
All the Probability you need for STA220

Introduction The theory of Statistics is based firmly in Probability. In a
year-long sequence like STA257F, STA261S, the principles of probability are
throughly developed, and the transition from Probability to Statistics is so
smooth that students rarely notice when it happens.

In an elementary course like ours, the usual practice is to try to do the
same thing at a more modest level, but it just does not work. All is well
at first, with clear definitions and principles that build upon one another.
Students learn to solve some moderately challenging problems; the professor
is happy (assuming that he or she retains the capacity for happiness) and
some of the students are happy too.

Unfortunately, many of these moderately challenging problems have to do
with cards and dice and tossing coins. This is because historically, the area
of Mathematics called “Probability” arose from attempts to model games of
chance, and so that is what the simplest examples are about. Most students
(except for those who are interested in gambling or just like puzzles of any
kind) find the material quite dreary, and completely inapplicable to their
chosen fields of study.

Building the bridge between elementary Probability and Statistics takes
time, and many of the key concepts depend on Calculus (something like
MAT132Y or MAT138Y). So our text, like most, makes a quick leap. They
skip the hard part, and the material that follows makes use of only a few
very simple probability principles.

The experience of many students is that they are going along studying
cards and dice, and then suddenly they are studying something unrelated.
The material of elementary probability sits there like an undigested lump,
with no obvious relationship to either descriptive or inferential Statistics. In
this course, our solution is not to swallow that coconut in the first place. This
document will tell you all you really need to know, and you can skip Chapters
Three and Four. This way, we can cover the most important material at a
more moderate pace, and learn some things that usually come in STA221S.

Probability A statistical experiment is any procedure whose outcome is
not known in advance with certainty. A sample point is the most basic
outcome of an experiment, and the sample space is the set of sample points.
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An example, and the only game of chance that will be considered here,
is that you have a large jar filled with numbered marbles, and the marbles
are thoroughly mixed up. You select a marble from the jar without looking.

The marbles correspond to units in a population; there are N marbles
in the jar, where N is the population size. When you select marble number
1,347, you then locate population unit 1,347 and conduct some observations
or do an interview or something. Each marble is a sample point, and the
sample space is the entire set of marbles.

An event corresponds to a subset of the sample space – that is, a subset
of the marbles in the jar. For example, the marbles could correspond to the
set of students enrolled in our class, so that selecting a marble corresponds
to selecting a student. Some possible events are:

• A female student is chosen

• A student with two or more jobs is chosen

• A student with resting pulse rate over 70 beats per minute is chosen

• A student weighing over 200 kg is chosen

You can see that the definition of an “event” corresponds to a way of splitting
up the marbles (population units) into categories. By the way, these “cat-
egories” can correspond to quantitative measurements. For example, there
could be one category for each dollar amount of annual earnings, and “A
student making $18,297 is chosen” would be one event. Events may or may
not overlap. If a female student holding three jobs is chosen, we would say
that both the event “Female” and the event “Two or more jobs” occurred.

Now imagine conducting a statistical experiment a large number of times
in exactly the same way. In our main example, you would draw a marble,
look at it, put it back in the jar, mix up the marbles again and draw another,
over and over. You could easily make a frequency distribution or histogram
to describe the results of your repeated draws from the jar.

Again, we conduct a statistical experiment in the same way, a large number of
times. The probability of an event is defined as its long-run relative frequency.
This is not the most mathematically elegant definition of probability, but it
is the clearest.

In our simple example with the marbles in the jar, the long-run relative
frequency of an event is identical to the relative frequency of the event in the
population. For example,
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• If the relative frequency of females in our class is 0.55 (55%), and
we randomly selected students over and over again with replacement,
the relative frequency of the event “Female” will approach 0.55 as the
number of draws increases, and we say that the probability of choosing
a female is 0.55.

• If 22% of the class have resting pulse rates over 90 beats per minute, and
we randomly selected students over and over again with replacement,
the relative frequency of the event “Over 90 beats per minute” will
approach 0.22, and we say that the probability of choosing a student
with a resting pulse rate over 90 is 0.22.

• If 47.2% of students in the class usually take public transportation to
school, and we randomly selected students over and over again with
replacement, the relative frequency of the event “Usually takes pub-
lic transportation to school” will approach 0.472, and we say that the
probability of choosing a student who usually takes public transporta-
tion to school is 0.472.

It should be clear that

1. Because they are relative frequencies, probabilities must be between
zero and one inclusive, and

2. When a population is divided into a set of non-overlapping events
that include every member of the population, the probabilities of those
events must add up to one.

