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Preface to the first edition

This monograph deals with a class of statistical models that
generalizes classical linear models to include many other models
that have been found useful in statistical analysis. These other
models include log-linear models for the analysis of data in the
form of counts, probit and logit models for data in the form of
proportions (ratios of counts), and models for continuous data with
constant proportional standard error. In addition, important types
of models for survival data are covered by the class.

An important aspect of the generalization is the presence in all
the models of a linear predictor based on a linear combination of
explanatory or stimulus variables. The variables may be continuous
or categorical (or indeed a mixture of the two), and the existence
of a linear predictor means that the concepts of classical regression
and analysis-of-variance models, insofar as they refer to the estim-
ation of parameters in a linear predictor, carry across directly to
the wider class of model. In particular, the ideas underlying facto-
rial models, including those of additivity, interaction, polynomial
contrasts, aliasing, etc., all appear in the wider context.

Generalized linear models have a common algorithm for the est-
imation of parameters by maximum likelihood; this uses weighted
least squares with an adjusted dependent variate, and does not
require preliminary guesses to be made of the parameter values.

The book is aimed at applied statisticians and postgraduate stu-
dents in statistics, but will be most useful, at least in part, to under-
graduates and to numerate biologists. More mathematical sections
are marked with asterisks and may be omitted at first reading.
Some mathematics has been relegated to the first four appendices,
while the fifth contains information on computer software for the
fitting of generalized linear models. The book requires the reader to
have a knowledge of matrix theory, including generalized inverses,
together with basic ideas of probability theory, including orders of

xvi



PREFACE xvii

magnitude in probability. As far as possible, however, the develop-
ment is self-contained, though necessarily fairly condensed because
of the constraints on a monograph in this series. Further reading
is given in the bibliographic sections of various chapters, and the
theory 1is illustrated with a diverse set of worked examples.

We are grateful to Professor J.V. Zidek of the University of
British Columbia and to the Natural Sciences and Engineering
Research Council, Canada, for the opportunity to undertake an
intensive spell of writing. For permission to use previously unpub-
lished data, we wish to thank Dr Graeme Newell, Lloyds Register
of Shipping, and Drs P.M. Morse, K.S. McKinlay and D.T. Spurr.
We are grateful to Miss Lilian Robertson for her careful preparation
of the manuscript.

London and Harpenden P. McCullagh
1983 J.A. Nélder



Preface

The subject of generalized linear models has undergone vigorous
development in the six years since the publication of the first edition
of this book. At the same time many of the key ideas, terminology,
notation, and so on, have diffused into the statistical mainstream,
so there is a need to make the basic material more digestible for
advanced undergraduate and graduate students who have some
familiarity with linear models. Our chief aims in preparing this
second edition have been:

1. to bring the book up to date;

2. to provide a more balanced and extended account of the core

material by including examples and exercises.

The book has therefore been extensively revised and enlarged to
cover some of the developments of the past six years. For obvious
reasons we have had to be selective in our choice of new topics.
We have tried to include only those topics that might be directly
useful to a research scientist. Within this category, though, our
choice of topics reflects our own research interests including, in
particular, quasi-likelihood functions and estimating equations,
models for dispersion effects, components of dispersion (random-
effects models), and conditional likelihoods.

The organization of the basic material in the first six chapters
follows that of the first edition, though with greater emphasis on
detail and more extensive discussion. Numerous exercises, both
theoretical and data-analytic, have been added as a supplement to
each chapter. These six chapters should provide sufficient material
for a one-quarter introductory course on generalized linear models.
The remaining chapters cover more advanced or specialized topics
suitable for a second-level course.

We are indebted to a large number of readers who, over the
past two years, have contributed to the proof-reading process:

xviii
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A.C. Atkinson, L. Friedman, M.L. Frigge, E. Iversen, J. Kolassa,
M.L. Lam, T.M. Redburg, .M. Skovgaard, M. Stein, D.L. Wallace
and W. Wong. We are especially grateful to D.R. Cox, A.C. Davi-
son, M. Drum, D. Firth, G. Glonek, V.N. Nair, D. Pregibon,
N. Reid, D.W. Schafer, S.M. Stigler, R. Tibshirani and S. Zeger for
their constructive and detailed comments on a preliminary version
of the manuscript.

We wish to thank S. Arnold, J. Streibig, P. Verrell and L. Vlee-
shouwers for permission to use previously unpublished data.

This edition has been typeset using TgX. The book includes
more than 40 figures and diagrams, which have been drawn using
PiCTEX (Wichura, 1986).

Some of the research referred to in parts of this book has been
supported in part by National Science Foundation grants over the
past three years.

Finally, the efficient secretarial help of B. Brinton, S. Malkani
and M. Nakatsuka is gratefully acknowledged.

Chicago and Harpenden P. McCullagh
April 1989 J.A. Nelder



CHAPTER 1

Introduction

1.1 Background

In this book we consider a class of statistical models that is a
natural generalization of classical linear models. Generalized linear
models include as special cases, linear regression and analysis-of-
variance models, logit and probit models for quantal responses, log-
linear models and multinomial response models for counts and some
commonly used models for survival data. It is shown that the above
models share a number of properties, such as linearity, that can be
exploited to good effect, and that there is a common method for
computing parameter estimates. These common properties enable
us to study generalized linear models as a single class, rather than
as an unrelated collection of special topics.

Classical linear models and least squares began with the work of
Gauss and Legendre (Stigler, 1981, 1986) who applied the method
to astronomical data. Their data were usually measurements of
continuous quantities such as the positions and magnitudes of the
heavenly bodies and, at least in the astronomical investigations, the
variability in the observations was largely the effect of measurement
error. The Normal, or Gaussian, distribution was viewed as a math-
ematical construct developed to describe the properties of such
errors; later in the nineteenth century the same distribution was
used to describe the variation between individuals in a biological
population in respect of a character such as height, an application
quite different in kind from its use for describing measurement
error, and leading to the numerous biological applications of linear
models.

Gauss introduced the Normal distribution of errors as a de-
vice for describing variability, but he showed that many of the
important properties of least-squares estimates depend not on Nor-
mality but on the assumptions of constant variance and indepen-

1



2 INTRODUCTION

dence. A closely related property applies to all generalized linear
models. In other words, although we make reference at various
points to standard distributions such as the Normal, binomial,
Poisson, exponential or gamma, the second-order properties of the
parameter estimates are insensitive to the assumed distributional
form: the second-order properties depend mainly on the assumed
variance-to-mean relationship and on uncorrelatedness or indepen-
dence. This is fortunate because, in applications, one can rarely be
confident that all aspects of the assumed distributional form are
correct.

Another strand in the history of statistics is the development
of methods for dealing with discrete events rather than with
continuously varying quantities. The enumeration of probabilities
for various configurations in games of cards and dice was a matter
of keen interest for gamblers in the eighteenth century. From
their pioneering work grew methods for dealing with data in the
form of counts of events. In the context of rare events, the
basic distribution is that named after Poisson. This distribution
has been applied to diverse kinds of events: a famous example
concerns unfortunate soldiers kicked to death by Prussian horses
(Bortkewitsch, 1898). The annual number of such incidents during
the period 1875-1894 was observed to be consistent with the
Poisson distribution having mean about 0.7 per corps per year.
There is, however, some variation in this figure between corps and
between years. Routine laboratory applications of the Poisson
model include the monitoring of radioactive tracers by emission
counts, counts of infective organisms as measured by the number
of events observed on a slide under a microscope, and so on.

Closely related to the Poisson model are models for the analysis
of counted data in the form of proportions or ratios of counts. The
Bernoulli distribution is often suitable for modelling the presence
or absence of disease in a patient, and the derived binomial
distribution may be suitable as a model for the number of diseased
patients in a fixed pool of patients under study. In medical and
pharmaceutical trials it is usually required to study not primarily
the incidence of a particular disease, but how the incidence is
affected by factors such as age, social class, housing conditions,
exposure to pollutants, and any treatment procedures under study.
Generalized linear models permit us to study patterns of systematic
variation in much the same way as ordinary linear models are used
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to study the joint effects of treatments and covariates.

Some continuous measurements encountered in practice have
non-Normal error distributions, and the class of generalized linear
models includes distributions useful for the analysis of such data.
The simplest examples are perhaps the exponential and gamma
distributions, which are often useful for modelling positive data
that have positively skewed distributions, such as occur in studies
of survival times.

Before looking in more detail at the history of individual in-
stances of generalized linear models, we make some general com-
ments about statistical models and the part they play in the anal-
ysis of data, whether experimental or observational.

1.1.1 The problem of looking at data

Suppose we have a number of measurements or counts, together
with some associated structural or contextual information, such
as the order in which the data were collected, which measuring
instruments were used, and other differences in the conditions
under which the individual measurements were made. To interpret
such data, we search for a pattern, for example that one measuring
instrument has produced consistently higher readings than another.
Such systematic effects are likely to be blurred by other variation of
a more haphazard nature. The latter variation is usually described
in statistical terms, no attempt being made to model or to predict
the actual haphazard contribution to each observation.

Statistical models contain both elements, which we will call
systematic effects and random effects. The value of a model is
that often it suggests a simple summary of the data in terms of the
major systematic effects together with a summary of the nature
and magnitude of the unexplained or random variation. Such a
reduction is certainly helpful, for the human mind, while it may
be able to encompass say 10 numbers easily enough, finds 100
much more difficult, and will be quite defeated by 1000 unless some
reducing process takes place.

Thus the problem of looking intelligently at data demands the
formulation of patterns that are thought capable of describing
succinctly not only the systematic variation in the data under
study, but also for describing patterns in similar data that might
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be collected by another investigator at another time and in another
place.

1.1.2 Theory as pattern

We shall consider theories as generating patterns of numbers, which
in some sense can replace the data, and can themselves be described
in terms of a small number of quantities. These quantities are called
parameters. By giving the parameters different values, specific
patterns can be generated. Thus the very simple model

y=a + fz,

connecting two quantities y and z via the parameter pair (e, 3),
defines a straight-line relationship between y and z. Suppose now
that there is some causal relationship between z and y in which z
is under control and affects y, and that y can be measured (ideally)
without error. Then if we give z the values

L1, T2y...,Tp,
y takes the values
a+ fzry, a+ fxa,..., a+ Bz,

for the assigned values @ and (3. Clearly, if we know a and 3 we
can reconstruct the values of y exactly from those of z, so that
given zi,...,Zy, the pair (o, f) is an exact summary of ¥;,...,yn
and we can move between the data and the parameters in either
direction.

In practice, of course, we never measure the ys exactly, so that
the relationship between y and z is only approximately linear.
Despite this lack of exactness, we can still choose values of & and
B, a and b say, that in some suitable sense best describe the now
approximately linear relation between y and z. The quantities
a+ bxy, a + bzx,,..., a + bz,, which we denote by §1,%92,...,9n or
f1, fi2,- .., fin, are the theoretical or fitted values generated by the
model and the data. They do not reproduce the original data values
Y1,---,Yn exactly. The pattern that they represent approximates
the data values and can be summarized by the pair (a,b).
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1.1.3 Model fitting

The fitting of a simple linear relationship between the ys and
the zs requires us to choose from the set of all possible pairs of
parameter values a particular pair (a,b) that makes the patterned
set §1,..., %, closest to the observed data. In order to make this
statement precise we need a measure of ‘closeness’ or, alternatively,
of distance or discrepancy between the observed ys and the fitted
9s. Examples of such discrepancy functions include the L;-norm

S1(9:9) = Y lvi — il
and the L,,-norm
Soo(y,§) = max |y — G-

Classical least squares, however, chooses the more convenient Ls-
norm or sum of squared deviations

Sa(y,9) = Z(yi — §:)?

as the measure of discrepancy. These discrepancy formulae have
two implications. First, the straightforward summation of individ-
ual deviations, either |y; — §;| or (31 — §:)%, each depending on
only one observation, implies that the observations are all made
on the same physical scale and suggests that the observations are
independent, or at least that they are in some sense exchangeable,
so justifying an even-handed treatment of the components. Second,
the use of arithmetic differences y; — §; implies that a given devia-
tion carries the same weight irrespective of the value of §. In sta-
tistical terminology, the appropriateness of L,-norms as measures
of discrepancy depends on stochastic independence and also on the
assumption that the variance of each observation is independent
of its mean value. Such assumptions, while common and often
reasonable in practice, are by no means universally applicable.

The discrepancy functions just described can be justified in
purely statistical terms. For instance, the classical least squares
criterion arises if we regard the z-values as fixed or non-stochastic
and the y-values are assumed to have the Normal, or Gaussian,
distribution with mean g, in which

frequency of y given u o exp{—(y — p)?/(20¢%)}, (1.1)
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where g is linearly related to = through the coefficients @ and .
The scale factor o, which is the standard deviation of y, describes
the ‘width’ of the errors when measured about the mean value. In
older statistical texts, 0.67¢ is sometimes called the probable error
in y.

We can look at the function (1.1) in two ways. If we regard it as
a function of y for fixed u, the function specifies the probability
density of the observations. On the other hand, for a given
observation y, we may regard (1.1) as a function of u giving the
relative plausibility of different values of yx for the particular value
of y observed. It was this second interpretation, known as the
likelihood function, whose value was first stressed by R.A. Fisher.
We notice that the quantity —2I, where [ is the logarithm of the
likelihood function for a sample of n independent values, is equal

to 1
2 Z(yi - mi)?

In other words, apart from the factor o2, here assumed known,
—2[ is identical to the sum-of-squares criterion. As u varies, —2I
takes its minimum value at u = 7, the arithmetic mean of the
observations. For a more complicated model in which p varies in
a systematic way from observation to observation, we define the
closest set { to be that whose values maximize the likelihood or,
equivalently, minimize —2I{. More generally, we can extend our
interest beyond the single point that minimizes —2I, to the shape
of the likelihood surface in the neighbourhood of the minimum.
This shape tells us, in Fisher’s terminology, how much information
concerning the parameters there is in the data.

Appendix A gives a concise summary of the principal properties
of likelihood functions.

Reverting to our example of a linear relationship, we can plot
on a graph with axes @ and g, the contours of equal discrepancy
—2[ for the given data y. In this particular instance, —2[ is a
quadratic function of («,3) and hence the contours are ellipses,
similar in shape and orientation, with the maximum-likelihood
estimate (a,b) situated at their centre. The information in the
data on the parameters (e, ) is given by the curvature matrix
or Hessian matrix of the quadratic. If the axes of the ellipses
are not aligned with the («, 3) axes, the estimates are said to be
correlated. The information is greatest in the direction for which
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the curvature is greatest (see Fig. 3.8). In certain circumstances,
the form of the information surface can be determined before an
experiment is carried out. In other words, the precision achievable
by a given experiment can sometimes be determined in advance
and such information can be used to compute the experimental
resources needed to estimate parameters with a required accuracy.
A similar analysis will also show the parameter combinations that
are badly estimated by the data and this information is often
valuable in choosing among possible experimental designs. Alas,
such calculations are not made nearly often enough!

1.1.4 What is a good model?

To summarize, we aim in model fitting to replace our data y with
a set of fitted values fi derived from a model. These fitted values
are chosen to minimize some criterion such as the sum-of-squares
discrepancy measure Y, (y; — f1;)?. ‘

At first sight it might seem as though a good model is one that
fits the observed data very well, i.e. that makes fi very close to
y. However, by including a sufficient number of parameters in
our model, we can make the fit as close as we please, and indeed
by using as many parameters as observations we can make the
fit perfect. In so doing, however, we have achieved no reduction in
complexity - produced no simple theoretical pattern for the ragged
data. Thus simplicity, represented by parsimony of parameters, is
also a desirable feature of any model; we do not include parameters
that we do not need. Not only does a parsimonious model enable
the research worker or data analyst to think about his data, but
one that is substantially correct gives better predictions than one
that includes unnecessary extra parameters.

An important property of a model is its scope, i.e. the range
of conditions over which it gives good predictions. Scope is hard
to formalize, but easy to recognize, and intuitively it is clear that
scope and parsimony are to some extent related. If a model is made
to fit very closely to a particular set of data, it will not be able to
encompass the inevitable changes that will be found necessary when
another set of data relating to the same phenomenon is collected.
Both scope and parsimony are related to parameter invariance, that
is to parameter values that either do not change as some external
condition changes or that change in a predictable way.
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Modelling in science remains, partly at least, an art. Some
principles do exist, however, to guide the modeller. A first, though
at first sight, not a very helpful principle, is that all models
are wrong; some, though, are more useful than others and we
should seek those. At the same time we must recognize that
eternal truth is not within our grasp. A second principle (which
applies also to artists!) is not to fall in love with one model to
the exclusion of alternatives. Data will often point with almost
equal emphasis at several possible models and it is important
that the statistician recognize and accept this. A third principle
recommends thorough checks on the fit of a model to the data, for
example by using residuals and other statistics derived from the
fit to look for outlying observations and so on. Such diagnostic
procedures are not yet fully formalized, and perhaps never will
be. Some imagination or introspection is required here in order to
determine the aspects of the model that are most important and
most suspect. Box (1980) has attempted a formalization of the
dual processes of model fitting and model criticism.

1.2 The origins of generalized linear models

1.2.1 Terminology

This section deals with the origin of generalized linear models,
describing various special cases that are now included in the class in
approximately their chronological order of development. First we
need to establish some terminology: data will be represented by a
data matrix, a two-dimensional array in which the rows are indexed
by experimental or survey units. In this context, units are the
physical items on which observations are made, for example plots
in an agricultural field trial, patients in a medical survey or clinical
trial, quadrats in an ecological study and so on. The columns of
the data matrix are the variates such as measurements or yields,
treatments, varieties, plot characteristics, patient’s age, weight,
sex and so on. Some of the variates are regarded as responses
or dependent variates, whose values are believed to be affected by
the explanatory variables or covariates. The latter are unfortu-
nately sometimes called independent variates. Tukey (1962) uses
the terms response and stimulus to make this important distinc-
tion. Covariates may be quantitative or qualitative. Quantitative
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variates take on numerical values: qualitative variates take on non-
numerical values or Jevels from a finite set of values or labels. We
shall refer to qualitative covariates as factors: such covariates in-
clude classification variables such as blocks, that serve to group the
experimental units, and treatment indicators that may in principle
be assigned by the experimenter to any of the experimental units.
Dependent variables may be continuous, or discrete (in the form of
counts), or they may take the form of factors, where the response
is one of a finite set of possible values or classes. For examples of
the latter type of response, see Chapter 5.

