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Law of Large Numbers Central Limit Theorem

Infinite Sequence of random variables

T1, T2, . . .

We are interested in what happens to Tn as n→∞.

Why even think about this?

For fun.

And because Tn could be a sequence of statistics, numbers
computed from sample data.

For example, Tn = Xn = 1
n

∑n
i=1Xi.

n is the sample size.

n→∞ is an approximation of what happens for large
samples.

Good things should happen when estimates are based on
more information.
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Law of Large Numbers Central Limit Theorem

Convergence

Convergence of Tn as n→∞ is not an ordinary limit,
because probability is involved.

There are several different types of convergence.

In this class, we will work with convergence in probability
and convergence in distribution.
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Law of Large Numbers Central Limit Theorem

Convergence in Probability

Definition: The sequence of random variables T1, T2, . . . is said
to converge in probability to the constant c if for all ε > 0,

lim
n→∞

P{|Tn − c| ≥ ε} = 0

Observe

|Tn − c| < ε ⇔ −ε < Tn − c < ε

⇔ c− ε < Tn < c+ ε

c
( )

c− ε c+ ε
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Law of Large Numbers Central Limit Theorem

Example: Tn ∼ U(− 1
n ,

1
n)

Convergence in probability means limn→∞ P{|Tn − c| ≥ ε} = 0

c
( )

c− ε c+ ε

T1 is uniform on (−1, 1). Height of the density is 1
2 .

T2 is uniform on (−1
2 ,

1
2). Height of the density is 1.

T3 is uniform on (−1
3 ,

1
3). Height of the density is 3

2 .

Eventually, 1
n < ε and P{|Tn − 0| ≥ ε} = 0, forever.

Eventually means for all n > 1
ε .
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Law of Large Numbers Central Limit Theorem

Example: X1, . . . , Xn are independent U(0, θ)
Convergence in probability means limn→∞ P{|Tn − c| ≥ ε} = 0

For 0 < x < θ,

Fxi(x) =
∫ x
0

1
θ dx = x

θ .

Yn = maxi(Xi).

Fyn(y) =
(
x
θ

)n
θ

( )
θ − ε θ + ε

P{|Yn − θ| ≥ ε} = Fyn(θ − ε)

=

(
θ − ε
θ

)n
→ 0 because

θ − ε
θ

< 1.

So the observed maximum data value goes in probability to θ,
the theoretical maximum data value.
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Law of Large Numbers Central Limit Theorem

The Law of Large Numbers

Theorem: Let X1, . . . , Xn be independent random variables
with expected value µ and variance σ2. Then Xn = 1

n

∑n
i=1Xi

converges in probability to µ.

This is not surprising, because E(Xn) = µ and

V ar(Xn) = σ2

n

V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2
V ar

(
n∑
i=1

Xi

)

=
1

n2

n∑
i=1

V ar(Xi)

=
1

n2

n∑
i=1

σ2 =
1

n2
nσ2 =

σ2

n
↓ 0.

And the implications are huge.
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Law of Large Numbers Central Limit Theorem

Probability is long-run relative frequency

This follows from the Law of Large Numbers.
Repeat some process over and over a lot of times, and count how
many times the event A occurs. Independently for i = 1, . . . , n,

Let Xi(ω) = 1 if ω ∈ A, and Xi(ω) = 0 if ω /∈ A.

So Xi is an indicator for the event A.

Xi is Bernoulli, with P (Xi = 1) = p = P (A).

E(Xi) =
∑1

x=0 x p(x) = 0 · (1− p) + 1 · p = p.

Xn is the proportion of times the event occurs in n
independent trials.

The proportion of successes converges in probability to
P (A).

p
( )

p− ε p+ ε
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Law of Large Numbers Central Limit Theorem

Proof of the Law of Large Numbers
Using E(Xn) = µ and V ar(Xn) = σ2

n

Chebyshev’s inequality says P (|X − µ| ≥ kσ) ≤ 1
k2

Here, X is replaced by Xn and σ is replaced by σ√
n

.

So Chebyshev’s inequality becomes
P (|Xn − µ| ≥ k σ√

n
) ≤ 1

k2
.

k > 0 is arbitrary, so set kσ√
n

= ε.

Then k = ε
√
n
σ and 1

k2
= σ2

ε2n
.

Thus,

0 ≤ P{|Xn − µ| ≥ ε} ≤ σ2

ε2n
↓ 0

Squeeze. �
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Law of Large Numbers Central Limit Theorem

Theorem
Proof omitted in 2018

Let g(x) be a function that is continuous at x = c. If Tn
converges in probability to c, then g(Tn) converges in
probability to g(c).

Examples:

A Geometric distribution has expected value 1/p. 1/Xn

converges in probability to 1/E(Xi) = p.

