ANSWERS TO QUIZ 4

1. (a)
$$\hat{p} = \frac{257}{484}$$

(b) 99% CI for
$$p = \hat{p} \pm 2.576 \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

= $\frac{257}{484} \pm 2.576 \sqrt{\frac{(\frac{257}{484})(\frac{227}{484})}{484}}$
= 0.5310 \pm 0.0584
= (0.4726, 0.5894)

(**Note**: ok if used $z_{0.005} = 2.575$)

(c) We are 99% sure that the population proportion of Ontario consumers who, if asked the survey question, would say they are optimistic about the economy falls between 0.4726 and 0.5894.

Minitab

Stat \rightarrow Basic Statistics \rightarrow 1 Proportion... \rightarrow Summarized data Number of trials: 484 Number of successes: 257 \rightarrow Options... \rightarrow Confidence level: 99.0

 \rightarrow Check: Use test and interval based on normal distribution \rightarrow OK \rightarrow OK

Test and CI for One Proportion

Test of p = 0.5 vs p not = 0.5 Sample X N Sample p 99.0% CI Z-Value P-Value 1 257 484 0.530992 (0.472563, 0.589421) 1.36 0.173

Ignore results for test.

2. (a)
$$\sum x = 18.58$$
, $n = 15$
 $\overline{x} = \frac{\sum x}{n} = \frac{18.58}{15} = 1.24$
(b) $\sum x^2 = 23.5368$
 $s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} = \sqrt{\frac{23.5368 - \frac{18.58^2}{15}}{14}} = 0.193164$

(c) 99% CI for
$$\mu = \overline{x} \pm t_{.005} \frac{s}{\sqrt{n}}$$

= 1.24 ± 2.977 $\frac{0.193164}{\sqrt{15}}$
= 1.24 ± 0.15
= (1.09, 1.39) millions of characters

(d) We are 99% confident that the mean number of characters printed before failure, for this particular type of printer, is somewhere between 1.09 and 1.39 millions of characters.

Minitab

Store data in C1 and name C1 'characters'.

Stat \rightarrow Basic Statistics \rightarrow 1-Sample t... \rightarrow Variables: **characters** \rightarrow Options... \rightarrow Confidence level: 99.0 \rightarrow OK \rightarrow OK

One-Sample T: characters

 Variable
 N
 Mean
 StDev
 SE Mean
 99.0% CI

 characters
 15
 1.2387
 0.1932
 0.0499
 (1.0902, 1.3871)

- 3. (a) H_0 : The insurance analyst's suspicion is false.
 - (b) $H_0: p \ge 0.40$
 - (c) H_a : The insurance analyst's suspicion is true.
 - (d) H_a : p < 0.40
- 4. (a) H_0 : Bottles of ketchup are neither underfilled nor overfilled.
 - (b) $H_0: \mu = 500$
 - (c) H_a : Bottles of ketchup are either underfilled or overfilled.
 - (d) $H_a: \mu \neq 500$