1.2.2 Classical linear models

In matrix notation the set of observations is denoted by a column
vector of observations y = {y1,...,yn}T. The set of covariates or
explanatory variables is arranged as an n x p matrix X. Each row
of X refers to a different unit or observation, and each column to a
different covariate. Associated with each covariate is a coeflicient
or parameter, usually unknown. The set of parameters is a vector
of dimension p, usually denoted by 8 = {fi,...,3,}T. For any
given value of B, we can define a vector of residuals

e(B) =y - Xp.

In 1805 Legendre first proposed estimating the s by minimizing
eTe = 3, e? over values of 8. [Note that both Legendre and
Gauss defined the residuals with opposite sign to that in current
use, i.e. by X8 —y.] In 1809, in a text on astronomy, Gauss
introduced the Normal distribution with zero mean and constant
variance for the errors. Later in his Theoria Combinationis in
1823, he abandoned the Normal distribution in favour of the weaker
assumption of constancy of variance alone. He showed that the
estimates of 3 obtained by minimizing the least-squares criterion
have minimum variance among the class of unbiased estimates.
The extension of this weaker assumption to generalized linear
models was given by Wedderburn (1974) using the concept of quasi-
likelihood. This extension is discussed in Chapter 9.

Most astronomical data analysed using least squares were of the
observational kind, i.e. they arose from observing a system, such
as the Solar System, without perturbing it or experimenting with
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it. The development of the theory of experimental design gave a
new stimulus to linear models and is very much associated with
R.A. Fisher and his co-workers.

1.2.3 R.A. Fisher and the design of experiments

In 1919, Fisher began work at the agricultural research station at
Rothamsted. Within 10 years, he had, among other achievements,
laid the foundations of the design of experiments, a subject that
was substantially developed by his successor, F. Yates, and others
at Rothamsted. In particular, Fisher stressed the value of factorial
experiments in which several experimental and classification factors
are studied simultaneously instead of being varied one at a time.
Thus, with two factors under study, each having two levels, the
one-at-a-time design (a) in Fig. 1.1 was replaced with the factorial
design (b). In the latter case, all combinations of the two factors
are studied.

B(2) . B(2) . .
B(1) . . B(1) . .
Al A(2 A(l A2
(a) (1) (2) ®) (1) (2)

Fig. 1.1. (a) Design for two factors, changing levels one at a time;
(b) factorial design.

The use of factorial designs increases the information per obser-
vation. Their analysis involves factorial models in which the yield
or response is considered to be expressible as the sum of effects due
to individual factors acting one at a time (main effects), effects due
to pairs of factors above and beyond their separate contributions
(two-factor interactions), and so on. Thus, the term ‘factorial’
refers to a particular class of design matrices or model matrices X.
In the case of factorial models, X is a matrix of zeros and ones only
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and is sometimes called an incidence matrix for that particular de-
sign. Factorial models are often called analysis-of-variance models
to be distinguished and contrasted with linear regression models
for which the covariates are continuous and not restricted to the
values zero and one. We shall use the terms factorial design and
linear regression model as descriptors for different kinds of model
matrices X. However, we shall try not to make a major distinction,
but rather to unify the ideas embodied in these two extremes. For
instance, we shall include terms in which the slopes defined by
regression coefficients are allowed to vary with the level of various
indexing factors.

Fisher’s influence on the development of generalized linear mod-
els extends well beyond models for factorial experiments and in-
cludes special models for the analysis of certain kinds of counts
and proportions. We now consider some of the non-classical cases
of generalized linear models that arose in the period 1922-1960.

1.2.4 Dilution assay

The original paper in this context is Fisher (1922), especially sec-
tion 12.3. A solution containing an infective organism is progres-
sively diluted and, at each dilution, a number of agar plates are
‘streaked’. On some of these plates the infective organism produces
a growth on the medium: the rest of the plates remain sterile. From
the number of sterile plates observed at each dilution, an estimate
of the concentration of infective organisms in the original solution
is made.

Assuming for simplicity that dilutions are made in powers of
two, the argument runs as follows. After z dilutions, the number
of infective organisms, p,, per unit volume is

Pz = po/2°, z=0,1,..

where pg, which we wish to estimate, is the density of infective
organisms in the original solution. Assuming that each agar plate
is streaked using a volume, v, of solution, the expected number
of organisms on any plate is p,v and, under suitable mixing
conditions, the actual number of organisms follows the Poisson
distribution with this parameter. Thus the probability that a plate
is infected is just m; = 1 — exp{—p v}, the complement of the first
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term in the Poisson series. It follows that at dilution z
log(— log(1 — wz)) = log v + log p, = logv + log po — zlog2. (1.2)

If at dilution z we have r infected plates out of m, the observed
proportion of infected plates y = r/m may be regarded as the
realization of a random variable Y satisfying

E(Y |z) = 7.

However, this time it is not the mean of Y that bears a linear
relationship to z, but instead the transformation

7 = log(—log(1 — Tz))

known as the complementary log log transformation. To make the
linear relationship explicit, we write

n = a + fz,

where « = logv + log po and § = —log 2.

In this example, we have a slope [ that is known a priori,
an intercept o that bears a simple relationship to the quantity
po that we wish to estimate, and it is not the mean of Y that
is linear in z but a known function of E(Y), in this case the
complementary log log function. For this dilution assay problem,
Fisher showed how to apply maximum likelihood to obtain an
estimator., He also used his concept of information to show
that another estimator, based solely on the number of sterile
plates over all dilutions, contained 87.7% of the information of the
maximum-likelihood estimator. Nowadays, we can use a computer
to calculate the maximum-likelihood estimate with minimal effort:
alternative simpler estimators may still retain a certain appeal,
but computational effort is no longer an important criterion for
selection. The model just described is a particular instance of a
generalized linear model. Fisher’s estimation procedure is an early
non-trivial application of maximum likelihood to a problem for
which no closed-form solution exists.
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1.2.5 Probit analysis

The technique known as probit analysis arose in connection with
bioassay, and the modern method of analysis dates from Bliss (1935).
In toxicology experiments, for example, test animals or insects are
divided into sets, usually, but not necessarily of equal sizes. Each
set of animals is subjected to a known level z of a toxin, or in
other contexts, of a stimulant or dose. The dose varies from set
to set but is assumed to be uniform within each set. For the jth
set, the number y; surviving out of the original m; is recorded,
together with the dose z; administered. It is required to model
the proportion surviving, 7, at dose = as a function of z, which is
usually measured in logarithmic units. The probit model is

Ty = Q(a + ,H.’L‘), (13)

where ®(-) is the cumulative Normal distribution function, and
and § are unknown parameters to be estimated. This model has
the virtue that it respects the property that m, is a probability
and hence must lie between 0 and 1 for all values of z and for
all parameter values. For this reason alone, it is not normally
sensible to contemplate linear models for probabilities. Note also
that if 8 > 0, the survival probability is monotonely increasing in
the applied dose: otherwise, if 3 < 0, the survival probability is
monotonely decreasing in the dose.

Because of the occurrence of y; = 0 or y; = m; at certain high
or low doses, it is not feasible to take ®~'(y;/m;) as the response
variable in order to make the model approximately linear in the
parameters. Infinite values can be avoided by using a modified
empirical transformation such as ®~'{(y; + 3)/(m; + 1)}, but the
choice of modification is to a large extent arbitrary.

Linearity in the parameters is an important aspect of the probit
model (1.3). Note however, that the linearity does not occur di-
rectly in the expression for E(Y’) in terms of z nor in E{®~!(Y/m)}
as a function of z. The linearity in question arises in the expression
for ®=1(rm,), the transformed theoretical proportion surviving at
dose z. This is the same sense in which the model for the dilu-
tion assay (1.2), is linear, although the transformations required to
achieve linearity are different in the two examples.

The probit model exhibits one further feature that distinguishes
it from the usual Normal-theory model, namely that the variance of
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the observed proportion surviving Y /m, is not constant but varies
in a systematic fashion as a function of # = E(Y/m). Specif-
ically, under the usual binomial assumption, Y/m has variance
m(1 — m)/m, which has a maximum at m = 0.5. Generalized linear
models accommodate unequal variances through the introduction
of variance functions that may depend on the mean value through
a known function of the mean.

1.2.6 Logit models for proportions

Dyke and Patterson (1952) published an analysis of some cross-
classified survey data concerning the proportion of subjects who
have a good knowledge of cancer. The recorded explanatory vari-
ables were exposures to various information sources, newspapers,
radio, solid reading, lectures. All combinations of these explana-
tory variables occurred in the sample, though some combinations
occurred much more frequently than others. A factorial model was
postulated in which the logit or log odds of success, log{r/(1—7)} is
expressed linearly as a combination of the four information sources
and interactions among them. Success in this context is interpreted
as synonymous with ‘good knowledge of cancer’. Dyke and Patter-
son were successful in finding a suitable model of this kind, though
the fitting, which was done manually, took several days. Similar
computations done today take only a few seconds.

Dyke and Patterson’s application of the linear logistic model was
to survey data. Linear logistic models had earlier been used in the
context of bioassay experiments (see, for example, Berkson, 1944,
1951).

1.2.7 Log-linear models for counts

The analysis of counted data has recently given rise to an extensive
literature mainly based on the idea of a log-linear model. In such
a model, the two components of the classical linear model are
replaced in the following way:

Classical Log-linear
linear model model
Systematic effects additive multiplicative

Nominal error distribution Normal Poisson
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The Poisson distribution is the nominal distribution for counted
data in much the same way that the Normal distribution is the
bench-mark for continuous data. Such counts are assumed to
take the values 0,1,2,... without an upper limit. The Poisson
distribution has only one adjustable parameter, namely the mean
i, which must be positive. Thus the mean alone determines the
distribution entirely. By contrast, the Normal distribution has two
adjustable parameters, namely the mean and variance, so that the
mean alone does not determine the distribution completely.

Since the Poisson mean is required to be positive, an additive
model for y is normally considered to be unsatisfactory. All linear
combinations = Y B;x; become negative for certain parameter
combinations and covariate combinations. Hence, although g =
Y_ Bjxz; may be found to be adequate over the range of the data,
it is often scientifically dubious and logically unsatisfactory for
extrapolation. In the model with multiplicative effects, we set
u = exp(n) and 75 rather than u obeys the linear model. This
construction ensures that u remains positive for all 7 and hence
positive for all parameter and covariate combinations.

The ideas taken from factorial design and regression models
carry over directly to log-linear models except that the effects or
parameters of interest are contrasts of log frequencies. For the
purpose of explanation and exposition, such contrasts are usually
best back-transformed to the original frequency scale and expressed
as multiplicative effects.

It often happens with counted data that one of the classifying
variables, rather than the counts themselves, is best regarded as
the response. In this case, the aim usually is to model the way
in which the remaining explanatory variables affect the relative
proportions falling in the various categories of response. Normally,
we would not aim to model the total numbers of respondents as
a function of the response variables, but only the way in which
these respondents are distributed across the k response categories.
In this context, it is natural to consider modelling the errors by
the multinomial distribution, which can be regarded as a set of
k independent Poisson random variables subject to the constraint
that their total is fixed. The relationship between Poisson log-
linear models and multinomial response models is discussed further
in section 6.4. It is possible, though not always desirable, to handle
multinomial response models by using a suitably augmented log-
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linear model.

Routine use of log-linear models has had a major impact on
the analysis of counted data, particularly in the social sciences.
Both log-linear and multinomial response models are special cases
of generalized linear models and are discussed further in Chapters

4 to 6.

1.2.8 Inverse polynomials

Polynomials are widely used in biological and other work for
expressing the shape of response curves, growth curves and so on.
The most obvious advantage of polynomials is that they provide
an infinite sequence of easily-fitted curves. The main disadvantage
is that in most scientific work, the response is bounded, whereas
polynomials, when extrapolated, become unbounded. Moreover,
responses are often required to be positive, whereas polynomials are
liable to become negative in certain ranges. In many applications,
for example in the context of growth curves, it is common to
find that the response approaches a plateau or asymptote as the
stimulus increases. Polynomials do not have asymptotes and hence
cannot be consistent with this known form of limiting behaviour.
Hyperbolic response curves of the form

z/y = a+ fz,

which do have asymptotes, have been used in a number of contexts
such as the Michaelis—-Menten equations of enzyme kinetics. The
inverse polynomials introduced by Nelder (1966) extend this class
of response curve to include inverse quadratic and higher-order
inverse polynomial terms. More than one covariate can be included.
Details are discussed in Chapter 8, which deals also with the case of
continuous response variables in which the coefficient of variation
rather than the variance is assumed constant over all observations.

1.2.9 Survival data

In the past 15 years or so, great interest has developed in models
for survival in the context of clinical and surgical treatments.
Similar problems, though with a rather different emphasis, occur
in the analysis of failure times of manufactured components. In
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medical experiments particularly, the data usually contain censored
individuals. Such individuals are known to have survived up
to a given time but their subsequent progress is not recorded
either because the trial ends before the outcome is known or
because the patient can no longer be contacted. In medical
trials, such patients are said to be censored or ‘lost to follow-up’.
Aitkin and Clayton (1980) and Whitehead (1980) have shown how
the analysis of censored survival data can be moulded into the
framework of generalized linear models. This transformation is
simplest to achieve when there are no time-dependent covariates:
in more complicated cases, the computations are best done with
the assistance of specially written computer programs.

1.3 Scope of the rest of the book

In Chapter 2, we outline the component processes in model fitting,
describe the components of a generalized linear model, the defini-
tions of goodness-of-fit of a model to data, a method for fitting gen-
eralized linear models and some asymptotic theory concerning the
statistical properties of the parameter estimates. Chapter 3 deals
with classical models for continuous data, in which the systematic
effects are described by a linear model and the error variances are
assumed constant and independent of the mean response. Many
of the ideas introduced in this classical context carry over with
little or no change to the whole class of generalized linear mod-
els. In particular, descriptive terms and model formulae that are
used to specify design or model matrices are equally appropriate
for all generalized linear models. The three subsequent chapters
describe models that are relevant for data in the form of counts
or proportions. Random variation in this context is often suitably
described by the Poisson, binomial or multinomial distributions:
systematic effects are assumed to be additive on a suitably chosen
scale. The scale is chosen in such a way that the fitted frequencies
are positive and the fitted proportions lie between 0 and 1. Where
response categories are ordered, models are chosen that respect
this order. Chapter 8 introduces generalized linear models for
continuous data where, instead of assuming that the variance is
constant, it is assumed instead that the coefficient of variation,
o/u, is constant. In other words, the larger the mean response, the
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greater the variability in the response. Examples are drawn from
meteorology and the insurance industry.

A major extension of the applicability of generalized linear mod-
els was made by Wedderburn (1974) when he introduced the idea of
quasi-likelihood. Wedderburn showed that often it is not necessary
to make specific detailed assumptions regarding the random vari-
ation. Instead, many of the more useful properties of parameter
estimates, derived initially from likelihood theory, can be justified
on the grounds of weaker assumptions concerning independence
and second moments alone. Specifically, it is necessary to know
how the variance of each observation changes with its mean value
but it is not necessary to specify the distribution in its entirety.
Models based on quasi-likelihood are introduced informally, where
appropriate, in earlier chapters, while in Chapter 9, a more sys-
tematic account is given.

Medical research is much concerned with the analysis of survival
times of individual patients. Different patients have different
histories and are assigned to ome of several treatments. It is
required to know how the survival time is affected by the treatment
given, making such allowance as may be required for the differing
histories of the various patients. There is a close connection
between the analysis of survival times and the analysis of, say,
S-year survival rates, The latter problem falls under the rubric
of discrete data or binary data. Such connections are exploited
in Chapter 13 in order to handle survival times in the context of
generalized linear models.

Frequently it happens that a model would fall into the linear
category if one or two parameters that enter the model in a non-
linear way were known a priori. Such models are sometimes said
to be conditionally linear. A number of extensions to conditionally
linear models are discussed in Chapter 11.

Chapter 10 discusses the simultaneous modelling of the mean
and dispersion parameters as functions of the covariates, which are
typically process settings in an industrial context.

Chapter 14 gives a brief introduction to problems in which
there are several variance components, or dispersion components,
associated with various sub-groups or populations. In this context
it is usually unrealistic to assume that the observations are all
independent.
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1.4 Bibliographic notes

The historical development of linear models and least squares
from Gauss and Legendre to Fisher has previously been sketched.
For further historical information concerning the development of
probability and statistics up to the beginning of the twentieth
century, see the book by Stigler (1986).

The term ‘generalized linear model’ is due to Nelder and Wed-
derburn (1972), who showed how linearity could be exploited to
unify apparently diverse statistical techniques.

For an elementary introduction to the subject, see the book by

Dobson (1983).

1.5 Further results and exercises 1

1.1 Suppose that Yj,...,Y; are independent and satisfy the
linear model

»
pi = E(Y;) = Zfﬂijﬁj
i=1

for given covariates z;; and unknown parameters §. Show that if
Y; has the Laplace distribution or double exponential distribution
1
Fri(yis i) = 5~ exp{—ly; — il/o’}

then the maximum-likelihood estimate of @ is obtained by mini-
mizing the L;-norm

$1(9:9) =Y lyi — il
over values of  satisfying the linear model.

1.2 In the notation of the previous exercise, show that if ¥; is
uniformly distributed over the range u; + o, maximum-likelihood
estimates are obtained by minimizing the Lo-norm,

Soo () = max|ys = Gil

Show also that linearity of the model is irrelevant for the conclu-
sions in both cases.
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1.3 Justify the conclusion of the previous two exercises that the
estimates of the regression parameters are unaffected by the value
of ¢ in both cases. Show that the conclusion does not extend to
either of the following distributions even though, in both cases, o
is a scale factor.

oy = el —p/o}
fr(v;p,0) Tt exp{(y_”)/g}}z
1

fY(lh/l,U) - 7T0'{1 + (y—H)Z/UZ}

1.4 Find the maximum-likelihood estimate of ¢ for each model.
Show that, for the models in Exercises 1.1 and 1.2, § is a function
of the minimized norm.

