Joint Distributions: Part Two!
STA 256: Fall 2018

1This slide show is an open-source document. See last slide for copyright
information.



Overview

© Independence

© Conditional Distributions

© Transformations



Independence

Independent Random Variables

Discrete or Continuous

The random variables X and Y are said to be independent if

For all real x and y.
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Theorem (for discrete random variables)

Recalling independence means Fyy(z,y) = Fu(z)Fy(y)

The discrete random variables X and Y are independent if and
only if

Pay(T,y) = pe(x) Py(y)

for all real x and y.
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Theorem (for continuous random variables)

Recalling independence means Fyy(z,y) = Fu(z)Fy(y)

The continuous random variables X and Y are independent if

and only if
fa:y(xa y) — fx(x) fy(y)

for all real x and y.
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Conditional Distributions

Conditional Distributions

Of discrete random variables

If X and Y are discrete random variables, the conditional
probability mass function of X given Y = y is just a conditional
probability. It is given by

PX =zlY =y) =

These are just probabilities of events. For example,

PX=2Y=y)=Plwe: X(w)=zand Y(w) =y}

We write

zly) = pm,y(m7 y)
pat|y( |y) py(y)

Note that p,|,(z[y) is defined only for y values such that
py(y) > 0.



Conditional Distributions

Conditional Probability Mass Functions
Both ways

_ 7y<$7 y)
py\x(y|x) px(ili)

 DaylT,y)
pa:ly(x’y) — py(y)

Defined where the denominators are non-zero.



Conditional Distributions

Independence makes sense

In terms of conditional probability mass functions

Suppose X and Y are independent. Then
pmy(xa y) = px(x)py(y)7 and

Pzy ('1/" y)
Py (y)
P (2)py(y)
Py (y)
= pa(x)

Paly(zly) =

So we see that the conditional distribution of X given Y =y is
identical for every value of y. It does not depend on the value of

Y.



Conditional Distributions

The other way

Suppose the conditional distribution of X given Y = y does not
depend on the value of y. Then

pz|y(x‘y) = p:c(x)

_ pl’,y(xvy)

= px(ﬂf) B py(y)

& Pay(@,y) = () py(y)

So that X and Y are independent.



Conditional Distributions

Conditional distributions of continuous random

variables

If X and Y are continuous random variables, the conditional
probability density of X given Y =y is

_ fay(2,9)

o Note that f,(z|y) is defined only for y values such that
fy(y) > 0.

o It looks like we are conditioning on an event of probability
zero, but the conditional density is a limit of a conditional
probability, as the radius of a tiny region surrounding
(z,y) goes to zero.
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Conditional Distributions

Conditional Probability Density Functions

Both ways

Fuplaly) = 22D

Defined where the denominators are non-zero.
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Conditional Distributions

Independence makes sense

In terms of conditional densities

Suppose X and Y are independent. Then
fay(2,y) = fo() fy(y), and

Fagfaly) = L)
fy(y)

= fz(2)

And we see that the conditional density of X given Y =y is
identical for every value of y. It does not depend on the value of

Y.



Conditional Distributions

The other way

Suppose the conditional density of X given Y =y does not
depend on the value of y. Then

fx|y(x’y) = fz(x)
& fola) = Ltot)

fy(y)
~ fx,y(xyy) = fo(2) fy(?/)

So that X and Y are independent.



Transformations of Jointly Distributed Random

Variables

Let Y = g(Xi,...,X,). What is the probability distribution
of Y7
For example,

@ X is the number of jobs completed by employee 1.
@ X, is the number of jobs completed by employee 2.
@ You know the probability distributions of X; and Xo.

@ You would like to know the probability distribution of
Y = X7 + Xo.
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Transformations

Convolutions of discrete random variables

o Let X and Y be discrete random variables.
@ The standard case is where they are independent.
o Want probability mass function of Z = X + Y.

p=(2)

P(Z = 2)
P(X+Y =2z)

Y P(X+Y =zX =2)P(X =2)

Y Pla+Y =z2X =2)P(X =)

ZP =z—z|X =2)P(X =x)

ZP =z—1)P(X
mea:pyz—x)
X

= z) by independence



Transformations

Summarizing
Convolutions of discrete random variables

Let X and Y be independent discrete random variables, and

Z=X+Y.