These principles apply to any statistical experiment, not just our primary
example of selecting a marble from a jar. They are all you need to solve
some problems that look fairly challenging on the surface. For example,

Consider an arbitrary sample space and two events A and B.
The probability of A is 0.5, the probability of both A and B is
0.20 and the probability of neither A nor B is 0.10. What is the
probability of B?

To solve such problems, it helps to draw a Venn Diagram, in which the
sample space is represented by a rectangle, and the events by overlapping
circles or ovals. Fill in what you know, and solve for the missing information
by making the separate pieces add up.
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Now it’s easy to see that B-not-A has probability 0.2 (so the separate pieces
add up to one), and then the probability of B is 0.2 + 0.2 = 0.4. By the
way, it is common to write the probability of an event as P (Event), so the
answer to the question could be written P (B) = 0.4.

Getting back to our prime example of sampling a marble from a jar,
let each of the N marbles in the jar represent a distinct event. Because
the physical nature of the selection procedure does not give any marble an
advantage over the others, we know that the probability of selecting each
marble must be the same. All the probabilities must add to one, so the
probability of selecting each marble must equal 1

N
.

Now one can see that the probability of any event is just the number of
marbles in the event divided by N . And for any probability problem, we
can get the probability of an event by adding the probabilities of the sample
points that make it up.

Random Variables Recall how the jar of marbles can be subdivided into
events, according to the value taken on by some variable like age or income.
The statistical experiment now consists of selecting a marble at random as
usual, and then ascertaining the value of the variable for the population unit
(person or whatever) corresponding to the marble. The resulting value of
the variable is not known in advance, and is subject to the laws of chance
because of the random selection of the marble. For this reason, it is called a
random variable. Obviously, you can make probability statements about the
observed value of a random variable. For example,
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A jar has 10 numbered balls. There are 4 ones, 3 twos, 2 threes
and 1 four. What is the probability of selecting a ball with a
number between 1.5 and 3.5?

The answer is (4+1)/10 = 1/2.
All you need to answer probability questions about a random variable is

a relative frequency histogram. Just add up relative frequencies (heights of
the bars) to get the probability of any event.

Equivalently, you can do it with symbols. We will follow the book’s
convention and use x to represent the numerical value of a random variable.
The notation p(x) represents the probability that the random variable will
equal the value x. It is often helpful to arrange the values of x and p(x) in a
tabular form to represent the probability distribution of the random variable.
The distribution from the problem above would look like this:

x 1 2 3 4
p(x) 0.4 0.3 0.2 0.1

Because p(x) values are probabilities, they must satisfy two rules:

0 ≤ p(x) ≤ 1 and
∑

p(x) = 1,

where we are summing over all value of x. To see whether a table of p(x)
could really be a probability distribution, these are the properties you need
to check.

Continuous Random Variables Our text (like almost all others) makes a
distinction between “discrete” and “continuous” random variables. Discrete
random variables are random variables that can assume only a countable
number of values. All the random variables we have been considering are
discrete, because all populations that actually exist are finite. The number of
values a random variable can assume cannot exceed the number of population
units, and so they are always countable. The p(x) notation refers specifically
to discrete random variables, not continuous ones.

But imagine a variable measured on a scale, like length, that is theo-
retically continuous. No matter how accurately you measure length, finer
accuracy is always possible in principle. Now imagine measuring such a
continuous variable with greater and greater accuracy,for an extremely large
population. Make a sequence of relative frequency histograms, with finer and
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finer subdivisions along the x axis. After a while you will no longer be able
to see the blockiness of the individual bars of the histogram. It will look like
a smooth curve. If all the relative frequency histograms are drawn so that
the area of the bars (with time height) adds to one, then the area between
the smooth curve and the x-axis will also equal one.

So, with an infinite population (just pretend, please) and finer and finer
measurement, the random variable approaches a theoretical abstraction called
a continuous random variable. The smooth curve is called its probability den-
sity function, denoted by f(x), and probabilities correspond to areas between
the smooth curve and regions of the x-axis.

Remember how the mean is the physical balance point of a discrete dis-
tribution? Well, make a thin sheet of metal shaped like the limiting relative
frequency histogram; the top is the smooth curve and the bottom is the x
axis. The physical balance point of the sheet (a point on the x axis, the
“first moment” of Physics) is called the “Expected Value” of the continuous
random variable. It is symbolized by µ, and is a model of the population
mean. Continuous random variables can have a variance too; σ2 is a quantity
proportional to the amount of energy required to spin the sheet to a given
velocity around its balance point (the “second moment” of Physics).

Now you are ready for Chapter 5. First, read the discussion of discrete
and continuous random variables on pages 174-176 in Chapter 4. Then read
Chapter 5’s Introduction and Section 5.1. Skip Section 5.2, but pay a lot of
attention to Section 5.3. Skip the rest.

6