1.5 Suppose that X;, X, are independent unit exponential ran-
dom variables. Show that the distribution of ¥ = log(X;/X>) is

exp(y)

fr(y) = Tep@)

for —oo < y < 00.
Find the distribution of Y if the Xs have the Weibull density

fx(z) = tp(pz) " texp{~(pz)"},  pT T >0.
[Hint: first find the distribution of (pX)7.]

1.6 The probable error, 7, of a random variable Y may be defined
by
pr(|Y — M| > 1) = 0.5,
where M is the median of Y. Find the probable errors of
1. the exponential distribution;
2. the double exponential distribution (Exercise 1.1);
3. the logistic distribution (Exercise 1.3);
4, the Cauchy distribution (Exercise 1.3);
5. the Normal distribution.
Discuss briefly the differences between the probable error and
the inter-quartile range.
The historical definition of probable error appears to be vague.
Some authors take M to be the mean; others take 7 to be a multiple
(0.67) of the standard deviation.



CHAPTER 2

An outline of generalized linear
models

2.1 Processes in model fitting

In Chapter 1 we considered briefly some of the reasons for model
fitting as an aid for interpreting data. Before describing the form
of generalized linear models (GLMs) we look first at the processes
of model fitting, following closely the ideas of Box and Jenkins
(1976), which they applied to time series. Three processes are
distinguished: (i) model selection, (ii) parameter estimation and
(iii) prediction of future values. Box and Jenkins use ‘model
identification’ in place of our ‘model selection’, but we prefer to
avoid any implication that a correct model can ever be known with
certainty. In distinguishing these three processes, we do not assume
that an analysis consists of the successive application of each just
once. In practice there are backward steps, false assumptions that
have to be retracted, and so on.

We now look briefly at some of the ideas associated with each
of the three processes.

2.1.1 Model selection

Models that we select to fit to data are usually chosen from a
particular class and, if the model-fitting process is to be useful, this
class must be broadly relevant to the kind of data under study.
An important characteristic of generalized linear models is that
they assume independent (or at least uncorrelated) observations.
More generally, the observations may be independent in blocks
of fixed known sizes. As a consequence, data exhibiting the
autocorrelations of time series and spatial processes are expressly
excluded. This assumption of independence is characteristic of the

21
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linear models of classical regression analysis, and is carried over
without modification to the wider class of generalized linear models.
In Chapter 9 we look at the possibility of relaxing this assumption.
A second assumption about the error structure is that there is
a single error term in the model. This constraint excludes, for
instance, models for the analysis of experiments having more than
one explicit error term, Perhaps the simplest instance of a model
excluded by this criterion is the standard linear model for the split-
plot design, which has two error terms, one for between-whole-plot
variance and one for within-whole-plot variance. Again, we shall
later relax this restriction for certain kinds of GLMs.

In practice, these two restrictions on the form of the error dis-
tribution are less restrictive than they might appear at first sight.
For instance autoregressive models can easily be fitted using pro-
grammes designed expressly for ordinary linear models. Further,
certain forms of dependence, such as that occurring in the analysis
of contingency tables where a certain marginal total is fixed, can in
fact be handled as if the observations were independent. Similarly,
though a grouping factor corresponding to a nuisance classification
may induce correlations within groups, a within-groups analysis
after elimination of the effects of that nuisance factor can proceed
as if the observations were independent.

The choice of scale for analysis is an important aspect of model
selection. A common choice is between an analysis of Y, ie. the
original scale, or logY. To the question ‘What characterizes a
“good” scale?’ we must answer that it all depends on the purpose
for which the scale is to be used. To quote from the preface to the
first edition in Jeffreys (1961): ‘It is sometimes considered a para-
dox that the answer depends not only on the observations but on
the question; it should be a platitude’. In classical linear regression
analysis a good scale should combine constancy of variance, approx-
imate Normality of errors and additivity of systematic effects. Now
there is usually no a priort reason to believe that such a scale exists,
and it is not difficult to imagine cases in which it does not. For
instance, in the analysis of discrete data where the errors are well
approximated by the Poisson distribution, the systematic effects
are often multiplicative. Here Y2 gives approximate constancy of
variance, Y3 does better for approximate symmetry or Normality,
and log Y produces additivity of the systematic effects. Evidently,
no single scale will simultaneously produce all the desired proper-
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ties.

With the introduction of generalized linear models, scaling
problems are greatly reduced. Normality and constancy of variance
are no longer required, although the way in which the variance
depends on the mean must be known. Additivity of effects, while
still an important component of all generalized linear models,
can be specified to hold on a transformed scale if necessary. In
generalized linear models, additivity is, correctly, postulated as a
property of the expected responses. Additivity with respect to the
data themselves can only ever be a rough approximation.

There remains the problem in model selection of the choice of
z-variables (or covariates as we shall call them) to be included in
the systematic part of the model. There is a large literature on this
topic in linear models. In its simplest form, we are given a number
of candidate covariates, 1, ..., Z,, and are required to find a subset
of these that is in some sense best for constructing the fitted values

b= ijﬁj'

Implicit in the strategies that have been proposed is that there is a
balance to be struck between improving the fit to the observed data
by adding an extra term to the model and the usually undesirable
increase in complexity implicit in this extra term. Note that even
if we could define exactly what is meant by an optimum model in
a given context, it is most unlikely that the data would indicate
a clear winner among the potentially large number of competing
models. We must anticipate that, clustered around the ‘best’ model
will be a set of alternatives almost as good and not statistically
distinguishable. ~Selection of covariates is discussed at various
points in the chapters that follow, particularly in section 3.9 and
in the various examples.

2.1.2 Estimation

Having selected a particular model, it is required to estimate the
parameters and to assess the precision of the estimates. In the
case of generalized linear models, estimation proceeds by defining
a measure of goodness of fit between the observed data and the
fitted values generated by the model. The parameter estimates are
the values that minimize the goodness-of-fit criterion. We shall
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be concerned primarily with estimates obtained by maximizing the
likelihood or log likelihood of the parameters for the data observed.
If f(y;6) is the density function or probability distribution for
the observation y given the parameter 8, then the log likelihood,
expressed as a function of the mean-value parameter, u = E(Y), is
Jjust
Hp; y) = log f(y;6).

The log likelihood based on a set of independent observations
Y1y-- -, Yn 18 just the sum of the individual contributions, so that

Hp;y) = Z log fi(ys; 6;)

where g = (u),...,4n). Note that the density function f(y;8) is
considered as a function of y for fixed § whereas the log likelihood
is considered primarily as a function of § for the particular data y
observed. Hence the reversal of the order of the arguments.

There are advantages in using as the goodness-of-fit criterion,
not the log likelihood I(m;y) but a particular linear function,
namely .
D*(y;w) = 2l(y;y) — 2(m;y),
which we call the scaled deviance. Note that, for the exponential-
family models considered here, [(y;y) is the maximum likelihood
achievable for an exact fit in which the fitted values are equal to
the observed data. Because [(y;y) does not depend on the param-
eters, maximizing {(p;y) is equivalent to minimizing D*(y; u) with
respect to @, subject to the constraints imposed by the model.

For Normal-theory linear regression models with known variance
o2, we have for a single observation

1 (y— u)?
fyip) = Tana?) exp( oo )

so that the log likelihood is
u;y) = —3log(2m?) — (y — w)*/(207).

Setting i = y gives the maximum achievable log likelihood, namely
I(y;y) = —§ log(2ma?),

so that the scaled deviance function is

D*(y; 1) = 2{U(w; v) — U w)} = (y — w)?/o?.
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Apart, therefore, from the known factor o2, the deviance in this
instance is identical to the residual sum of squares and minimum
deviance is synonymous with least squares.

2.1.3 Prediction

Prediction, as interpreted here, is concerned with answers to ‘what-
if’ questions of the kind that may be posed following a statistical
analysis. In the context of a time series such a question might take
the form ‘what is the predicted value of the response at time ¢ in the
future, given the past history of the series and the model used in the
analysis?’. More generally, prediction is concerned with statements
about the likely values of unobserved events, not necessarily those
in the future. For example, following an analysis of the incidence of
heart disease nationally, the data being classified by region and age-
group, a typical ‘what-if’ question is ‘what would be the predicted
incidence for a particular city if it had the same age structure as
the country as a whole?’. This kind of prediction is an instance of
standardization. For another example, consider a quantal response
assay in which we measure the proportion of subjects responding
to a range of dose levels. We fit a model expressing how this
proportion varies with dose, and from the fitted model we predict
the dose that gives rise to a 50% response rate, the so-called
LD50. This answers the question ‘what would be the predicted
dose if the response rate were 50%?’. The word calibration is often
used here to distinguish inverse prediction problems, in which the
response is fixed and we are required to make statements about the
likely values of z, from the more usual type in which the roles are
reversed.

To be useful, predicted quantities need to be accompanied
by measures of precision. These are ordinarily calculated on
the assumption that the set-up that produced the data remains
constant, and that the model used in the analysis is substantially
correct. For an account of prediction as a unifying idea connecting
the analysis of covariance and various kinds of standardization, see
Lane and Nelder (1982).
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2.2 The components of a generalized linear model

Generalized linear models are an extension of classical linear mod-
els, so that the latter form a suitable starting point for discussion.
A vector of observations y having n components is assumed to
be a realization of a random variable Y whose components are
independently distributed with means g. The systematic part of
the model is a specification for the vector g in terms of a small
number of unknown parameters 31, ..., 3. In the case of ordinary
linear models, this specification takes the form

14
p=>_ %0, (2.1)
1

where the (s are parameters whose values are usually unknown
and have to be estimated from the data. If we let i index the
observations then the systematic part of the model may be written

P
EY)=pi=)Y azh; i=1,...,n, (2.2)
1

where x;; is the value of the jth covariate for observation i. In
matrix notation (where gisnx 1, X isn x pand Bis p x 1) we
may write

p=Xp

where X is the model matrix and B is the vector of parameters.
This completes the specification of the systematic part of the
model.

For the random part we assume independence and constant vari-
ance of errors. These assumptions are strong and need checking,
as far as is possible, from the data themselves. We shall consider
techniques for doing this in Chapter 12. Similarly, the structure
of the systematic part assumes that we know the covariates that
influence the mean and can measure them effectively without error;
this assumption also needs checking, as far as is possible.

A further specialization of the model involves the stronger as-
sumption that the errors follow a Gaussian or Normal distribution
with constant variance o2.

We may thus summarize the classical linear model in the form:
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The components of Y are independent Normal variables with
constant variance o2 and

E(Y)=pu where p=Xg (2.3)

2.2.1 The generalization

To simplify the transition to generalized linear models, we shall
rearrange (2.3) slightly to produce the following three-part specifi-
cation:

1. The random component: the components of Y have inde-
pendent Normal distributions with E(Y) = g and constant
variance 02;

2. The systematic component: covariates x;, Xz, ...,X, produce
a linear predictor 5 given by

P
n= Z x]'ﬁj?
1
3. The link between the random and systematic components:
B =1

This generalization introduces a new symbol 5 for the linear
predictor and the third component then specifies that ; and n are
in fact identical. If we write

= g(uz)v

then g(-) will be called the link function. In this formulation,
classical linear models have a Normal (or Gaussian) distribution in
component 1 and the identity function for the link in component 3.
Generalized linear models allow two extensions; first the distribu-
tion in component 1 may come from an exponential family other
than the Normal, and secondly the link function in component 3
may become any monotonic differentiable function.
We look first at the extended distributional assumption.
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2.2.2 Likelihood functions for generalized linear models

We assume that each component of Y has a distribution in the
exponential family, taking the form

fr(y:0,) = exp{(y0 — b(6)) /a($) + c(y, ¢) } (2.4)

for some specific functions a(-),b(-) and ¢(-). If ¢ is known, this is
an exponential-family model with canonical parameter 8. It may
or may not be a two-parameter exponential family if ¢ is unknown.
Thus for the Normal distribution

fr 0:0,9) = s exp{~(y ~ #)/20%)
= exp{(y — 1¥/2)/0* — $(4/? + log(2ma?)},
so that 8 = u, ¢ = 02, and
a(@) =6, b(6) =06%2, c(y,4) = —{y*/o? + log(2ma?)}.

We write [(6,¢;y) = log fy(y;0,¢) for the log-likelihood func-
tion considered as a function of § and ¢, y being given. The
mean and variance of ¥ can be derived easily from the well known

relations Y
E(%) =0 (2.5)
and . oy alN:
(302) + E(aa) =0 (26)

We have from (2.4) that

1(6;y) = {y6 — b(8)}/a(9) + c(y, $),

whence
ol ,
o5 = = ¥()}/a() (27)
and
8%l "
o = 0 (O)/a(9) (28)

where primes denote differentiation with respect to 6.
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From (2.5) and (2.7) we have

ol

0=E(g5) = {u=b0)}/a(9),

so that
E(Y)=u=1"V'0).

Similarly from (2.6), (2.7) and (2.8) we have

so that
var(Y) = b"(0)a(¢).

Thus the variance of V" is the product of two functions; one, b"'(9),
depends on the canonical parameter (and hence on the mean)
only and will be called the variance function, while the other is
independent of # and depends only on ¢. The variance function
considered as a function of g will be written V(u).

The function a{¢) is commonly of the form

o) = ¢/w,

where ¢, also denoted by 02 and called the dispersion parameter,
is constant over observations, and w is a known prior weight that
varies from observation to observation. Thus for a Normal model
in which each observation is the mean of m independent readings
we have

a(¢) = o’/m,

so that w = m.
The most important distributions of the form (2.4) with which
we shall be concerned are summarized in Table 2.1.
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2.2.3 Link functions

The link function relates the linear predictor n to the expected
value u of a datum y. In classical linear models the mean and the
linear predictor are identical, and the identity link is plausible in
that both n and p can take any value on the real line. However,
when we are dealing with counts and the distribution is Poisson,
we must have u > 0, so that the identity link is less attractive, in
part because 7 may be negative while 4 must not be. Models
for counts based on independence in cross-classified data lead
naturally to multiplicative effects, and this is expressed by the log
link, n = log u, with its inverse u = e"7. Now additive effects
contributing to n become multiplicative effects contributing to u
and u is necessarily positive.

For the binomial distribution we have 0 < g < 1 and a link
should satisfy the condition that it maps the interval (0,1) on to
the whole real line. We shall consider three principal functions in
subsequent chapters, namely:

1. logit

n =log{u/(1 -}

2. probit
n = (u);
where ®(-) is the Normal cumulative distribution function;
3. complementary log-log
n = log{—log(1 - p)}.

The power family of links is important, at least for observations
with positive mean. This family can be specified either by

n=(p*—1)/A (2.9a)
with the limiting value
n=logy; as A—0, (2.9b)
or by
A
_Iwh A#0,
n {log u; A=0. 210)

The first form has the advantage of a smooth transition as A passes
Fhrough zero, but with either form special action has to be taken
In any computation with A = 0.
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2.2.4 Sufficient statistics and canonical links

Each of the distributions in Table 2.1 has a special link function
for which there exists a sufficient statistic equal in dimension to 8
in the linear predictor § = )" x;3;. These canonical links, as they
will be called, occur when

6 =n,

where 6 is the canonical parameter as defined in (2.4) and shown
in Table 2.1. The canonical links for the distributions in that table

are thus:

Normal n=p,

Poisson 1 =logu,

binomial 7 = log{n/(1 — )},
gamma, n=up"",

inverse Gaussian n=u2

For the canonical links, the sufficient statistic is XTY in vector
notation, with components

inj)/i’ j=1""7p7
i

summation being over the units. Note however, that, although the
canonical links lead to desirable statistical properties of the model,
particularly in small samples, there is in general no a priori reason
why the systematic effects in a model should be additive on the
scale given by that link. It is convenient if they are, but convenience
alone must not replace quality of fit as a model selection criterion.
In later chapters we shall deal with several models in which non-
canonical links are used. We shall find, however, that the canonical
links are often eminently sensible on scientific grounds.
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2.3 Measuring the goodness of fit

2.3.1 The discrepancy of a fit

The process of fitting a model to data may be regarded as a way
of replacing a set of data values y by a set of fitted values f
derived from a model involving usually a relatively small number
of parameters. In general the us will not equal the ys exactly, and
the question then arises of how discrepant they are, because while
a small discrepancy might be tolerable a large discrepancy is not.
Measures of discrepancy or goodness of fit may be formed in various
ways, but we shall be primarily concerned with that formed from
the logarithm of a ratio of likelihoods, to be called the deviance.

Given n observations we can fit models to them containing
up to n parameters. The simplest model, the null model, has
one parameter, representing a common 4 for all the ys; the null
model thus consigns all the variation between the ys to the random
component. At the other extreme the full model has n parameters,
one per observation, and the us derived from it match the data
exactly. The full model thus consigns all the variation in the ys to
the systematic component leaving none for the random component.

In practice the null model is usually too simple and the full
model is uninformative because it does not summarize the data
but merely repeats them in full. However, the full model gives us a
baseline for measuring the discrepancy for an intermediate model
with p parameters.

It is convenient to express the log likelihood in terms of the
mean-value parameter g rather than the canonical parameter 8.
Let I(js,$;y) be the log likelihood maximized over B for a fixed
value of the dispersion parameter ¢. The maximum likelihood
achievable in a full model with n parameters is {(y, @#;y), which is
ordinarily finite. The discrepancy of a fit is proportional to twice
the difference between the maximum log likelihood achievable and
that achieved by the model under investigation. If we denote by
@ = 0(js) and @ = O(y) the estimates of the canonical parameters
under the two models, the discrepancy, assuming a;(¢) = ¢/w;,
can be written

S 2uwi{yi(6: — 6;) - (@) + b0}/ ¢ = D(y: /4,

where D(y; ft) is known as the deviance for the current model and
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is a function of the data only. Note that
D*(y; ) = D(y; )/ 6,
so that the scaled deviance D*(y; ) as defined in section 2.1.2 is

the deviance expressed as a multiple of the dispersion parameter.
The forms of the deviances for the distributions given in Table

2.1 are as follows, sumnmation being over i = 1,...,n:

Normal Yy - ),

Poisson 23> {ylog(y/a) — (v — )},

binomial 23 {ylog(y/a) + (m — y) log[(m—y)/(m—p)]},
gamma 23 {—log(y/a) + (y — &)/},

inverse Gaussian Y (v — 2)?/(4%y).