A Uniform(0, θ) distribution has expected value θ/2. 2Xn

converges in probability to 2E(Xi) = 2 θ2 = θ.
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Law of Large Numbers Central Limit Theorem

Convergence in distribution
Another mode of convergence

Definition: Let the random variables X1, X2 . . . have cumulative
distribution functions F1(x), F2(x) . . ., and let the random
variable X have cumulative distribution function F (x). The
(sequence of) random variable Xn is said to converge in
distribution to X if

lim
n→∞

Fn(x) = F (x)

at every point where F (x) is continuous.

12 / 21



Law of Large Numbers Central Limit Theorem

Example: Convergence to a Bernoulli with p = 1
2

limn→∞ Fn(x) = F (x) at all continuity points of F (x)

pn(x) =


1/2 for x = 1

n
1/2 for x = 1 + 1

n
0 Otherwise

n = 1
0 1 2

••

n = 2
0 1 2

••

n = 3
0 1 2

••

For x < 0, limn→∞ Fn(x) = 0
For 0 < x < 1, limn→∞ Fn(x) = 1

2
For x > 1, limn→∞ Fn(x) = 1
What happens at x = 0 and x = 1 does not matter.
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Law of Large Numbers Central Limit Theorem

Convergence to a constant

Consider a “degenerate” random variable X with P (X = c) = 1.

c

( )

c− ε c+ ε
Suppose Xn converges in probability to c.

Then for any x > c, Fn(x)→ 1 for ε small enough.

And for any x < c, Fn(x)→ 0 for ε small enough.

So Xn converges in distribution to c.

Suppose Xn converges in distribution to c, so that Fn(x)→ 1 for
x > c and Fn(x)→ 0 for x < c. Let ε > 0 be given.

P{|Xn − c| < ε} = Fn(x+ ε)− Fn(x− ε) so

lim
n→∞

P{|Xn − c| < ε} = lim
n→∞

Fn(x+ ε)− lim
n→∞

Fn(x− ε)

= 1− 0 = 1

And Xn converges in distribution to c.
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Law of Large Numbers Central Limit Theorem

Comment

Convergence in probability might seem redundant, because
it’s just convergence in distribution to a constant.

But that’s only true when the convergence is to a constant.

Convergence in probability to a non-degenerate random
variable implies convergence in distribution.

But convergence in distribution does not imply convergence
in probability when the convergence is to a non-degenerate
variable.
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Law of Large Numbers Central Limit Theorem

Big Theorem about convergence in distribution
Book calls it the “Continuity Theorem”

Let the random variables X1, X2 . . . have cumulative
distribution functions F1(x), F2(x) . . . and moment-generating
functions M1(t),M2(t) . . .. Let the random variable X have
cumulative distribution function F (x) and moment-generating
function M(t). If

lim
n→∞

Mn(t) = M(t)

for all t in an open interval containing t = 0, then Xn converges
in distribution to X.

The idea is that convergence of moment-generating functions
implies convergence of distribution functions.
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Law of Large Numbers Central Limit Theorem

Example: Poisson approximation to the binomial
We did this before with probability mass functions and it was a challenge.

Let Xn be a binomial (n, pn) random variable with pn = λ
n , so

that n→∞ and p→ 0 in such a way that the value of n pn = λ
remains fixed. Find the limiting distribution of Xn.

Recalling that the MGF of a Poisson is eλ(e
t−1) and(

1 + x
n

)n → ex,

Mn(t) = (pet + 1− p)n

=

(
λ

n
et + 1− λ

n

)n
=

(
1 +

λ(et − 1

n

)n
→ eλ(e

t−1)

MGF of Poisson(λ).
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Law of Large Numbers Central Limit Theorem

The Central Limit Theorem

Let X1, . . . , Xn be independent random variables from a
distribution with expected value µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

converges in distribution to Z ∼ Normal(0,1).

In practice, Zn is often treated as standard normal for n > 25,
although the n required for an accurate approximation really
depends on the distribution.
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Law of Large Numbers Central Limit Theorem

Sometimes we say the distribution of the sample mean
is approximately normal, or “asymptotically” normal.

This is justified by the Central Limit Theorem.

But it does not mean that Xn converges in distribution to
a normal random variable.

The Law of Large Numbers says that Xn converges in
probability to a constant, µ.

So Xn converges to µ in distribution as well.

That is, Xn converges in distribution to a degenerate
random variable with all its probability at µ.
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Law of Large Numbers Central Limit Theorem

Why would we say that for large n, the sample mean is
approximately N(µ, σ

2

n )?

Have Zn =
√
n(Xn−µ)

σ converging to Z ∼ N(0, 1).

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose Y is exactly N(µ, σ
2

n ):

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤ x− µ
σ/
√
n

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)

20 / 21



Law of Large Numbers Central Limit Theorem

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f18
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