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Expected Value

Definition

The expected value of a discrete random variable is

E(X) = Z T pr(x)

e Provided ) |z|ps(x) < co. If the sum diverges, the
expected value does not exist.

e Existence is only an issue for infinite sums (and integrals
over infinite intervals).



Exy

1 Value

Expected value is an average

o Imagine a very large jar full of balls. This is the population.

@ The balls are numbered x1,...,xn. These are
measurements carried out on members of the population.

@ Suppose for now that all the numbers are different.

o A ball is selected at random; all balls are equally likely to
be chosen.

o Let X be the number on the ball selected.

o P(X =m;) = +.

E(X) = ) xp.(z)




Expected Value

For the jar full of numbered balls, F(X) = Z]jzvl i

This is the common average, or arithmetic mean.
Suppose there are ties.
Unique values are v;, for i =1,...,n.

Say m1 balls have value v1, and nz balls have value vz, and ...n, balls
have value wv.,.

@ Noteny +---+n, =N, and P(X =v;) = 3.
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Expected Value

Compare E(X) =", v;P(X =v;) and ) xp.(v)

o Expected value is a generalization of the idea of an average,
or mean.

o Specifically a population mean.

o It is often just called the “mean.”



Expected Value

Definition

The expected value of a continuous random variable is
%)
E(X) = r f(x)dx

—00

o Provided [*°_ || fz(x)dx < co. If the integral diverges, the
expected value does not exist.



The expected value is the physical balance
point.



Expected Value

Sometimes the expected value does not exist
Need [ |z| fz(z) dz < oo

For the Cauchy distribution, f(z) = ﬂ(%xg)
BIX) = [ el e
) (1 + 22)

o0 T
= 2/ ——dx
o m(l+z?)
w=1+ 22, du=2zdx
1 [*1
= / —du
™ )1 u
= Inul{®

= co0o—0=00

So to speak. When we say an integral “equals” infinity, we just
mean it is unbounded above.



Expected Value

Existence of expected values

o If it is not mentioned in a general problem, existence of
expected values is assumed.

e Sometimes, the answer to a specific problem is “Oops! The
expected value dies not exist.”

@ You never need to show existence unless you are explicitly
asked to do so.

o If you do need to deal with existence, Fubini’s Theorem
can help with multiple sums or integrals.

e Part One says that if the integrand is positive, the answer is
the same when you switch order of integration, even when
the answer is “‘c0.”

o Part Two says that if the integral converges absolutely, you
can switch order of integration. For us, absolute

convergence just means that the expected value exists.
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Expected Value

The change of variables formula for expected value
Theorems A and B in Chapter 4

Let X be a random variable and Y = g(X). There are two ways
to get E(Y).

@ Derive the distribution of Y and compute

E(Y) = /OO y fy (y) dy

—Oo
@ Use the distribution of X and calculate

B(g() - | " g(@) fo (o) de

—0o0

Big theorem: These two expressions are equal.



Expected Value

The change of variables formula is very general

Including but not limited to

E(9(X)) = ffooo---ffooog(xl,...,xp) Ix (@1, ... zp)dzy ... dx,
E(9(X)) =220 9(x)px (2)

E(9(X)) =30, - 2, 9215, 2p) P (21, 1)



Expected Value

Example: Let Y = aX. Find E(Y).

E@X) = Y arp,(2)

So E(aX) = aE(X).



Expected Value

Show that the expected value of a constant is the

constant.

So E(a) = a.
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B +Y) = [ [ @i e dody

— /:/_foxy(:c,y)dxdw/oo /Ooyfxy(:v,y)dxdy
E(X)+ E(Y) T



Exp

Value

Putting it together

Ela+bX +cY)=a+bE(X)+cE(Y)

And in fact,

n n

You can move the expected value sign through summation signs
and constants. Expected value is a linear transformation.



Value

Yo X)) =Y., E(X;), but in general

E(9(X)) # g(E(X))

Unless g(z) is a linear function. So for example,
B(1n(X)) # n(B(X))
E(%) # %)
E(X*) # (B(X))*

That is, the statements are not true in general. They might be
true for some distributions.



Variance

Variance of a random variable X

Let E(X) = p (The Greek letter “mu”).

Var(X)=F ((X — ,u)2)

@ The average (squared) difference from the average.
o It’s a measure of how spread out the distribution is.

o Another measure of spread is the standard deviation, the
square root of the variance.



Variance

Variance rules

Var(a+bX) = b*Var(X)

Var(X) = B(X?) — [E(X)]?