For the Normal distribution the deviance is just the residual sum
of squares, while for the Poisson it is the statistic labelled G% by
Bishop, Fienberg and Holland (1975) and others. The second term
in the expressions for the Poisson and gamma deviances is often
omitted for brevity. Provided that the fitted model includes a
constant term, or intercept, the sum over the units of the second
term is identically zero, justifying its omission. For details, see
Nelder and Wedderburn, (1972).

The other important measure of discrepancy is the generalized

Pearson X? statistic, which takes the form

X2 =3 "(y - A)*/V(@),
where V(f1) is the estimated variance function for the distribution
concerned. For the Normal distribution, X? is again the residual
sum of squares, while for the Poisson or binomial distributions it
is the original Pearson X? statistic.

Both the deviance and the generalized Pearson X ? have exact x?
distributions for Normal-theory linear models (assuming of course
that the model is true), and asymptotic results are available for
the other distributions. However, asymptotic results may not be
specially relevant to statistics calculated from limited amounts of
data, and for these either D or X? may prove superior in its
distributional properties. The deviance has a general advantage
as a measure of discrepancy in that it is additive for nested sets of
models if maximum-likelihood estimates are used, whereas X2 in
general is not. However, X% may sometimes be preferred because
of its more direct interpretation.



2.3 MEASURING THE GOODNESS OF FIT 35
2.3.2 The analysis of deviance

The analysis of variance, particularly when applied to orthogonal
data with Normal errors, is a highly useful technique for screen-
ing the effects of factors and their interactions. We need some
generalization of it applicable to the wider class of generalized
linear models. There are two aspects of the generalization that
need consideration: first, the terms in the model will, in general,
no longer be orthogonal and secondly, sums of squares will, for
non-Normal distributions, no longer be appropriate measures of
the contribution of a term to the total discrepancy. The second
problem is the more easily dealt with, and we consider it first.
The terms in the analysis of variance can usefully be thought of as
the first differences of the goodness-of-fit statistic for a sequence of
models, each including one term more than the previous one. Thus
the factorial model for two factors A and B gives rise to an analysis
of variance with three terms A, B and the interaction A.B. The
sums of squares for these are the first differences of the residual
sums of squares obtained from fitting successively the models 1, A,
A+ B and A+ B+ A.B, where 1 stands for the null model containing
only the intercept. As an example, consider the following analysis
of an unreplicated 4 x 3 factorial design indexed by A and B:

Analysis of variance

Model d.f. Discrepancy 8.s. d.f. Term
1 11 1000

500 3 A ignoring B

A 8 500

300 2 B eliminating A
A+ B 6 200 .

200 6 A.B eliminating
A+ B+ AB 0 0 A and B

On the left is the sequence of models with their discrepancies, as
measured by the residual sums of squares; note that the discrepancy
for model 1 is just the total sum of squares about the mean in the
analysis-of-variance table, while the last model is the full model,
i.e. has as many parameters as observations, so that the degrees
of freedom (d.f.) and the discrepancy are both zero. On the right
is the analysis-of-variance table, with the sums of squares (s.s.)
obtained from the first differences of the discrepancies.
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The form of the generalization is now clear. Given a sequence of
nested models we can use the deviance as our generalized measure
of discrepancy, and form an analysis-of-deviance table by taking the
first differences, as before. However, the interpretation of this table
is now complicated by the non-orthogonality of the terms. Each
number represents the variation accounted for by its corresponding
term having eliminated the effects of those terms above it, but
ignoring any effects of those terms below it. We may thus need to
consider several model sequences, each producing its own analysis-
of-deviance table. Note that this problem is present with classical
linear models when non-orthogonality occurs. We shall not discuss
here the various strategies that have been proposed for generating
and looking at the goodness of fit of sets of model sequences. Suffice
it to say that the aim of these strategies is to produce parsimonious
models for the data in which terms that are not necessary are
excluded. Note the use of the plural in ‘models’; it is most unlikely
with complex data that a single model will be a clear winner, and
it can be most misleading to quote only the ‘best’ model, when
several others are very close to it in terms of goodness of fit.

Once we depart from the Normal-theory linear model we gener-
ally lack an exact theory for the distribution of the deviance. In cer-
tain special cases, for example with observations in a simple design
having exponential or inverse Gaussian distributions, exact results
can be found. Usually, however, we rely on the y? approximation
for differences between deviances for nested models. See appen-
dices A and C. In some circumstances the deviance itself may be
approximated by x?, for example in discrete data problems where
the counts are large. In general, however, the x? approximations
for the deviance are not very good even as n — oo. Further work
on the asymptotic distribution of D(Y; f) remains to be done. The
analysis-of-deviance table is best regarded as a screening device for
picking out obviously important terms, no attempt being made to
assign precise significance levels to the raw deviances.
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2.4 Residuals

For Normal models we can express the dependent variate in the
form

y=ﬂ+(y_ﬂ)a

i.e. datum = fitted value + residual. Residuals can be used to ex-
plore the adequacy of fit of a model, in respect of choice of variance
function, link function and terms in the linear predictor. Residuals
may also indicate the presence of anomalous values requiring fur-
ther investigation (see Chapter 12). For generalized linear models
we require an extended definition of residuals, applicable to all the
distributions that may replace the Normal. It is convenient if these
residuals can be used for the same purposes as standard Normal
residuals.

In the following section, we use the theoretical form, involving
p rather than i, and we define three forms of generalized residual,
which we call the Pearson, Anscombe and deviance residuals.

2.4.1 Pearson residual

The Pearson residual, defined by

_ Y-
™ = \/ (u), (2.11)

is just the raw residual scaled by the estimated standard deviation
of Y. The name is taken from the fact that for the Poisson
distribution the Pearson residual is just the signed square root of
the component of the Pearson X? goodness-of-fit statistic, so that

ng = X2,

However Pearson'’s statistic is used in this book not so much as a
goodness-of-fit statistic but as a measure of residual variation.
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2.4.2 Anscombe residual

A disadvantage of the Pearson residual is that the distribution of
rp for non-Normal distributions is often markedly skewed, and so
it may fail to have properties similar to those of a Normal-theory
residual. Anscombe proposed defining a residual using a function
A(y) in place of y, where A(-) is chosen to make the distribution of
A(Y') ‘as Normal as possible’. Wedderburn (unpublished, but see
Barndorff-Nielsen, 1978) showed that, for the likelihood functions
occurring in generalized linear models, the function A(:) is given

by J
yis
4= [ gy

Thus for the Poisson distribution we have

dp

falall %/3
ulf3

_ 3
=K,

so that we base our residual on y%3 — 43, Now the transformation
that ‘Normalizes’ the probability function does not at the same
time stabilize the variance, so that we must scale by dividing by
the square root of the variance of A(Y’), which is, to the first order,
A'(1)v/V(u). Thus for the Poisson distribution the Anscombe
residual, to be denoted by 74, is given by

3 %(yZ/S _ ”2/3)
et

See Anscombe (1953) and Cox and Snell (1968) for the definition
of the corresponding residual for the binomial distribution. For the
gamma distribution the Anscombe residual takes the form

3y' — ')
Ta = T.

This cube-root transformation was used by Wilson and Hilferty
(1931) to normalize variables with a x? distribution. Similarly the
inverse Gaussian distribution gives

ra = (logy — log ) /p*?..
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Table 2.2 Comparison of Poisson residuals

TA ™ TP

¢ P -1) {2(clogc —c+ 1)} -1
0.0 -1.5 —-1.414 -1.0
0.2 —0.987 —0.956 -0.8
0.4 —0.686 —0.683 -0.6
0.6 —0.433 —0.432 -0.2
1.0 0.0 0.0 0.0
1.5 0.466 0.465 0.5
2.0 0.881 0.879 1.0
2.5 1.263 1.258 1.5
3.0 1.620 1.610 2.0
4.0 2.280 2.256 3.0
5.0 2.886 2.845 4.0
10.0 5.462 5.296 9.0

2.4.3 Deviance residual
If the deviance is used as a measure of discrepancy of a generalized

linear model, then each unit contributes a quantity d; to that
measure, so that }_ d; = D. Hence if we define

rp = sign(y — p)V/d;,

we have a quantity that increases with y; — u; and for which
S-rZ = D. Thus for the Poisson distribution we have

ro = sign(y — u){2(y log(y/p) — y + u)}2.

Although the Anscombe and deviance residuals appear to have very
different functional forms for non-Normal distributions, the values
that they take for given y and p are often remarkably similar, as is
clear from a Taylor series expansion. Consider again the Poisson
distribution and set y = cu, so that

ra = 3u!2( - 1)
and
rp = sign(c — 1)p¥?[2(clogc — ¢ + 1)) 2.

Table 2.2 shows that the two functions 3(c*® — 1) and [2(clogc —
¢+ 1)]¥2 are numerically very similar for a range of values of c.
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Within this range the maximum difference between r, and rp
is about 6% at ¢ = 0, and much less over most of the range. The
Pearson residual is considerably greater in the upper part of the
range but goes less far in the negative direction.

For a more extensive examination of definitions of residuals in
exponential-family models, see Pierce and Schafer (1986).

2.5 An algorithm for fitting generalized linear models

We shall show that the maximum-likelihood estimates of the par-
ameters # in the linear predictor 7 can be obtained by iterative
weighted least squares. In this regression the dependent variable
is not y but z, a linearized form of the link function applied to y,
and the weights are functions of the fitted values 4. The process
is iterative because both the adjusted dependent variable z and
the weight W depend on the fitted values, for which only current
estimates are available. The procedure underlying the iteration is
as follows. Let 9, be the current estimate of the linear predictor,
with corresponding fitted value iy derived from the link function
n = g(u). Form the adjusted dependent variate with typical value

20="70+(y— uo)(ZZ)

where the derivative of the link is evaluated at fig. The quadratic
weight is defined by

dn

-1

A (dﬂ) Vo, (2.12)
where V; is the variance function evaluated at fig. Now regress zg
on the covariates z1,...,z, with weight Wy to give new estimates

B1 of the parameters; from these form a new estimate 4, of the
linear predictor. Repeat until changes are sufficiently small.

Note that z is just a linearized form of the link function applied
to the data, for, to first order,

9(y) =~ g(p) + (v — wg' (1)
and the right-hand side is

dn
n+(y— u)dﬂ
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The variance of Z is just W ™! (ignoring the dispersion parameter),
assuming that n and p are fixed and known. In this formulation
the way in which the calculations for the regression are to be done
is left open; we discuss some possibilities in section 3.8.

A convenient feature of this algorithm is that it suggests a simple
starting procedure to get the iteration under way. This consists of
using the data themselves as the first estimate of fip and from this
deriving fjo, (dn/du)e and Vy. Adjustments may be required to the
data to prevent, for example, our trying to evaluate log(0) as the
starting value for 7 when the log link is applied to counts whose
value is zero. These adjustments are described in the appropriate
chapters, as will various complexities sometimes associated with
the convergence of the iterative process.

2.5.1 Justification of the fitling procedure

We first show that the maximum-likelihood equations for 3; are
given by

S W) 5z =0 (213)

for each covariate x;, where ) without a suffix denotes summation
over the units, and W is defined in equation (2.12) above.
The log likelihood for a single observation, in canonical form, is

given by
‘ I = {y0 —b(8)}/a(¢) + c(y, )

and we require an expression for 01/80;. Now, by the chain rule,

ol ol dd du On

8B; 86 du dn 8p;

From ¥'(6) = p and b"(0) = V we derive du/df = V, and from
n =3 Bjz; we get On/dP; = x;. Therefore

O _w-w s
55 a@ V"
Wi,
“ae Y ™

from (2.12).
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With constant dispersion (a(¢) = ¢), the factor a(¢) disappears
and we arrive at (2.13) after summing over the observations. With
unequal prior weights, giving a dispersion of the form ¢/w, an extra
factor w enters (2.13).

Fisher’s scoring method uses the gradient vector 0l/08 = u,
say, and minus the expected value of the Hessian matrix

say.

62
(aﬁraﬂs) A,

Given the current estimate b of 8, we derive an adjustment éb
defined as the solution of

Aéb=nu.

Now the components of u (omitting the dispersion factor) are

d
UT=ZW(y—H)£iEr,

so that
6u,
Are = ~Fap,
=—E2[y Iz 6ﬂ{ }+ —(y 1) {(2.14)

The first term vanishes on taking expectations while the second

reduces to
Z W a ﬂs Z Wz, x,.

Thus A is the weighted sums-of-squares-and-products matrix of
the covariates with weights W.
The new estimate b* = b 4 éb of # thus satisfies the equation

Ab" = Ab+ Aéb=Ab+u

Now

= Z Argbs = Z ern'
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Thus the new estimate b* satisfies

(Ab*), = Z Wz, {n+ (y — p)dn/du},

where the sum is over the n units. These equations have the form
of linear weighted least-squares equations with weight

vy

and dependent variate
dn
z=n+(y—p)5-
( du

Note that simplification occurs for the canonical links where
the expected value and the actual valye of the Hessian matrix
coincide, so that the Fisher scoring method and the Newton-
Raphson method reduce to the same algorithm. This comes about
because the linear weight function Wdn/dy in the maximum-
likelihood equations (2.13) is a constant, so that the first term
in the expansion of the Hessian (2.14) is identically zero. Note also
that W = V for this case. Finally, if the model is linear on the scale
on which Fisher’s information is constant, i.e. ¢’(u) = V_%(u), the
vector of weights is constant and need not be recomputed at each
iteration.

2.6 Bibliographic notes

The fitting of generalized linear models is accomplished here using
a variant of the Newton-Raphson method known as the scoring
method. This variation was first introduced in the context of probit
analysis by Fisher (1935) in the appendix of a paper by Bliss (1935).
Details are given by Finney (1971). For further discussion and
extensions see Green (1984) and Jgrgensen (1984).

The term ‘generalized linear model’ is due to Nelder and Wed-
derburn (1972), who extended the scoring method to deal with
maximum-likelihood estimation for exponential-family models. See
also Bradley (1973) and Jennrich and Moore (1975).
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Linear exponential family models (with canonical link) have
been studied by Dempster (1971), Berk (1972), and Haberman
(1977). For an extensive rigorous mathematical treatment see
Barndorff-Nielsen (1978). Important special cases of linear expo-
nential family models have been considered by Cox (1970) and by
Breslow (1976).

2.7 Further results and exercises 2

2.1 Let fo(y) be an arbitrary density or probability distribution
having moment generating function

M(§) = E{exp(§Y)} = exp{b(£)},

assumed finite for a range of {-values that includes 0. Now consider
the exponentially weighted density

fy (y;0) < exp(8y) fo(y)-

Derive the normalization factor for the weighted density and show
that fy(y;6) has the exponential-family form (2.4) with a(¢) = 1.

2.2 Show that the cumulants of the weighted density fy (y;6) are

given by
ke = b{(6),

whereas the cumulants of the initial density are b(")(0).

2.3 LetY),...,Y, be v independent copies of the random variable
Y having the weighted density function fy(y;8). Show that the
arithmetic mean Y = (Y + ... + Y,)/v has a density of the form
(2.4) with a(¢) = v~!. Show also that the cumulants of ¥ are

ke (V) = 0(8) /"L
Hence establish a central-limit theorem for densities of the form

(2.4). [Jgrgensen, 1987].

2.4 Discuss the limitations of the averaging operation as a way
of generating a two-parameter family of distributions suitable for
statistical work. Consider in particular the following points:
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1. parameter interpretation,

2. possible non-integer values of v,

3. dependence of the support of ¥ or vY on the parameters,
particularly where fo(y) is discrete.

2.5 Go through the calculations indicated in the previous four
exercises, beginning with the distribution fo(y), which attaches
probability one half to y = 0 and y = 1. What is the distribution
of vY'?

2.6 Beginning with the discrete distribution fo(y) o 1/y! for
y=1,2,..., derive the corresponding exponential family by going
through the calculations of Exercises 2.1-2.3. Find the cumulant
function b(#) and hence derive the likelihood equation for 0 based
on a sample of independent and identically distributed observa-
tions.

2.7 For the distribution (2.4), show that the rth cumulant of YV’
is

ke = b (0) x a" ().
Hence deduce that
K3 = Kok and K4 = KaKj,
where primes denote differentiation with respect to p.
2.8 Show that
(1 _ .’L‘Z)"_l/z

_l<z<l,
(1- 207+ 02)* B(v + L, 1) =%=

fx(l';a,l/) =

is a probability density on (—1, 1) for all parameter values v > —%,
—1 < 8 <1 (McCullagh, 1989). [If all efforts at integration fail,
check that the claim is true for § = £1,0 and, by numerical
integration using Simpson’s rule or other Newton-Cotes formula,
for other values of (6,v).]

Sketch the density for = 0, £, £1, v = 3.

2.9 For the density given above, show that for all r > —v,

E( 1- X2 )T_ Bv+r+3,3)
1-20X +62/  Br+15, 1)

E(I_f%im)=0
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Hence deduce that T(6) = (1 — X%)/(1 — 26X + 6?) is a pivotal
statistic whose distribution does not depend on 6. Find the
distribution of T'.

2.10 Show that for fixed 6 the density fx(z;8,v) given above is
of the exponential-family type (2.4) with ¢ = 1, y = log T(6) and
canonical parameter v. Find the cumulant function b(:).

2.11 Show that —2vlogT(f,) is the scaled deviance statistic
for testing the hypothesis Hy : § = 6y on the basis of a single
observation X. Deduce that for large v and under Hy

—(2v + 1) log T(8o) ~ X3

approximately.