p:(2) = pr(x)py(z — )
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Two Important results

Proved using the convolution formula

e Let X ~ Poisson(A;) and Y ~ Poisson(A2) be independent.
Then Z = X +Y ~ Poisson(A\; + A2).

e Let X ~ Binomial(ni,p) and Y ~ Binomial(ng, p) be
independent. Then Z = X + Y ~ Binomial(n; + ng, p)
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Convolutions of continuous random variables

o Let X and Y be continuous random variables.
o The standard case is where they are independent.
o Want probability density function of Z = X + Y.

f(z) = %P(Z < z)
d
= @P(X +Y < 2)



Continuing . . .

iP(X—}—Y < 2)

/ / jTy x,y) dy dz

t=y+zx y=t—zx dy=dt

Y ‘t:y—l—x
Z—x z

—00

—0

x,t—x)dt
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Still continuing, have

fz) = / / foy(,t — ) di d
_ dz/x/_oofxy(x,t—m)dxdt
= /wa(x,z—x)dx

= / fa(x) fy(z —x)dx if X and Y are independent.
—00



Compare

For continuous random variables:

re - [ " @)z — o) da

For discrete random variables:

p-(2) = pr(a:)py(z — )

Of course you need to pay attention to the limits of integration
or summation, because f,(z)f,(z — ) may be zero for some z.



Transformations

Two Important results for continuous random variables

Proved using the convolution formula

o Let X and Y be independent exponential random variables
with parameter A > 0. Then
Z=X+Y ~ Gamma(a = 2, \).

e Let X ~ Normal(p,01) and Y ~ Normal(uz, o02) be
independent. Then

Z=X4+Y ~ Normal(m + pg, /0% —i—o%).



The Jacobian Method

e X; and X5 are continuous random variables.
o Y1 = g1(X1, Xp) and Vs = go(X1, Xo).
o Want fy,4,(y1,92)
Solve for z1 and xg, obtaining z1(y1,y2) and z2(y1,y2). Then

(2251 oz,

dyr
Sorga (Y1, 92) = farwa (1(y15 92), 22(y1, y2) ) - abs Z aiz
ayl 8y2

The determinant ' = ad — be.

b
d

a
C



Transformations

More about the Jacobian method
Yi =01 (1Y1,X2) and }’2 = gQ(AYl, 4‘{3)

o It follows directly from a change of variables formula in
multi-variable integration. The proof is omitted.

e It must be possible to solve y; = g1(z1,z2) and
y2 = go(x1,x2) for z1 and .

e That is, the function g : R? — R? must be one to one
(injective).

o Frequently you are only interested in Y7, and
Ys = g2(X1, X2) is chosen to make reverse solution easy.

o The partial derivatives must all be continuous, except
possibly on a set of probability zero (they almost always
are).

o It extends naturally to higher dimension.



Transformations

Change from rectangular to polar co-ordinates
By the Jacobian method

A point on the plane may be represented as (z,y), or

An angle 6 and a radius r.



Transformations

Change of variables

x = rcos(0)
y = rsin(0)

x? +y =72

o As x and y range
from —oo to oo,
e 7 goes from 0 to oo

o And 6 goes from 6 to
2.



Integral [ [ foy(2,y) dody

Change of variables:

x = rcos(h)

y = rsin(f)

/OOO /OOO foy(z,y) dxdy

w/2 oo
= / / fay(rcosB,rsinf) abs
0 0

ox
o6

o0

dr do



Transformations

Evaluate the determinant
(with z = rcos(f) and y = rsin(f))

dz Oz drcos(d)  Orcos(h)
or 00 _ or 00
Oy Oy Orsin(f)  Orsin(H)
or 06 or o0

cos(f) —rsin(6)
sin(f)  rcos()

= rcos’f— —rsin®6
= 7(sin® @ + cos® 0)
= r
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So the integral is

00 o0 w/2  poo
/ / foy(x,y)dedy = / / fry(rcos®,rsind)rdrdf
0 0 0 0

@ The standard formula for change from rectangular to polar
co-ordinates is dx dy = r dr df.

o It comes from a Jacobian.

@ Other limits of integration are possible.



Transformations

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IATEX source code is available from the course
website:

http://www.utstat.toronto.edu/~brunner/oldclass/256£18
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