Name _____

Student Number _____

STA 256 f2019 LEC0101 Test 2

TUT0101	TUT0102	TUT0103	TUT0104	TUT0105
Mon. 3-4	Mon. 4-5	Mon. 5-6	Mon. 6-7	Wed. 4-5
DH 2080	DH 2080	IB 360	IB 240	IB360
Ali	Dashvin	Dashvin	Ali	Marie
TUT0106	TUT0107	TUT0108	TUT0109	TUT0110
Wed. 5-6	Fri. 9-10	Fri. 10-11	Fri. 10-11	Fri. 11-12
IB 360	IB 200	DH 2070	DV 3093	DH 2070
Marie	Crendall	Ali	Cendall	Ali
TUT0111	TUT0112	TUT0113	TUT0114	TUT0115
Fri. 11-12	Fri. 12-1	Fri. 4-5	Fri. 5-6	Fri. 6-7
DV 3093	DV 2070	DV 3093	IB 360	IB 360
Crendall	Crendall	Karan	Karan	Karan
TUT0116	TUT0117			
Wed. 11-12	Wed. 12-1			
DH 2070	IB 260			
Ana	Ana			

Tutorial Section (Circle One)

Question	Value	Score	
1-5			
6			
7			
8			
9			
10			
Total = 100 Points			

Circle the alternative that is *closest* to the correct answer.

- 1. (5 points) Let X have a normal distribution with parameters $\mu = 100$ and $\sigma^2 = 400$. What is P(60 < X < 140)? Circle the letter.
 - (a) 0.0228
 - (b) 0.0456
 - (c) 0.9544
 - (d) 0.9772
- 2. (5 points) Let X have a continuous Uniform(0,1) distribution. What is P(-1/4 < X < 1/4)? Circle the letter.
 - (a) 0.00
 - (b) 0.25
 - (c) 0.50
 - (d) 0.75
- 3. (5 points) Roll two fair dice, one red and one green. Let X be the number showing on the red die and Y be the number showing on the green die. What is $F_{X,Y}(8,2)$? Circle the letter.
 - (a) 0.000
 - (b) 0.333
 - (c) 0.667
 - (d) 1.000
- 4. (5 points) Let X have a Geometric distribution with parameter $\theta = 1/4$. What is $F_X(5)$? Circle the letter.
 - (a) 0.1780
 - (b) 0.2373
 - (c) 0.7627
 - (d) 0.8220
- 5. (5 points) Let Z have a Standard Normal distribution; that is, $\mu = 0$ and $\sigma^2 = 1$. What is P(Z = -2)? Circle the letter.
 - (a) 0.0000
 - (b) 0.0228
 - (c) 0.0540
 - (d) 0.9772

6. (10 points) Let the discrete random variable X have probability function

$$p_{\scriptscriptstyle X}(x) = \left\{ \begin{array}{ll} \frac{x}{3} & {\rm for} \ x=1,2\\ 0 & {\rm Otherwise} \end{array} \right. .$$

 ${\rm Graph}\; F_{\scriptscriptstyle X}(X).$

•

7. (15 points) Let the continuous random variables X and Y have joint cumulative distribution function

$$F_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = \begin{cases} 1 - e^{-2x} - e^{-y} + e^{-(2x+y)} & \text{for } \boldsymbol{x} \ge 0 \text{ and } \boldsymbol{y} \ge 0 \\ 0 & \text{Otherwise} \end{cases}$$

Find the joint probability density function $f_{X,Y}(x,y)$. Don't forget to sprcify where it is non-zero.

8. (15 points) Let X be a continuous random variable with density $F_X(x)$ and cumulative distribution function $F_X(x)$. Prove that $\lim_{x\to\infty} F_X(x) = 1$.

Because X is specifically a continuous random variable, you are proving a special case of something on the formula sheet — so you can't use the general fact on the formula sheet. This problem is a lot easier if you use the fact that X is continuous.

- 9. Let $X \sim \text{Gamma}(\alpha, \lambda)$, and let Y = X/9.
 - (a) (12 points) Find $f_Y(y)$, the probability density of Y. Show your work. Do not forget to specify where the density is non-zero.

(b) (3 points) Y has a Gamma distribution with (fill in the blanks)

 $\alpha_y =$ and $\lambda_y =$

10. (20 points) Let the continuous random variables X and Y have joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{xy}{2} & \text{for } 0 \le x \le y \le 2\\ 0 & \text{Otherwise} \end{cases}$$

Find the marginal density $f_{X}(x)$. Show your work. Be sure to specify where the density is non-zero.