2.12 Suppose that X,,..., X, are independent and identically
distributed with density fx(z;8,v) as given above. Show that 6.,
the maximum-likelihood estimate of 8 for fixed v, is independent
of v. Calculate the Fisher information for (6, ) and show that this
matrix is diagonal.

2.13 Using the result given in Exercise 2.8 show that

(1 _ xZ)V—l/Z ,0,21/
(1-20z+62)* B(v + 3,3)

fx(z;0,v) = v>-110>1,

is a probability density on the interval —1 < z < 1 for the
parameter values indicated. Comment on the behaviour of the
likelihood function and the Fisher information near § = =1.
[McCullagh, 1989].

2.14 In order to construct a family of the type (2.4), suppose we
begin with the logistic density
e’ 1

fo(z) = Trer = (2cosh($/2))2 for — oo <z <oo0.

Show that the associated exponential family, also known as the
exponentially tilted family, is

e(1+6) e*(119) sin(7f)

[@0 = Gy e ora=0 = (1+e7n0
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for —1 < 8 < 1. Deduce that f(x;8) = f(—z;—8). Plot the density
for # = 0.25, 0.5 and 0.75. Find the cumulant function 5(#) and
show that the mean of the tilted density is

1
E(X;6)=V(0) = i m cot(m8).
Plot F(X;6) against 6 to show that the mean-value parameter is
a monotone function of the canonical parameter.
For what values of 8 does exp{X) have an F-distribution?

2.15 Discuss the connection between the above exponential fam-
ily and the family generated by the particular hyperbolic secant
density

z
fZ(xao)—W for —oco<z <00
whose cumulant generating function is —2logcos @ for |[§] < 7 /2.
Find the mean and variance of the tilted density as functions
of 8. Plot the exponentially tilted density fa(z;8) for 8 = 0, /6
and m/3. [Morris, 1982, section 5.]



CHAPTER 3

Models for continuous data with
constant variance

3.1 Introduction

Generalized linear models are essentially an extension of classical
linear models and this chapter presents these classical models in
a way that makes the extension appear natural. There is an
enormous literature on classical linear models, not all of it helpful
to the reader, and no attempt will be made in this chapter to
give a comprehensive account of the subject. Rao (1973), Draper
and Smith (1981), Seber (1977) and Atkinson (1985) are excellent
reference books covering various aspects of classical linear models.

The subject matter of this chapter is linear models, which we
shall write in the following form:

P
Y:L'NN(/LL"UZ)? p=1, 'I=ijﬂja
1
observations Normally  identity  linear predictor (3.1)
distributed and link; based on ’
independent; covariates
X100y Xp.

The data vector y, the mean vector g, and the linear predictor,
7, all have n components. The leftmost component of (3.1) is a
specification of the random part of the model. The other compo-
nents describe the systematic parts, which include the construction
of the linear predictor 5 from the covariates, and the link between
n and p. By suppressing the link, and regarding the x; as the p
columns of a matrix X, we recover the standard matrix formulation

E(Y) = XB,

48
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where B is the set of parameters written in vector form. Note
that we have restricted our attention to the sub-class of linear
models in which there is only one error component and in which the
errors are independent. Models involving components of variance
are therefore excluded.

We now consider in more detail the random and systematic parts
of the model (3.1).

3.2 Error structure

In classical linear models, the vector of observations, y, is assumed
to be a realization of a random variable, Y, which is Normally
distributed with moments

E(Y)=p and cov(Y) =L (3.2)

Thus the observations are assumed to have equal variances and to
be independent.

The assumption of Normality, although important as the basis
for an exact small-sample theory, is not so important in large
samples. For there the central-limit theorem offers protection from
all but the most extreme distributional deviations from Normality.
There may, however, be a modest loss of efficiency, which can be
recovered if the true distribution is known and used in place of the
Normal. For details, see Cox and Hinkley (1968).

The theory of least squares can be developed using only first- and
second-moment assumptions in addition to independence, without
requiring the additional assumption of Normality. This is fortunate
because in applications we can rarely be entirely confident that
the assumed distributional form is correct. It is this second-order
aspect of linear models that is emphasized here. From the present
viewpoint, therefore, the important assumption in (3.2) is that the
variance of an observation is the same for all values of u. This is
an assumption that can and should be checked, either by graphical
examination of the residuals or by computing an appropriate test
statistic. Checks such as these are described in Chapter 12.

The emphasis on second-moment assumptions over fully spec-
ified distributional assumptions extends to all generalized linear
models and is discussed more fully in Chapter 9.
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Fig. 3.1. The Normal (or Gaussian) distribution with mean p and
standard deviation o.

The frequency function of the univariate Normal distribution
takes the form

1
V2mra?

The distribution is symmetrical with mode, mean and median all
at u. The standard deviation, o, is the horizontal distance between
the mean and the point of inflection of the density. About 68%,
95% and 99.8% of the distribution lies in the ranges y+ o, u + 20
and p £ 30 respectively. The log-likelihood function for a single
observation with known variance is a parabola whose maximum is
at y and whose second derivative is —1/02.

The Normal distribution is useful primarily as a model for mea-
surements of continuous quantities, though it can also be used as
an approximation for discrete measurements. It is frequently used
to model data, such as weights, lengths and time, which, though
continuous, are essentially positive, although the distribution itself
covers the entire real line. Such usage is acceptable in practice
provided that the data values are sufficiently far removed from zero.
If, for example, data have a mean of 100 and a standard deviation
of 10, the part of the Normal distribution covering the negative half
of the real line is negligible for most practical purposes. If data y
that are essentially positive approach the origin, then it will often
be found that the data themselves contradict the assumption of
constant variance independent of xz. When this occurs, a Normal
distribution for log Y will often be found to be a better approxima-
tion than a Normal distribution for Y. Alternatively, the gamma
distribution (Chapter 8) may be used.

Y
exp(—gr‘g)—) for — o0 <y <oo.
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3.3 Systematic component (linear predictor)

We aim in this section to study various aspects of the linear

predictor
p
n= ijﬂj,
1

which occurs in all generalized linear models. The covariates,
X1,...,Xp, May be continuous measurements, incidence vectors
for qualitative factors of various types, or incidence vectors for
interactions among these. Concise description and automatic con-
struction of such vectors is an important aspect of the specification
and fitting of generalized linear models.

3.3.1 Continuous covariates

These comprise covariates such as mass, temperature, time, aniount
of fertilizer or drug, concentration of a solute and so on, which can
take values on a continuous scale. Models containing only terms
with continuous covariates are often called regression models, to
be contrasted with analysis-of-variance models, which have only
terms involving qualitative factors. Provided that there is only
one component of error variance, we shall not make this distinc-
tion. Indeed, by introducing mixed terms in section 3.3.4, we shall
deliberately seek to blur the distinction because many interesting
models involve terms of both types.

Linearity in the present context means linearity of n in the
parameters. Consequently a continuous covariate z in a model term
may be replaced by an arbitrary function g(z), such as log{dose)
in a dose-response model, without destroying the linearity of the
model. In particular we may use z2,z?,.. . in addition to z to build
up a polynomial in z, without destroying the linearity. Similarly,
the linear model Gy + Gx) + P2xz2 may be expanded to include
the product term (3,222, producing a bilinear relationship. If the
terms are rearranged in the form

(Bo + B2z2) + (Br + Praza)zy,

they show a linear relationship in z; in which both slope and
intercept are linear functions of z2. The alternative rearrangement

(Bo + Brz1) + (B2 + Prazr)z2
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expresses the bilinearity in complementary form.

A function such as exp(yz), however, produces a non-linear
model unless -y is known a priori. If v is unknown, the model is not
linear, and some non-linear optimization technique is required to
minimize the discrepancy function. It may, however, be helpful to
fit the model for a few suitably chosen values of y. Such models that
are partly linear and partly non-linear are discussed in Chapter 11.

3.3.2 Qualitative covariates

Sets of observations are frequently indexed by one or more classi-
fying factors, or factors for short. Each factor has an associated in-
dex, whose values partition the data into disjoint groups or classes.
Thus, in a field experiment, one such factor might define the block
into which each unit (plot) falls, while another might define the
crop variety to be planted in that plot.

A factor can take only a limited set of possible values, to be
called levels. The k levels can always be coded using the integers
1,2,...,k, although the coding 0,1,...,k~1 is sometimes more
convenient. Such a coding defines the formal levels of a factor.
In practice the levels usually have names or numerical values and
these we call actual levels. Actual levels may be

1. ordered with numerical formal levels, such as the amount of
fertilizer in an agricultural experiment; or

2. ordered but without relative magnitudes for the levels, such as
socioeconomic status; or

3. unordered, such as the names of crop varieties in a variety
trial.

Factors occurring in a model may be of primary interest, mean-
ing that a principal purpose of the study is to measure their effect.
Treatment factors in a designed experiment are obviously of this
kind. In surveys, classification factors such as educational status,
marital status, religious affiliation and so on are of this type. Fac-
tors of secondary interest are those producing effects that must
be accommodated in the model, but which are not of primary
interest. Examples are blocking factors in a randomized blocks
design and, usually, census enumeration district in a survey. The
distinction between primary and secondary factors is not absolute,
but depends on the aims of the study concerned.
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The simplest term in a linear predictor generated by a factor is
a component of the intercept. Consider a model with one covariate
z and linear predictor
n=a+ fz.

If A is a factor with index i, then the extended linear predictor
might become
m = a; + Bz,

implying a separate intercept for each level of A, but a common
slope /3, assumed constant over the levels of the factor. Note that if
a factor has numerical levels, we could also treat it as a quantitative
covariate having only a few distinct values. If we treat it as a
factor, we fit a separate effect for each level in an unstructured
way, whereas if we treat it as a quantitative variate, we impose a
linear form on the response. Alternatively, and perhaps preferably,
we may use polynomials in the actual levels to detect deviations
from linearity.

Frequently data are cross-classified by many factors simultan-
eously. If A, B and C are three such factors with indices ¢,j,%
respectively, the simplest model ordinarily considered has the form

@i + B + Y-

This is the so-called main-effects model, which implies that if we
arrange the data in a rectangular block and then look at cross-
sections of the data for each level of A, we shall find that they
can be modelled by effects of B and C that are additive and
equal in each cross-section. Similarly for the other factors. In
order to achieve a satisfactory fit, however, it may be necessary
to include terms analogous to (12222 with continuous covariates.
Such terms, of the algebraic form (of);;, imply a separate effect for
each combination of the indices 7 and j and are called interactions.
We shall refer to (@f);; as a two-factor interaction, but the term
‘first-order interaction’ is also used, the order being one less than
the number of factors involved.

The relationships between interactions and main effects have
been the subject of much confusion in the literature. We consider
them in more detail in section 3.5.
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3.3.3 Dummy variates

If 7 is the index for the levels of factor A with k levels, the term a;
may be written in vector notation as

aiu) + azuy + ... + Uy,

where the u; are dummy variates whose components take the value
1 if the unit has factor A at level j, and zero otherwise. The termns
incidence vector and mdicator vector are also used. Thus if £ = 3
and the formal levels for five observations are 1, 2, 2, 3, 3, the
dummy variates (u,, uz, u3) take values as follows:

Unit A u; g us
1 1 1 0 0
2 2 0 1 . 0
3 2 0 1 0
4 3 0 0 1
5 3 0 0 1

Note that,
uy+uzt+uz=1

irrespective of the allocation of levels to units. The constant vector,
1, is the dummy variate corresponding to the intercept term, often
written as g, in the linear predictor. The relation between the
terms 1 and o; is a simple instance of intrinsic aliasing, to be
discussed in section 3.5.

A compound term such as (@f);; has dummy variates, (uw)y,
whose values are products of corresponding components of u; and
v;, the dummy variates for A and B as single-factor terms. It
follows then that

Z(W)ij =v; and Z(W)ij = w;,
i J

again irrespective of the allocation of factor levels to units. Thus
main effects are intrinsically aliased with interactions in which they
are included.
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3.3.4 Mizxed terms

In section 3.3.2 we considered a model
7 = a; + Bz,

in which the intercept varies with the factor level, but where the
slope is constant over levels. Sometimes, however, the slope may
also change with the factor level, requiring the term Sz to be
replaced by B;z. Terms in the linear predictor in which a slope or
regression coefficient changes with the level of one or more factors
are called mixed, because they include aspects of both continuous
and qualitative covariates. It is important that any computer
program for fitting linear models should allow mixed terms to be
specified as easily as continuous and qualitative terms, because the
assumption frequently made, that a slope is the same for all levels
of a factor, ought to be easily testable. The simplest test is to
compare the fit of the model having constant slope with the fit
when the slope is allowed to vary from level to level.

Dummy variates for mixed terms take the same form as those
for factors except that the 1s are replaced by the corresponding
z-values. Using the same factor allocation as in the previous
section, and with the covariate x as shown, the dummy variates
for the mixed term G;x, again written as (uj, uz,u3), take values
as follows:

Unit A T u; u2 u3
1 1 1 1 0 0
2 2 3 0 3 0
3 2 5 0 5 0
4 3 7 0 0 7
5 3 9 0 0 9

Here
u; + uz + uz = X,

again irrespective of the allocation of levels to units.
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3.4 Model formulae for linear predictors

3.4.1 Individual terms

We now describe a notation that is helpful for the specification of
linear predictors in generalized linear models. The notation, due to
Wilkinson and Rogers (1973), is compact and is easily adapted for
use in computer programs. The convention is continued that names
beginning with letters from the first half of the alphabet refer to
factors, and those from the second half to continuous covariates.
The indices associated with the levels of factors A,B,C,... are
1,5,k,... . The Table below lists some kinds of terms that occur
in simple model formulae. Algebraic expressions are presented
together with the corresponding model formula term. Note the
use of A instead of 3 for the coefficient of a continuous covariate to
avoid confusion with the parameters for factor B.

Type of term Algebraic Model formula term
Continuous covariate Az X
Factor a; A
Mized Aix AX
Compound ©3); A.B
Compound mized AijT A.B.X

In the model-formula version X stands for itself, a single vector.
By contrast, A stands for a set of dummy variates, one variate as
indicator for each level of the factor. The remaining types of term
also stand for the appropriate set of dummy variates. Thus terms
in a model formula represent vector subspaces and do not involve
the parameters explicitly. Parameters occur only implicitly, one
per basis vector in each subspace.

3.4.2 The dot operator

This operator, already exemplified in the formation of compound
terms, implies the formation of all elementwise products of the
constituent vectors. For example, if A is the three-level factor
and X the covariate vector with values shown at the end of
section 3.3.4, then A.X denotes the three vectors (u,;, uy, us ) shown
there. By extension, if B is a two-level factor with dummy variates
v1, vy, then A.B denotes six dummy vectors corresponding to all
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elementwise products of u; with v;. Note that if A has k levels,
A.A comprises k vectors equal to the k¥ dummy vectors for A, and
k(k — 1) null vectors with all components zero. Such null vectors
may be omitted, effectively making
A.A=A
However, in general,
XX #X,
the left-hand side being a vector with components z2. (Note that
in both the computer programs GLIM and Genstat, where this
notation has been adopted, compound terms involving more than
one continuous covariate are not permitted in model formulae.
They must be computed explicitly, preferably after subtracting
column means.)
The dot operator is commutative so that
A.B = B.A,
and associative, so that
(A.B).C = A.(B.C).
Thus we may write A.B.C without ambiguity, the order in which
the factors are included being unimportant.

3.4.3 The + operator
Terms in a model formula may be joined using the operator +,
with exactly the same usage as in the algebraic expression for the
model formula. Repetitions of terms are ignored, so that
A+ A=A

it being pointless to specify the same vector subspace twice. In
vector-space terminology A + B defines a subspace in B" spanned
by linear combinations of vectors in A and B.

It is convenient to assign lower priority to + than to the dot, so
that

AB+C=(AB)+C.
The dot is distributive with respect to +, so that
A(B+C)=AB+ AC.

These are the fundamental operators required in the specification
of model formulae and the other useful operators that follow are
defined in terms of them.
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3.4.4 The crossing (*) and nesting (/) operators

The crossing operator, denoted by *, is used mainly to simplify the
specification of factorial models. Thus

AxB=A+B+ A.B
Ax*xBxC=A+B+C+AB+A.C+B.C+ AB.C,

and so on. In these expansions A and B may themselves be replaced
by model formulae. The operator * has higher priority than +, but
lower priority than dot. Thus

AxB+(C=A+B+C+AB
AxB.C=A+B.C+ A.B.C.

Note the convention followed in expanding expressions, that all
simple terms come first, followed by two-component terms and so
on. This convention, though not essential, is helpful when it comes
to understanding intrinsic aliasing in models (Section 3.5).

The crossing operator is associative, and distributive with re-
spect to +, for

Ax(B+C)=A+(B+C)+ A(B+C)
=A+B+C+AB+ AC
=A+B+AB+A+C+ AC
=AxB+ AxC.

When a compound term such as A.B is preceded in an expanded
mode] formula by both constituent terms A and B, it is called the
interaction of A and B. The nature of the interaction term will be
discussed further in section 3.5.

The nesting operator / relates to an indexing system, which,
in its simplest form, has two indices ¢ and j, but no connection
between observations (4, j) and (s/, j), though there is a connection
between observations (i, j) and (z, ). Typically, ¢ defines the levels
of a blocking factor and j identifies an element within a block.
There is no necessary connection between the first observation in
one block and the first observation in another, but two observations
in the same block have their block in common and may tend to be
similar on that account. For a nested treatment structure, consider
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a set of plant varieties categorized as early (z = 1), mid-season
(1 = 2), or late (z = 3) in cropping. Within each group there is
a number of distinct varieties, no variety belonging to more than
one group. Two varieties may be connected by being in the same
group (¢ the same), but there is no connection between the first
variety in two different cropping groups (j the same, ¢ different).
The appropriate linear predictor for nesting is written as

A/B= A+ A.B,

In the expanded formula the compound term A.B is preceded by
only one constituent term. The interpretation of A.B is now that
of B within A. }

"~ As before, A and B may themselves be model formulae, with
the rule that if pt(A4) denotes the product term (using dots} of all
elements in A, then A/B is defined by

A/B = A +pt(A).B.
Thus, for example
(AxB)/C=AxB+ AB.C.
The nesting operator is associative, so that
A/(B/C) = (A/B)/C,
and distributive with respect to +, since
A/(B+C)=A+A(B+C)=A+AB+A+A.C=A/B+A/C.

