 1
0 Otherwise

An indicator random variable equals one if some event
happens, and zero if it does not happen.

1=Female, 0=Male
1=Lived, 0=Died
1=Passed, 0=Failed

Indicators are usually assumed to have a Bernoulli
distribution.
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The Binomial Distribution
Example 2.3.3

Simple probability model: Toss a coin with P (Head) = θ.
Toss it n times. Let X equal the number of heads.

Probability (mass) function of X:

pX (x) =

{ (
n
x

)
θx(1− θ)n−x for x = 0, 1, . . . , n

0 Otherwise

The Bernoulli is a special case of the Binomial, with n = 1.
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Why does p
X

(x) =
(
n
x

)
θx(1− θ)n−x

For the Binomial Distribution?

Toss a coin n times with P (Head) = θ, and let X equal the
number of heads. Why does P (X = x) =

(
n
x

)
θx(1− θ)n−x?

The sample space is the set of all strings of n letters
composed of H and T.

By the Multiplication Principle, there are 2n elements.

If two different strings have x heads (and n− x tails), they
have the same probability.

For example, P{HHTH} = P{THHH} = θ3(1− θ) by
independence.

Count the number of ways that x positions out of n can be
chosen to have the symbol H.

n choose x is
(
n
x

)
= n!

x!(n−x)! .

So P (X = x) =
(
n
x

)
θx(1− θ)n−x �
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Geometric Distribution
Example 2.3.4

Simple probability model: Toss a coin with P (Head) = θ
until the first head appears, and then stop. Let X equal
the number of times the coin comes up tails, before the
head occurs.

Probability (mass) function of X:

pX (x) =

{
(1− θ)x θ for x = 0, 1, . . .
0 Otherwise
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Negative Binomial Distribution
Example 2.3.5

Simple probability model: Toss a coin with P (Head) = θ
until r heads appear, and then stop. Let X equal the
number of tails before observing the rth head.

First we observe r − 1 heads and x tails, in no particular
order.

Then we observe another head.

For x = 0, 1, . . ., the probability (mass) function is

pX (x) =

(
x+ r − 1

x

)
θr−1(1− θ)xθ

=

(
x+ r − 1

x

)
θr(1− θ)x

The Geometric distribution is a special case of the negative
binomial, with r = 1.
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Poisson distribution
Example 2.3.6

Useful for count data. For example,

Number of rasins in a loaf of rasin bread.

Number of alpha particles emitted from a radioactive
substance in a given time interval.

Number of calls per minute coming in to a customer service
line.

Bomb craters in London during WWII.

Number of rat hairs in a jar of peanut butter.

Number of deaths per year from horse kicks in the Prussian
army, 1878-1898.
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Conditions for the Poisson distribution

We are usually counting events that happen in an interval, or in
a region of time or space (or both).
The following are rough translations for the technical conditions
for the number of events to have a Poisson distribution.

Independent increments: The occurrence of events in
separate intervals (regions) are independent.

The probability of observing at least one event in an
interval or region is roughly proportional to the size of the
interval or region.

As the size of the region or interval approaches zero, the
probability of more than one event in the region or interval
goes to zero.

If these conditions are approximately satisfied, the probability
distribution of the number of events will be approximately
Poisson.
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Poisson Probability Function, with parameter λ > 0

p
X
(x) =

{
e−λ λx

x! for x = 0, 1, . . .

0 Otherwise

Where the parameter λ > 0.

Note

∞∑
x=0

pX (x) =

∞∑
x=0

e−λ λx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1.
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Hypergeometric Distribution
Example 2.3.7

Simple probability model: Jar with N balls, of which M
are white and N −M are black. Randomly sample n ≤ N
balls without replacement. Let X denote the number of
white balls in the sample.

Probability function of X:

pX (x) =

(
M
x

)(
N−M
n−x

)(
N
n

)
But for what values of x is this correct?
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p
X

(x) =
(M

x )(N−M
n−x )

(N
n)

For some values of x. For all other values, pX (x) = 0

Jar with N balls, M white and N −M black. Sample n ≤ N balls.
X = number of white balls selected.

Definitely 0 ≤ x ≤ n.

Look at the binomial coefficients. You cannot sample more
objects than you have.

So x ≤M . And we have x ≤ min(n,M).

Also n− x ≤ N −M ⇔ x ≥ n− (N −M)

This last restriction makes sense. Suppose the size of the sample
is greater than the number of black balls (possible). Like there
are 7 white and 3 black, and you choose 5 balls. You will get at
least 2 white balls. x ≥ n− (N −M)

x ≥ 0 and x ≥ n− (N −M), so x ≥ max[n− (N −M), 0].
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Putting it all together
The Hypergeometric Distribution

Jar with N balls, M white and N −M black. Sample n ≤ N
balls. X = number of white balls selected.

pX (x) =


(Mx )(N−M

n−x )
(Nn)

for x = max[n− (N −M), 0], . . . ,min[n,M ]

0 Otherwise

The set of values where a random variable has positive
probability is called its support.
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The big Three

The most useful discrete distributions in applications are

Bernoulli

Binomial

Poisson
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f19
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