Variance

Famous Russian Inequalities
Very useful later

Because the variance is a measure of spread or dispersion, it
places limits on how much probability can be out in the tails of
a probability density of probability mass function. To see this,
we will

@ Prove Markov’s inequalty.
e Use Markov’s inequality to prove Chebyshev’s inequality.

o Look at some examples.
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Markov’s inequality

Let Y be a random variable with P(Y > 0) =1 and E(Y) = p.
Then for any ¢ > 0, P(Y >t) < E(Y)/t. Proof:

EY) = /ooyf(y)dy

— /_;yf(y)der/tooyf(y)dy
> /tooyf(y)dy

> /ooff()

_ /f ) dy

= tP(Y >1t)



Variance

Chebyshev’s inequality

Let X be a random variable with E(X) = p and Var(X) = o2,
Then for any k& > 0,

1
P(IX =yl > ko) <

@ We are measuring distance from the mean in units of the
standard deviation.

@ The probability of observing a value of X more than 2
standard deviations away from the mean cannot be more
than one fourth.

o This is true for any random variable that has a standard
deviation.

e For the normal distribution, P(|X — p| > 20) ~ .0455 < .



Variance

Proof of Chebyshev’s inequality
Markov says P(Y > t) < E(Y)/t

In Markov’s inequality, let Y = (X — u)? and t = k%02, Then

P -2zt < P10

So P(|X — u| > ko) < 5.



Variance

Example
Chebyshev says P(|X — pu| > ko) < 75

Let X have density f(z) =e™" for x > 0 (standard
exponential). We know E(X) = Var(X) = 1. Find
P(|X — pu| > 30) and compare with Chebyshev’s inequality.

F(z)=1—e¢"" forx >0, so

P(X —pu| >30) = P(X < -2)+P(X >4)
= 1-F®4)
= 674

~ 0.01831564

Compared to 3% = % =0.11.



Variance

Conditional Expectation
The idea

Consider jointly distributed random variables X and Y.

o For each possible value of X, there is a conditional
distribution of Y.

o Each conditional distribution has an expected value
(population mean).

e If you could estimate F(Y|X = x), it would be a good way
to predict Y from X.

e Estimation comes later (in STA260).



Variance

Definition of Conditional Expectation

If X and Y are discrete, the conditional expected value of Y
given X is

EY|X =2) =Y ypy(ylz)

If X and Y are continuous,

o0

E(Y|X = z) —/ Y fy(ylz) dy

—00



Variance

Double Expectation: E(Y) = E[E(Y|X)]

Theorem A on page 149

To make sense of this, note
o While E(Y|X =x) = [y f,1.(ylz) dy is a real-valued
function of x,

e E(Y|X) is a random variable, a function of the random
variable X.

o E(Y|X)=g(X) = [y fy.ylX)dy.
e So that in E[E(Y|X)] = E[g(X)], the outer expected value
is with respect to the probability distribution of X.

EIE(Y|X)] = Elg(X)
— / o) fo(2) du

—00

= /Z (/nymz(ylx) dy> fo(z) dx



Proof of the double expectation formula
Book calls it the “Law of Total Expectation”

EE(Y[X)] = /Oo (/Ooyfym(ylx)dy) Fol(z) da
_ / / fxy ,ydfm()
- /_Oo/_ooyfmy(%y)dyd:r:

I
g
)~<



Covariance

Definition of Covariance

Let X and Y be jointly distributed random variables with
E(X) = py and E(Y') = py. The covariance between X and Y
is

Cov(X,Y) = E[(X — pu.)(Y — p1)]

o If values of X that are above average tend to go woth
values of Y that are above average, the covariance will be
positive.

o If values of X that are above average tend to go woth
values of Y that are below average, the covariance will be
negative.

o Covariance means they vary together.

e You could think of Var(X) = E[(X — u,)?] as Cov(X, X).



Properties of Covariance

Cou(X,Y) = E(XY) - E(X)E(Y)
If X and Y are independent, Cov(X,Y) =0

If Cov(X,Y) =0, it does not follow that X and Y are
independent.

Cov(a+ X, b+Y)=Cov(X,Y)

Cov(aX,bY) = abCov(X,Y)
Cov(X,Y+2Z)=Cov(X,Y)+ Cov(X, Z)

Var(aX +bY) = a*Var(X) + b*Var(Y) + 2abCov(X,Y)
If Xq,...,X, areind. Var(};, X;) => 1", Var(X;)



Correlation

Cov(X,Y)

Corr(X,Y) =
( ) \/Var ) Var(Y)

e —1<p<1
e Scale free: Corr(aX,bY) = Corr(X,Y)



Covariance
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