Like the crossing operator, the nesting operator is given a priority
between . and +. By convention we give it higher priority than *.

3.4.5 Operators for the remouval of terms

The operator — has the obvious meaning as the inverse or opposite
of 4. It is used for the removal of terms in a model formula. Thus

A*xB—-AB=A+B.
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Similarly,
AxBxC—-ABC=A+B+C+AB+AC+B.C

is a concise notation for a model with all main effects and two-factor
interactions.

It is sometimes required to remove from a model all those
compound terms that include a given factor or factors. Two
operators —/ and —x cater for this; —/A means ‘remove all
compound terms that include A, but excluding A itself’, while
— * A means ‘remove all terms that include A’. Thus

AxB+xC—-/A=A+B+C+B.C

and
AxBxC —xA=B+C+ B.C.

3.4.6 Ezponential operator

If M is a model formula and I is an integer, then
MxxI=M*xMx*...x M,

the right side containing / Ms. This operator is useful for speci-
fying factorial models that include all terms up to a given level of
interaction. For example

(A+B+C)xx2=A+B+C+AB+AC+B.C.

This operator has highest priority.

We shall use this notation for the specification of linear pre-
dictors wherever possible. Readers should bear in mind that this
model-formula notation (strictly speaking, a subset of it} can be
used directly for this purpose in the computer systems Genstat and

GLIM.
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3.5 Aliasing -

Each term in a model formula describes a set of covariates to be
included in a linear predictor. If such a set is denoted by x1, ..., Xp,
the xs being n-vectors, then the covariates can be thought of as
defining p directions in n-dimensional Enclidean space. These p
vectors define a subspace of up to p dimensions. The maximum
dimension is achieved if the xs are linearly independent, i.e. if there
does not exist a set of coeflicients £;, not all zero, such that

p
Z §]~xj =0.
1

If k independent linear relations exist, then the set of covariates
spans a space of dimension p — k. Ordinarily the individual terms
in an expanded model formula will form subspaces of maximum
dimension. Loss of dimension may occur, however, when we
consider joint subspaces covered by more than one term.

Z

(iii)
Fig. 3.2. Venn diagrams for relationships between subspaces of terms in

a linear model: (i) P and Q linearly independent; (i) @ entirely aliased
with P; (iii) @ partially aliased with P.

We now consider the possible relationships between the sub-
spaces defined by two terms in a model formula. The terms are
denoted by P and @, their dimensions by p and ¢, with p > q.
There are three possible relationships between P and Q.

1. All p + q vectors defining P and @ are linearly independent,
so that the dimension of the space P + @ is p + q.

2. All the vectors of @) are expressible as linear combinations of
the p vectors in P, so that the dimension of P + @ is p.

3. k of the q vectors in @) are expressible as linear combinations
of those in P.
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The corresponding Venn diagrams are shown in Fig. 3.2. Clearly
(i) and (ii) are extreme cases of (iii) for which ¥k = 0 and k = ¢
respectively. Note the special case of (ii} when p = ¢, so that P
and @ span identical subspaces.

The effect on the terms in a generalized linear model of over-
lapping subspaces is to produce what is called aliasing. Certain
combinations of covariates are then identical to other combina-
tions, so that the corresponding combinations of parameters cannot
be distinguished. Consider, for example, measurements made on
leaves having the property that area = constantxlength xbreadth,
with length and breadth being measured as well as area. Suppose
that the covariates in the model are

z) = log length,
z2 = log breadth,

z3 = log area,
and that the linear predictor is to be formed as
n = Bo+ bz1 + P2 + Pazs.
Now, since area = constant xlengthxbreadth, we have
T3 =c+ 11 + T2, (3.3)

where ¢ is the logarithm of the constant in the formula for area.
Hence 7 may be expressed in terms of z; and z; as

n = PFo+ Piz1 + Paza + Balc + =1 + z2) ,
= Bo + Bsc+ (O + F3)x1 + (B2 + Bs)xa.

Thus we can distinguish the three combinations of the s
Bo + Bac, P+ B3, and [+ P,

but not the four parameters Gy, 41, G2, O3 separately. If we write zg
for the constant vector, i.e. the dummy vector for the term Gy, we
see from (3.3) that z3 is a linear combination of g, z, and z2. In
other words, the subspace for z3, with one dimension, is contained
in the sum or span of the subspaces for zg, 2, and z».
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If in addition the leaves are all of the same shape, in the sense
that the ratio of length to breadth is constant, we have

/
T2 =C + 21,

where breadth/length = exp(c’). The linear predictor now reduces
further to

n=LFo+ biz) + Bo(c' + z1) + Pa(c+ z1+ ¢ + z1)
= fo + Bac’ + B3(c+ ') + (B1 + B2 + 203)x1.

Now, only two parameter combinations, namely
Bo + Pac' + Ba(c+ ') and  S1+ F2 + 20,

are distinguishable, and the dimension of the space spanned by
Zg,Z1,Z2 and z3 is reduced from four to two.

An important aspect of this example is that the aliasing is
intrinsic to the problem. Given that all leaves are the same shape
and that all measurements are made without error, aliasing will
occur whatever the sizes of the leaves. Such intrinsic aliasing
is found most commonly, however, where terms involving factors
occur in a model.

3.5.1 Intrinsic aliasing with factors

Consider a model formula containing the intercept together with
the single factor A, which we write as

1+ A4,

where 1 stands for the dummy vector with all elements 1. An
equivalent algebraic expression for the components of the linear
predictor is

Nij = B+ ai,

where : indexes the groups defined by A and j indexes the units
or observations within the groups. The dummy vectors for A
add up to the constant vector, or dummy vector for u, because
each observation has factor A at exactly one level. Thus y is
aliased with )" «;, and further, it is intrinsically aliased because
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the relation holds whatever the allocation of units to the groups.
The relationship between u and a; is not symmetric because the
dummy vector for u lies wholly in the space of the dummy vectors
for a;, but not vice versa. We say that p is marginal to the as. As
a consequence, the terms in the model ¢ + a; are ordered because
of the marginality relationship. One effect of this ordering is that
it does not make sense to consider the hypothesis that ¢z = 0 when
the a; are not assumed known.

The linear predictor is clearly unchanged if we add a constant
to z and subtract the same constant from each ;. This operation
leaves unchanged the quantities pg + «; and also any contrast
S Aia; with Y A; = 0. Combinations that are unaffected by
this operation are said to be estimable. The parameters y and
a; separately are not estimable because the aliasing pattern makes
them indistinguishable from g + ¢ and a; — ¢¢ When we come
to estimate the parameters, this ambiguity can be resolved by
imposing a constraint on the estimates to give a unique solution
to the least-squares equations. It must be stressed, however, that
any such constraint on the estimates fi, &; of u,a; is a convention
only, and is of no significance in judging the adequacy of the
model. Constraints are not to be thought of as part of the model
specification: they are merely a convenient way of resolving an
ambiguity and they do not affect the meaning or interpretation of
the model. In particular, there is no implication that a similar
constraint should be imposed on the parameters ¢ and «;; in fact,
where intrinsic aliasing occurs, the imposition of constraints on
parameters as well as on their estimates is a common source of
confusion.

For the above model, three possible constraints, chosen from an
infinity of possibilities, are as follows:

1. it =0, so that the &; give the group means directly;

2. &, = 0, so that the first group mean is f, and az,ds, ...
measure differences between other group means and the first;

3. 3" é&; =0, so that i is the average of the group means and &;
is the deviation of the ith group mean from f.

As an example, consider four groups with means 6, 9, 12 and
13. Then the three constraints produce parameter estimates in the
linear predictor with the following values:
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Estimate with constraint

Parameter (1.) (2.) (3.)
1 0 6 10
ay 6 0 —4
Qo 9 3 -1
(s %) 12 6 2
g 13 7 3

Another constraint that is sometimes used if the group sizes are

unequal is
Z w,-d,- = 0,

where w; is the ith group size. With this constraint £ is a weighted
average of the group means and &; is the deviation of the ith group
mean from the weighted average.

3.5.2 Aliasing in a two-way cross-classification

Failure to recognize the aliasing pattern and the arbitrariness of
imposed constraints has led to much confusion in the literature,
especially in the analysis of models for two-way cross-classifications.
The discussion here follows the lines of Nelder (1977).

We are concerned with the linear model

1+ A+ B+ A.B,
expressed algebraically by the linear predictor
Mij = B+ i + 5 + v
The dummy vectors for the four terms show the following rela-
tionships, here written in terms of the parameters rather than the

dummy vectors. (The equivalence sign may be read as ‘is indistin-
guishable from'.)

Zai = N Zﬂj = u,
Z%’j = a, Z%‘j = 5.
J i
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These identities imply that the sum of all the dummy vectors for
A.B is the constant vector, or, in terms of the parameters,

Z%’j = [
ij

Thus the relationships among the terms are as follows:

p is marginal to «;, 8; and 7,5,
o is marginal to vy
and B; is marginal to 7;;.

The terms are thus partially ordered as first p, then o; and g;
together, and finally 7;;. The estimable parameter combinations
are the linear predictor itself,

Mij = B+ s + B + Yij,
and also the contrasts

Y Aies +7..); with YA =0,

Y A8 +7.;); with YA =0,

and Z’\ij7ij; with Z’\ij = Z’\ij =0,
i J

where 7;,,7.; denote averages over the indicated indices.

The ambiguities about the values of the estimates of individual
parameters can again be resolved by suitable constraints. Two such
constraints are now discussed for a 2x2 array.

The full parameterization has nine parameters, namely (u, a1,
as, b1, B2, 711, Y12, Y21, Y22 ), but only four linearly independent es-
timable combinations. Thus, five suitably chosen constraints are
required to produce unique estimates. The conventional system of
symmetric constraints is given by

b1+ G = 0, B+ B2 =0,
H11+ 912 =0, Y11 + 421 =0, (3.4)
A21 + Y22 = 0, Y12 + 422 = 0.
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Note that only three of the last four constraints are linearly
independent, so that only five independent constraints are being
applied. With these constraints we can solve the four equations

B+ &+ B+ Ay = v
to give
B=19..

@ = Yi. — Yoo, B5 =9 = Yoor (3.5)

¥ij = Yij — Gio — Yoj + G.. -
Thus f is the average of the four observations, &; is the deviation
of the ith row mean from the grand mean, and §; is a similar
deviation for column means. The interaction parameter 4;; is the
deviation of y;;, the linear predictor for that cell, from one based
on the addition of main effects, & + &; + 5;.

A second set of constraints that lacks symmetry, but is in some
ways simpler, is that used by the computer program GLIM, namely
&1 =1 =41 = %12 =421 = 0. (3.6)
More generally, the parameter estimates for the first level of each
factor, the first row and column of each two-factor interaction term,
and so on, are set equal to zero. With this choice of constraints, the
top left-hand corner cell is taken as the baseline, and the estimated
parameters are

B = Y11,

Q2 = Y21 — Y11, B2 = y12 — 11, (3.7)

Y22 = Y22 — Y12 — Y21 + Y1
The remaining estimates are zero on account of the constraints.
Note that if 4;; = 0, but not otherwise, the &-contrasts and the
p-contrasts given by formulae (3.5) and (3.7) are identical. If
further, &; = Bj = 0, then the fis also become identical. These
properties are consequences of the marginality relations among the
terms in the two-factor model.

We stress again that constraints such as (3.4) and (3.6) are
not a part of the model, but merely a convention whereby unique
values for estimates of the intrinsically aliased parameters can be
produced. For fitting, testing and so on, only estimable combina-
tions are relevant, and those combinations are independent of the
constraint system imposed.
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3.5.3 Ezxtrinsic aliasing

The aliasing patterns considered so far have resulted from intrinsic
characteristics of the model formula rather than from particular
idiosyncrasies of the data observed. However, aliasing can also
occur because the particular covariate vectors observed happen to
contain linear dependencies. Suppose we have two factors with
three levels each, but data are observed for only 5 of the nine
possible combinations as shown below.

Factor B
level 1 2 3

1 X X

A 2 X X
3 X

Because of the configuration of the observed factor levels, the
dummy vector for aj is identical to the dummy vector for F3. In
a complete design, the main-effect subspaces for factors A and B
have only a single dimension in common, but here they have a
two-dimensional space in common.

The additional aliasing observed is a consequence of the fact that
the table of observed factor levels can be split into two disconnected
portions, of sizes 2x2 and 1x1. If we move one of the occupied
cells to produce the following configuration,

Factor B
level 1 2 3
1 X
A 2 X
3 X X

the aliasing disappears along with the disconnectedness. This
example shows how extrinsic aliasing depends on the particular
values of covariates in the observed data, in contrast to intrinsic
aliasing, which is a property of the model formula alone.
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3.5.4 Functional relations among covaeriates

Covariates may be functionally related without being linearly
related. The most familiar example is polynomial regression, in
which a linear predictor such as

Bo + Brz + Bax? + Baz?,

contains the power terms z, 2 and z?. Provided that more than
three distinct z-values are observed, the covariates z, z2 and z°
are linearly independent. Thus there is no aliasing of parameters.
Nonetheless, there is usually an implied ordering of terms that must
be respected in fitting polynomial regression models.

Looking first at the terms Gy and 31z, we must ask when it makes
sense not to use the sequence fy, Ho + S1z in model fitting, but to
use instead the reverse sequence in which f; z is fitted first without
the intercept. For the latter procedure to make sense, z = 0 must
correspond to a special point on the scale at which 1 must be zero.
Though this may sometimes happen, there is usually no strong
reason for paying special attention to a particular value of z. In
agricultural field experiments with fertilizers, for example, there
is invariably some small amount of the relevant nutrient already
present in the soil, so that zero fertilizer applied does not mean
that no nutrient is available to the plant. Thus, zero is not a
special point in this example.

Consider next the relationship between the terms S;z and G2 z2.
To fit the terms Gy and Fyz? without including Bz implies that
the maximum (or minimum) of the response occurs at z = 0,
i.e. exclusion of the linear term implies that z = 0 is a special point
on the scale. For if the z-scale might equally well be measured by
T + ¢ as by z, the response 3y + G222 becomes

Bo + Ba(z + ) = (Bo + Bac?) + 20Bzcz + Bo1?,

and a linear term appears with coefficient 282¢. Ordinarily there
is no reason to suppose that the turning point of the response is at
a specified point on the z-scale, so that the fitting of Bz? without
the linear term is usually unhelpful.

A further example, involving more than one covariate, concerns
the relation between a cross-term such as f13z122 and the corre-
sponding linear terms Siz; and fFz2. To include the former in
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a model formula without the latter two is equivalent to assuming
that the point (0,0) is a col or saddle-point of the response surface.
Again there is usually no reason to postulate such a special property
for the origin, so that the linear terms must be included with the
cross-term. Likewise, the inclusion of quadratic terms 31122, o272
without the cross-term implies that the elliptical contours of con-
stant response are oriented parallel to the axes. Again, there is
usually no reason to expect such behaviour in practice, and all
second-degree terms should normally be entered into the model
simultaneously, assuming, of course, that the linear terms are al-
ready present. Thus the relationships among polynomial terms
are very similar to those among factors and interactions. This
functional marginality is not a true marginality in the sense of
section 3.5.1 because no linear dependencies among covariates are
involved. Nevertheless, in a similar way, it does impose constraints
on the order in which terms should be introduced into a model.

3.6 Estimation

3.6.1 The mazimum-likelihood equations

Maximum likelihood is the principal method of estimation used for
all generalized linear models. For Normal errors, the log likelihood,
l, based on n observations is given by

~2l = nlog(2na?) + 3 (yi — pi)*/o?.

=1
For fixed o2, known or unknown, maximization of [ is equivalent
to minimization of the sum of squares

Y (- w)?

for variation in u. If, in addition, the model is assumed to be linear,
we have

P
= Wi = Zifijﬂj-
j=1

Differentiating with respect to 8; and equating the derivative to
zero gives estimating equations in the form

inj(yi—ﬂi)=0 for 5=1,...,p, (3'8)
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where the fitted means are given by
i = =Y Ti; B

A useful way of looking at the equations (3.8) is that the p
linear combinations of the observations Y, z;jy;, 7 = 1,...,p are
set equal to the corresponding linear combinations of the fitted
values, namely 3. z;;fi;. To state the same thing in an equivalent
way, the vector of residuals with components y; — fi; is orthogonal
to the columns of the model matrix X, so that

X"(y-a)=0.

In particular, if X is the incidence matrix for the main-effects
model in a two-way classification, X7y is the set of observed
marginal totals. Maximume-likelihood estimation for this Normal-
theory model then corresponds to finding fitted values satisfying
the model that have the same marginal totals as those observed.

3.6.2 Geometrical interpretation

Fitting by ordinary least squares has a simple geometrical inter-
pretation. The data vector y may be regarded as a point in n-
dimensional Euclidean space. For any given value of the parameter
vector B, the vector of fitted values g = X is a point in the same
space. As B varies over all possible values it might take, g traces
out a linear subspace or hyperplane called the solution locus. If y
falls on the solution locus, the observed values can be reproduced
exactly by the model. Ordinarily, however, the observed data point
y does not lie on the solution locus and no value of B reproduces
the data exactly. If u represents a point on the solution locus
then Y (y; — p;)? is just the squared Euclidean distance between
the observed vector y and u. Maximizing the likelihood is then
equivalent to choosing the point i = XB that is nearest to the
observed y in the sense of minimum Euclidean distance.

To illustrate this geometrical construction, consider the model
whose components satisfy 7; = z;3, with only one covariate and
one parameter. The solution locus is the set of all vectors x3 for
~00 < f§ < 00, i.e. all points on the line through the origin in R"
in the direction x (Fig. 3.3). The point on the solution locus that
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0

Fig. 3.3. Least squares: the geometry for one parameter.

is nearest to y is found by dropping a perpendicular Y P onto x[.
The coordinates of P are x/3 where 3 is the maximum-likelihood
estimate of 3. The vector Y P = y—xﬁ is called the residual vector.
The condition that OP and PY should be orthogonal, expressed
algebraically, is

I
=

x"(y — x)

)

=
]
«

i.e.

The fitted vector, or vector of fitted values, OP, is the orthogonal
projection of y on the space x.

3.6.3 Information

Further insight into the fit can be obtained by considering how
the goodness-of-fit statistic, considered as a function of @, varies
with 8. Let P’ be an arbitrary point x5 on the solution locus as
shown in Fig. 3.3. Then in the triangle Y PP’ we have

(v = x0T (y —xB) = (y — xB)" (y ~ xB) + (8 - B)x"x(3 - B),

expressing the Pythagorean relationship among the sides of the
triangle YPP’'. If we plot the squared length of Y P/, which
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measures the discrepancy of the data from an arbitrary point of
the solution locus, as a function of the parameter (3, we obtain
a parabola with its minimum at # = 3, the maximum-likelihood
estimate. The minimum discrepancy is D, = (¥ — xﬁ)T(y— xﬁ),
as shown in Fig. 3.4.

deviance

— 95% — 8

B

Fig. 3.4. Information curve for one parameter, together with approz-
imate 90% and 95% confidence intervals.

The second derivative at the minimum, as indeed elsewhere for
a parabola, is given by x7x. If we now restore the dispersion par-
ameter o2, which divided the sum of squares, the second derivative
becomes xTx/o?. This is known as the Fisher information for .
If the Fisher information, or curvature, is large, the parabola is
steep-sided, so that small changes in 3 away from 3 produce large
changes in the discrepancy or deviance. In other words, 3 is well
determined by the data. By contrast, if the Fisher information for
[ is small, the parabola is rather flat and 3 is not well-determined
by the data.

The Fisher information for 3 is the ratio of two quantities. The
numerator depends only on the model matrix, i.e. on the values
of the covariates in the model, and not at all on the response
values. The denominator depends only on the error variance of the
response. The inverse information gives the theoretical sampling
variance of the estimate 3, i.e. var3 = 0%/(xTx). Ordinarily,
0% is unknown and an estimate is required, either from replicate
observations for the same z, or from the residual sum of squares
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after fitting an adequate model. The usual unbiased estimate is
6% = s = Dpin/(n — p)

where p is the number of covariates in the model and D, is the
minimized discrepancy or deviance.

Fig. 3.5.  Least squares: the geometry for two positively correlated

covariates.

3.6.4 A model with two covariates

If there are two covariates x; and Xz, say, then the solution locus
is the plane in R™ defined by the points x;/31 + x20; for varying
values of 3; and ;. The process of obtaining fitted values for the

model
n =x101 + X206,

is represented geometrically by the dropping of a perpendicular
from the data point y onto the (x1,x2) plane. Figures 3.5, 3.6 and
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3.7 show the geometry connecting the fits of the single-term models
x5 and x203; with the model containing both covariates. In these
diagrams, x, and x are respectively positively correlated (i.e. make
an acute angle), negatively correlated (i.e. make an obtuse angle),
and uncorrelated (i.e. make a right angle).

The points P,, P, and Py are respectively the feet of the per-
pendiculars from y onto the x;-line, the x,-line and the (x;,x2)-
plane. The angEO/f’l\Plz and OT';PIZ, are both right angles be-
cause OP,Y, OP2Y and Py Pi3Y are all right angles by definition.
Consequently P, is also the projection of P2 onto the x;-line.
Similarly, P is the projection of Pi2 onto the x3-line. We can thus
express the projection of y on the (x;,x2)-plane in the two forms

(OP13)* = (OP1)? + (P1P12)? = (OP,)? + (PyP13)*.
The interpretation of these squared lengths is as follows:

(OP;)? = sum of squares for z; before z,
(OP;)?
(OPy2)? = sum of squares for z; and z5.

il

sum of squares for x5 before 1,

In addition,

The words ‘before’ and ‘after’ are often replaced by ‘ignoring’ and
‘eliminating’ respectively.

Corresponding to the two sequences of fitting we have analyses
of variance whose geometrical interpretations are

(OY) = (OP)) + (PiP2)* + (PrY)?

total = (z; before z3)} + (z after ;) + residual,
and

(OY): = (OP)} 4+ (PyP2)® + (PraY)?

total = (z, before z1) + (z; after x2) + residual,
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X2

P2 = Bix1 + Baxa
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Fig. 3.6. Least squares projections for two negatively correlated covari-
ates: Py is the projection on x; alone, P2 is the projection on x2 alone,
and Pyg is the projection on the joint space.
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i
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Fig. 3.7. Least squares projections for two orthogonal covariates.
In terms of the parameter estimates we have

(0P1) = xlbla
(OPz) = X2b2,
(OP13) = X101 + X252,

where b; and by are the estimates for the single-term models and
B1 and 3 for the joint model.
There are several important special cases:
1. y is coplanar with (x1, x3), so that Y and P;2 coincide. The
residual vector is then null and the joint model gives a perfect
fit.
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2. x; and x; are orthogonal (Fig. 3.7). The three feet of the
perpendiculars, Py, P, and Pj; form a rectangle with O, so
that (OP,) = (P2P2) and (OP;) = (P1Pi2). The order of
fitting the terms in the joint model is then irrelevant, and
there is just one analysis of variance. Sums of squares and
parameter estimates are unaffected by the order in which terms
are entered into the model.

3. y is orthogonal to x;. Then b; is zero for a single-term model,
but the estimate ﬁl in the joint model is not zero unless x;
and x, are orthogonal. '

3.6.5 The information surface

If P is an arbitrary point x;/4; + X2/3; on the solution locus, then
from the relation among the total sum of squares, the residual sum
of squares and the regression sum of squares,

(YP)? = (Y Pi2)* + (P2 P)?,
we obtain

(v — %181 — x202)T (y — X181 — x2/82) =
(v — x181 — %23)" (y — %151 — X2/3)

+ (A1 — B)*xTx1 + 2(B1 — Bu) (B2 — B2)x] X2 + (B2 — Po)?x] x2.
Note that Bl and Bz are the estimates in the joint fit of x;
and x, simultaneously. The first term on the right of the above
equation is the residual sum of squares from the least squares fit
to both covariates. This term does not depend on (8, 3:), but
only on y. The second term measures the squared distance of
the arbitrary point P, determined by (81, 32), from the point of
best fit, (31, 42). The contours of this latter term, considered as a
function of (8, 32), are similar, similarly situated ellipses centered
at (A1, 32) as shown in Fig. 3.8.

The second derivative matrix of the function with respect to

(B1, B) is

xfxl xfxz

xgxl xng

which, apart from the factor ¢%/2, is the Fisher information matrix

for (B1, 3).



78 MODELS FOR DATA WITH CONSTANT VARIANCE
B2

e
Fig. 3.8. Least squares: contours of the information surface for two

parameters.

3.6.6 Stability

The point P;2 depends only on the data vector y and its relation
to the space spanned by x;, x2. Any pair of vectors that spans the
same space, for example x; + x2 and x;, — X3, gives rise to the same
projection of y. However the identification of the point P;; by the
coefficients (ﬂl,Bz), namely P; = xlﬁl + xzﬁz, depends heavily
on the particular pair of vectors chosen as a basis for the subspace.
If 4, the angle between the vectors x; and x; in R™, is small, then
the coeflicients ﬁl, Bg are more sensitive to small perturbations of
the data than either b; or bs, the coeflicients in the single-term
models. That is to say P, itself is unstable in the sense that while
small perturbations of x; and x2 may produce correspondingly
small perturbations of P; and Ps, together they may produce a
large perturbation of Py;. Thus, a small perturbation of one or
both covariates may have a big effect on the space spanned by the
two vectors. Consequently, the allocation of variation in Y to x;
and x; in the joint regression is sensitive to perturbations of either
covariate.

When 68, the angle between x; and x2, is small the information
matrix for i, 5z is nearly singular because its determinant is equal
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to
|Ix1]1? |1x2]|* sin® 6.

The log-likelihood contours in the (8, 32) plane are now ellipses
having one principal axis very long compared to the other. In fact
the ratio of the lengths of the principal axes behaves like 1/sin? 6.
As a consequence, large changes in fi, 5 in the direction of the
longer axis produce small changes in the likelihood, while similar
changes in the perpendicular direction have a large effect.

3.7 Tables as data

It is common to find generalized linear models being fitted not to
the original data expressed in data-matrix form, but to data that
have already been summarized in the form of a multi-way table. In
the process of tabulation, the y-values for units having the same
levels of the classifying factors are added together to form a table
of totals: parallel tabulation of a vector of 1s gives the associated
table of counts showing how many units contribute to each cell
total. Division of totals by their associated counts gives a table of
means. For continuous data, it is usually this table of means that
will be analysed, with the associated counts acting as prior weights. .
In surveys, however, it is often the counts themselves that are of
interest. Suitable methods of analysis for such counts are described
in Chapters 4 to 6. Section 5.2.3 emphasizes the duality between
models that treat cell averages or scores as the response with the
counts acting as weights, and models that treat the observed count
as the response, with the cell averages used for generating contrasts.

Broadly speaking, the process of fitting generalized linear models
to data in the form of tables is similar to that described previously
for data in the form of a data matrix. The following points are not
peculiar to tabular data, but they are most often encountered in
that context.

3.7.1 Empty cells

When any variate, be it a continuous measurement or an integer-
valued variable, is discretized and tabulated as described above, a
table of averages and an associated table of counts is formed. The
table of averages is different in one important respect from the table
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of counts, namely in the significance of zeros. Table 8.1, giving
the average value of insurance claims together with the number
of claims, is a case in point. For some purposes the value of the
claims is of interest, while for others the number of claims might
be the most interesting response. It so happens that no teenagers
who owned ten-year-old cars of types C or D made claims against
the company. These are genuine zeros indicating either that such
drivers are unusually careful or few in number or both. As far as
the average claim is concerned, however, these are not to be treated
as zeros, but rather as ‘empty cells’ contributing no information
whatever about averages. We cannot infer from the absence of
claims in these categories that, if and when a claim occurs, its
value will be small. Consequently, we use the term ‘empty cell’
rather than ‘structural zero’ because there is no suggestion of any
value, let alone zero.

It is important to distinguish two varieties of empty cell, namely
necessarily empty cells and accidentally empty cells. Necessarily
empty cells occur when some combination of levels of the factors is
a priori impossible. Simple examples are the class of pregnant males
or a self-fertilized cross from a self-sterile variety of plant. When all
possible crosses are made between varieties of a self-sterile species,
the diagonal cells, corresponding to the selfs, are all necessarily
empty. If some varieties are cross-incompatible there may be off-
diagonal necessarily empty cells as well. When a model is fitted
to a table of associated counts, the necessarily empty cells must
not be included as data. For other tables such as Table 8.1, they
cannot be included in any analysis because there is no value for
that cell, Ordinarily it makes no sense to compute fitted values for
necessarily empty cells by extrapolation from the non-empty cells.

An accidentally empty cell is one for which the combination of
factor levels is possible, but the combination happens not to occur
in the observed data. The empty cells in Table 8.1 are of this type.
For this type of empty cell it does usually make sense to compute
fitted values by extrapolation from the non-empty cells.

Table 6.2 contains both accidentally empty and necessarily
empty cells.

It has been proposed (see, for example, Urquhart and Weeks,
1978) that models fitted to tables should not involve the population
means of accidentally empty cells, on the grounds that the data give
no information about such means. This proposal would imply that
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an additive model of the form
A+ B

for a two-way table should not be fitted if any cells are accidentally
empty. The point has been discussed by Nelder (1982), who argues
that such a rule is unnecessarily restrictive.

3.7.2 Fused cells

It sometimes happens that the position of a unit in a table is not
known uniquely, though it is known to belong to one of a subset
of cells. Examples of this phenomenon occur in tables classified
by genetic factors when several distinct genotypes produce the
same phenotype, which is what is observed. For the analysis
we have just the total for the set of cells, fused into a single
observable cell. Fused cells may also occur when the individual
cells were potentially observable, but for some reason the level
of one or more factors was recorded with less precision than
intended. The occurrence of fused cells results in an obvious
loss of information, and utilization of the data they contain may
require prior knowledge of the relative frequency of occurrence in
the unobserved component cells. Such knowledge is often available

for genetic data.

3.8 Algorithms for least squares

For the linear models discussed in this chapter the estimation
procedure requires us to minimize the quadratic form

(y - XB)"(y — XB)

with respect to the components of 8. Equating the derivative to
zero produces the normal equations

(XTx)p =x"y. (3.9)

If X has full rank these equations have a unique solution, namely
B = (XTX)'X"y. If X is rank-deficient, either because of
intrinsic aliasing among factors or for some other reason, we may
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replace the inverse of XT X by any generalized inverse. The solution
is then not unique, but all estimable contrasts among the s are
independent of the choice of inverse (Pringle and Rayner, 1971).
When multiplied by the dispersion parameter o2, the generalized
inverse also produces correct variances and covariances for these
contrasts.

There are two classes of numerical methods for solving equations
(3.9). In the first method XTX is formed explicitly and subsequent
computations are performed on this matrix. The second class
of methods focuses on the matrix X and attempts to simplify
equations (3.9) by suitably factoring X. In both cases it is usual to
express both y and the columns of X about their means. Within
each class there are further sub-divisions, which are described
below.

In the interests of efficient bookkeeping, both algebraic and
numerical, it is convenient in much of the discussion that follows to
imagine the observation vector y appended as an additional column
to X. Thus any row operations applied to X are considered also
to be applied to y. In addition, the extended information matrix
XTX now consists of the sums of squares and products of y and
the p covariates.

3.8.1 Methods based on the information matriz

The two most common methods that operate on the matrix xXTx
are Gaussian elimination and Choleski decomposition. We discuss
these in turn.

A modern form of Gaussian elimination, due to Beaton (1964),
uses a symmetric sweep operator. This operator, when applied to
the kth row and column of a positive-definite symmetric matrix
A, will be denoted by S;. The effect of Sk is to transform the
components of A from a;; to

ik ik . .
aij — aj; — —2L=; itk j#k,
Ak
a; .
Qi — — i# k,
|akk|
Ay .
akj - __]—; J ;é kw
|akk]
1
Qg — ——.
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With this definition it is then easily shown that SxSxA = A. In
other words, a second application of the symmetric sweep restores
the original matrix. The statistical interpretation of the symmetric
sweep is as follows. Let A = XTX be a pxp matrix of sums of
squares and products of the variates X1,...,Xp. Suppose that the
sweeps Sp,...,S; have been applied to the first & < p rows and
columns of A. Following this series of sweeps, A has been reduced
to the form shown in Fig. 3.9, in which only the lower triangle is
displayed. The component matrix R now holds the residual sum-of-
squares-and-products matrix for the unswept variates Xg41,...,Xp
after regressing them on xi,...,X;. The rows of the matrix B
are the regression coefficients of these formal linear regression
equations, while V is the unscaled covariance matrix for these
regressions.

Note that if the final row and column of A contain the sums
of squares and products of the response, then sweeping all but the
final row and column gives minus the inverse information matrix
—V, bordered by the vector of regression coeflicients B = B, and
the residual sum of squares, R, now a scalar.

k
-V
—k
P B R
k p—k
Fig. 3.9. The matriz of sums and squares and products after the

symmetric sweep has been applied to the first k rows and columns.

If the original X7 X is exactly or nearly singular, this will usually
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show up during the sweeping process by the appearance of a pivot
or diagonal element that is small compared to its original value
(Clarke, 1982). For if x;4) is expressible as a linear combination
of x1,..., Xy, then the residual sum of squares for xj..; after linear
regression on xy,...,Xx Is zero. If there is a near singularity then
the residual sum of squares for xg,; is small compared to its
original total sum of squares. Statistically, this exact collinearity or
near singularity means that there is either no information or little
information about the corresponding parameter, given that the first
k terms are included in the model. If there is an exact singularity,
the term may be omitted from the model without affecting the
span of X. Algebraicaliy, this is equivalent to setting the estimate
to zero with variance zero. In the algorithm such rows/columns are
not swept, but are marked to show their special status. If such a
term is subsequently to be removed from the model, then again no
sweep is done; however, if other terms involved in the collinearity
are subsequently removed, the pivot for the first term may again
become substantial. Should this occur, the term can again be
included in the model and a reliable estimate of the parameter
obtained.

The second method that operates on the information matrix is
the Choleski decomposition, which aims to find a lower-triangular
pxp matrix L that satisfies

XTx =LL”.

L is thus a square-root matrix of X7 X. Details of algorithms
for computing L can be found in the books by Chambers (1977)
and Healy (1986). Having computed L, the inversion of XTX is
accomplished via the formula

(XTxX)"' = (L HTLL

There is a simple inversion algorithm for triangular matrices, and
the inversion can be combined with subsequent multiplication by
the transpose. Again, generalized inverses can be obtained by
setting any row of L with a small pivot to zero.

The condition number of a matrix is a measure of closeness
to singularity, large values indicating near-singularity; algorithms
that use the matrix X7 X directly suffer from the disadvantage
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that the condition number of XTX is the square of the condition
number of X. Large values of the condition number can give rise
to numerical instability from rounding errors in the calculations.
For this reason the second class of methods is designed to avoid
the formation of XTX altogether.

3.8.2 Direct decomposition methods

Direct decomposition methods operate on the model matrix X
directly. The aim is to decompose X into the product of an nxn
orthogonal matrix Q and an nxp matrix R of the form

R
where R; is pxp upper triangular.
The statistical interpretation of the decomposition is as follows.
If y is the observation vector with mean Xf and variance 021, we
may make an orthogonal transformation to new variables u defined

by u = Q”y, where Q is the nxn orthogonal matrix described
above. The mean and variance of the new variables are

E(U) = QTE(Y) = Q"Xf = Q"QRS
_ (RuB

-n0- (7).

cov(U) = QTIQo? = Io2.

Thus the last (n — p) components of U have zero expectation, and
so give no information about 8. Hence the least-squares solution
reduces to equating the first p components of u, here denoted by
u,, to their expectation as a function of ﬁ Thus we arrive at

Ri6 =u

which is easily solved because R; is upper triangular.

It is not necessary to compute Q explicitly because, if y is
appended to X, the sequence of operations that takes X to R also
transforms {X : y} to {R : u}. The first p rows of this augmented
matrix give the coefficients in the above equation for ﬂ The sum
of squares of the last n—p components of u gives the residual sum
of squares.
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Note that
RTR,; = RTR = RTQTQR = X"X,

so that R, is the upper triangular Choleski square-root matrix of
XTX. Infact R, is the transpose of L as described in the previous
section. -

Three methods for finding Q and R are associated with the
names of

Householder: Q is a product of reflections,
Givens: Q is a product of rotations,
and Gram-Schmidt: successive orthogonalization.

A Householder reflection takes the matrix form
I-2vvT,

where v is an n-vector of unit length (v¥'v = 1). It is possible, given
a vector X, to choose v so that, after reflection, all components of
x except the first are zero. In the Householder decomposition, v,
is chosen to reduce the first column of X to this form. A second
vector vy is chosen to reduce components 3 to n of the second
column to zero. Since elements 2 to n of the first column are
already zero, this reflection leaves them unaffected. The process

continues on components j+1 to n of column j for j =1,...,p—1.
If Q; =1 —2v;v], then the matrix
Q = Qp—l s QZQI

is the product of p—1 reflections. It has the property that
Q"X =R,

where R has the form described at the beginning of this section.
Givens rotations are planar rotations through an angle 8. A
single rotation is applied to two components of a vector, corre-
sponding to a rotation through an angle € in the plane of these two
components. The angle is chosen to make one of the components
equal to zero. We denote by Gjx the rotation that replaces the
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ith and jth rows of X by linear combinations that make the kth
element in row j equal to zero. Then the sequence

((Gkjk, j =k +1ton), k=1 top)

annihilates the elements by columns, like Householder, but setting
one element to zero at a time. The sequence

((Grjk, k =1 to min(j—1,p)), j = 2 to n)

annihilates by rows. The latter sequence is more useful if X is
more easily processed by rows than by columns. The idea of
rotations goes back to Jacobi, but the Givens sequence of rotations
ensures that previously formed zeros remain zero after subsequent
rotations.

The Gram-Schmidt method relies on successive orthogonaliza-
tion of the columns of X. The preferred algorithm is due to
Bjorck (1967) and begins by forming

q, =x1/||x1||
q =% —(alx;)a;  F=2-..,p.

The first row of R is given by
T = Qfxi-

This process is then repeated, using at the second stage the vectors
Qy,. .-, 9, in place of x1,...,x,, and so on.

Statistically, we regress columns 2 to p of x on column 1 and
replace them by the vectors of residuals. At the second stage,
columns 3 to p are regressed on column 2, and so on for successive
stages. The matrix Q thus formed is nxp with orthonormal
columns and R is pxp upper triangular. The first j columns of
Q span the same space as the first j columns of X for j = 1,...,p.
Calculating the regression of y on the orthogonalized covariates is
easy because of the orthogonality.

The direct decomposition methods are somewhat less convenient
for updating models than the symmetric sweep method. For
example, if a column of X is deleted, all the columns of Q and
R to the right of the deleted column must be recalculated. Details
of updating with the Givens algorithm are given by Clarke (1981).
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3.8.3 Extension to generalized linear models

In Chapter 2 it was shown that estimation in generalized linear
models can be accomplished by iteratively weighted least squares.
In order to adapt the algorithms discussed above we must (a) allow
iteration and (b) introduce weights and an adjusted dependent
variate, both of which ordinarily vary from one iteration to the
next. Introduction of weights is straightforward in principle. In
the algorithms that use the information matrix we replace X7 X
by XWX, where W is the diagonal matrix of weights, while in
the QR algorithms we replace X by WLY2X. The attractiveness
of QR methods and the Choleski decomposition is then greatly
reduced because a new decomposition must be computed at each
cycle of the iteration.

There are two new features of the algorithms, the first related to
unbounded parameter estimates and the second to pseudo-aliasing.
Infinite parameter estimates arise most commonly in the fitting of
a log-linear model if one or more fitted values are zero. The link
function 7 = log /2 implies that one or more of the s contributing
to 7 must be negatively infinite. Cells in the table for which 2 =0
must also have y = 0, so that there is no contribution to the
deviance. Such cells are best omitted from the fit. Similar effects
arise in models for proportions where the fitted proportion is either
Oorl.

The second feature, pseudo-aliasing, can arise when the changing
weights in an iterative fit produce so little information on a
parameter that the pivot in the information matrix falls below the
tolerance set by the algorithm. However, removal of the covariate
will now be found to increase the deviance sharply, showing that it
is really required in the model. In this respect, pseudo-aliasing is
quite different from true aliasing. The fit obtained immediately
before the algorithin detected the apparent aliasing is often a
reasonable assessment of the fit of the model.

Numerical iteration requires a definition of effective convergence
of the process. If all parameter estimates are finite, straightforward
monitoring of the progress of the deviance is sufficient. Conver-
gence is usually rapid, though divergence may occasionally occur
for ill-fitting models using non-canonical links. If one or more
components are infinite, convergence as measured by the deviance
may be slow. It is usually best in these circumstances to halt the
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iteration after about 10 cycles and to inspect the estimates at that
stage. Usually it is clear which components are tending to £oo. If
necessary, action can then be taken to omit a subset of the data or
to modify the model or both.

3.9 Selection of covariates

Apart from the choice of link function and error distribution, the
problem of modelling reduces to finding one or more appropriate
parsimonious sets of covariates corresponding to a model matrix
X of order n x p. As elsewhere it is important that the final
model or models should make sense physically: at a minimum, this
usually means that interactions should not be included without
main effects nor higher-degree polynomial terms without their
lower-degree relatives. Furthermore, if the model is to be used
as a summary of the findings of one out of several studies bearing
on the same phenomenon, main effects should usually be included
whether significant or not. Strict adherence to this policy makes
it easier to compare the results of various studies and helps to
avoid the apparent conflicts that occur when different fitted models
with different sets of terms are used in each study. The danger is
that a term with a coeflicient of +1, say, might be rejected in one
study because it was insignificant, while in a second study the same
term might have a numerically similar coeflicient that was highly
significant. The fitted models are then different and apparently in
conflict, while in reality the two studies are highly concordant.

We discussed in Chapter 1 the justification for seeking a parsimo-
nious model to represent a set of data. Parsimony implies, among
other things, that covariates having no detectable effect on the
response should ordinarily be excluded from the linear predictor. In
a survey concerned with the incidence of a particular disease, large
numbers of covariates may be available, describing perhaps age
structures of the populations involved, their dietary and smoking
habits, aspects of the environment, and so on. The selection of a
useful set of covariates from such a large set of possible covariates
to form a parsimonious model is then a non-trivial exercise. There
are both statistical and computing problems, the latter arising from
the ‘combinatorial explosion’ that occurs when all possible subsets
of covariates are to be tested for inclusion in the model.
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On the statistical side, the problem is that of defining the
balance to be struck between two opposing effects of including
a new term in the model. The good effect may be a reduction
in the discrepancy between the data and the fitted values. The
bad effect is that, unless there is good prior knowledge that the
covariate has a non-negligible influence on the response, inclusion
of the covariate usually complicates the model and statements of
conclusions derived from it. At one extreme, if the addition of a
single covariate reduces the residual mean square to, say, one third
of its original value we have no hesitation in including it in the
model, particularly if the number of residual degrees of freedom
is large. At the other extreme, if such an addition causes no
reduction, by the principle of Occam’s razor, parsimony wins and
we exclude it. It is the intermediate cases that cause problems.
For example, if there is a large number of irrelevant covariates,
then statistical accidents will produce a few false positives that
appear to influence the response.

The usual F-statistic for the reduction in deviance or sum of
squares is the basis of most criteria for selection of covariates.
In order to exclude irrelevant terms the significance level for
acceptance is set at a low level, but it must not be set so low that
important terms are thereby excluded. Another approach is based
on the idea of providing the best prediction of response values over
a set of covariate values, and yet another uses a criterion based on
a measure of information. Atkinson (1981b) points out that all of
these procedures can be represented (in our notation) as special
cases of minimizing the expression

Q = D + ag¢, (3.10)

where D is the deviance function, ¢ is the number of estimable
parameters in the linear predictor, ¢ is the dispersion parameter,
and « is either constant or a function of n. The idea behind the
second term is to penalize the inclusion of unnecessary covariates
in the model. Use of ) presumes a knowledge of ¢. For Poisson
and binomial models without over-dispersion, ¢ = 1, but otherwise
¢ is usually unknown. Even with counted data it is often wise
to assume that over-dispersion is present unless the data or prior
information indicate otherwise. For details see Chapter 4. When
comparing a sequence of models we have the option of replacing ¢
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in (3.10) either by a common estimate for all models in the sequence
or by separate estimates ¢; derived from the fit of each model in
turn. To make the comparison fair, it seems best in practice to use
a single estimate, usually derived from the most complex model in
the sequence.

If two models in a nested sequence differ only by the inclusion
of one covariate, then the use of the 5% point of the F- or t-
distribution as the criterion for model selection is equivalent to
setting @ ~ 4 in (3.10), assuming adequate residual degrees of
freedom for estimating ¢. The most common criteria based on
errors of prediction (Akaike, 1969; Mallows, 1973) lead to o = 2.
For Normal-theory linear models an argument based on maximum
posterior probabilities leads to a(n) = log(rn). Atkinson (1981b)
suggests that the range a = 2 to 6 may provide ‘a set of plausible
initial models for further analysis’.

The computing problem, which ignores any relationships that
may exist among the covariates, may be specified as follows: ‘find
the best s subsets of size r among the covariates’. If &, the total
number of covariates available, is small, say & < 12, the best subsets
for each r from 1 to k—1 can be found by complete enumeration.
For larger k, say up to 35, tree-search methods, using short-cuts,
are feasible (Furnival and Wilson, 1974). Approximate methods
for generating a single ‘optimum’ subset include:

1. forward selection, whereby at each stage the best unselected
covariate satisfying the selection criterion is added until no
further candidates remain;

2. backward elimination, which begins with the full set and
eliminates the worst covariates one by one until all remaining
covariates are necessary; and

3. stepwise regression (Efroymson, 1960), which combines the
two previous procedures, following backward elimination by
forward selection until both fail to change the model.

In GLIMPSE, (Wolstenholme, O’Brien and Nelder, 1988), a
knowledge-based front-end for GLIM (Payne 1986), a model selec-
tion strategy is used that results in a tree of candidate models, with
the extreme node of each branch forming a possible parsimonious
model. The basic step in the algorithm has as input a kernel,
which contains terms already accepted as necessary, and a set of
free terms, whose status is currently uncertain. The maximal model
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contains the kernel and all the free terms. For each free term two
F-statistics are calculated, a forward F-statistic formed by adding
it to the kernel, and a backwards F-statistic formed by removing
it from the maximal model. The two F-statistics are classified by
a decision rule as being either large or small; and action is then
taken as shown in the table below.

Forward F Backward F Action
large large add term to kernel
large small leave as free term
small large leave as free term
small small discard term

The process is begun with a kernel of terms considered necessary
a priori and continues until the set of free terms is either null or
unchanging. If it is null we have a unique preferred model; if not
we add each remaining free term in turn to the kernel, producing a
branching in the tree and repeat the basic step. Further branching
may then occur, but eventually the final node on each branch will
contain a null set of free terms.

Unthinking use of automatic selection procedures has frequently,
and rightly, been criticized. Clearly the notion that a particular
subset is optimum is hard to sustain when many other subsets
of similar size produce almost equally good fits. It may also
happen that some covariates are much more expensive to measure
than others, and this is not allowed for in a criterion based on
purely statistical considerations. Expense may be an important
consideration if the goal is to produce good forecasts at reasonable
cost. However, if the goal is to understand the mechanism by
which the process is generated, cost is largely irrelevant. A
further criticism of automatic selection procedures is that they do
not take into account the marginality constraints among factors
nor functional marginality among polynomial terms (Section 3.5).
Further, certain factors, e.g. treatment and block effects, would
often be kept in the model whether statistically significant or not.

Further modification of these selection procedures is required for
models that require iterative solution, because of the presence of
weights and adjusted dependent variates, both of which are func-
tions of the fitted values, and so change as the fitted model changes.
The amount of computing is reduced by using an approximate
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procedure, which appears to work well in practice; this involves
doing the full iterative fit for a large but well-fitting model, and
afterwards following the same algorithms as for the non-iterative
case. In other words, the weights and adjusted dependent variate
are kept fixed throughout. The fully iterated fit may then be
recalculated at intervals as a check on the approximation.

3.10 Bibliographic notes

For a history of least squares, see a series of papers by Harter,
summarized in Harter (1976).

Among the many texts on linear models, see Atkinson, (1985),
Draper and Smith (1981), Mosteller and Tukey (1977), Plackett
(1960), Searle (1971), Seber (1977), Sprent (1969) and Williams
(1959).

Model formulae for linear predictors were introduced by Nelder
(1965a,b) and developed by Wilkinson and Rogers (1973).

Aliasing, marginality and the role of constraints are discussed
by Nelder (1977).

For numerical methods for least squares, see Lawson and Hanson
(1974), Gentleman (1974a,b), Healy (1986), Chambers (1977),
Thisted (1988) and Wampler (1979).

The statistical problems of covariate selection are discussed by
Akaike (1973), Mallows (1973), Stone (1977), and summarized by
Atkinson (1981b). For a discussion of the computing aspects of
covariate selection, see Efroymson (1960), Beale (1970), Stewart
(1973), Furnival and Wilson (1974) and Jennrich (1977). Lawless
and Singhal (1978) deal explicitly with generalized linear models.

3.11 Further results and exercises 3

3.1 Use the following data to familiarize yourself with a suitable
linear regression program (S, GLIM or Minitab should be fine).
1. Plot y against z;. Comment on any strong relationships or
unusual features of the plot.
2. Plot y against . Comment on any strong relationships or
unusual features of the plot.
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1 2 Y z1 Z2 Y
2.23 9.66 12.37 3.04 7.71 12.86
2.57 8.94 12.66 3.26 5.11 10.84
3.87 4.40 12.00 3.39 5.05 11.20
3.10 6.64 11.93 2.35 8.51 11.56
3.39 4.91 11.06 2.76 6.59 10.83
2.83 8.52 13.03 3.90 4.90 12.63
3.02 8.04 13.13 3.15 6.96 12.46

2.14 9.05 11.44

3. Plot z, against ;. Comment on any strong relationships or
unusual features of the plot.

Regress y on x,. Plot the residuals against z,.

Regress y on z2. Plot the residuals against z;.

Regress y on z, and z, simultaneously. Compare the co-
efficients obtained in the joint regression with those in the
marginal regressions. Compare the (multiple) correlation co-
efficients.

[Hamilton, 1987].

o o

3.2 Write out explicitly the model matrix corresponding to a
randomized blocks design with three treatments in each of four
blocks.

3.3 Suppose that the three treatments mentioned in the previous
exercise actually denote increasing concentrations of a chemical
used for weed control. Re-parameterize the model using linear and
quadratic treatment contrasts. Write out the corresponding model

matrix.

3.4 Suppose that two factors 4 and B with levels 7 and j
respectively have the property that observations are possible only
when i > j. Now define a new factor C' with levels k =i —j + 1.
Assuming that A and B have five levels each, and that each possible
combination is observed once, answer the following:

1. Which, if any, of the following models are equivalent:

A+ B, A+ C, B+C and A+B+C?
2. What are the ranks of the model matrices in part 17

3. Answer part 1 assuming instead that 4, B and C are quanti-
tative covariates taking values 7, j and k respectively.
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It may be helpful to construct the required factors and variates on
the computer and to fit the models to computer-generated data.

For an example of such a triangular arrangement of factors, see
Cox and Snell (1981, p. 58).

3.5 Suppose that x; and x; are positively correlated variates in
a two-variable linear regression model that includes the intercept.
Show that the regression coefficients i, 3 are negatively corre-
lated. Express the statistical correlation between Bl and ﬁz in
terms of the angle between the vectors x; and x; in RP.

3.6 In section 3.6.6 an expression is given for the determinant of
the Fisher information matrix in a two-variable regression model
with no intercept. Derive the corresponding expression when the
intercept is included.

3.7 Show that the sweep operator, as defined in section 3.8.1, is
self-inverse. What advantages accrue from this property?

3.8 The sweep operator has the property that a new variable can
be added to an existing regression equation with a single sweep.
This produces automatically the updated parameter estimates, the
new residual sum of squares and the Fisher information matrix
with minimal computational effort. Yet few statistical programs
make full use of this property. Discuss briefly the organizational
difficulties involved in making full use of the sweep algorithm on
an interactive computer system.

3.9 Suppose that A is a factor with 4 levels whose effects are
denoted by a,. Write out explicitly the model matrix X, of order
6x4, corresponding to the algebraic expression

Nrs = Qp — g, for r <s.

You may assume that all 6 combinations 1 < r < s < 4 are
observed. What is the rank of X? Does the constant vector lie
in the column space of X? Under what circumstances might such
a model formula arise?

3.10 Let A, B,C,D be four factors each with four levels, having
the exclusion property that no two factors can simultaneously have
the same level. There are thus only 4! possible factor combinations
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instead of the more usual 4* = 256 unrestricted combinations,
What are the ranks of the models

A+ B+ C+ D, A+B+C, and (A+B+C+ D)*x2?

You may assume that all 4! permutations are observed.
For what purposes might such models be used?

Table 3.1 Ascorbic acid concentrations of samples of snap-beans after a
period of cold storage.

Weeks of storage

Temp. °F 2 4 6 8 Total
0 45 47 46 46 184
10 45 43 41 37 166
20 34 28 21 16 99
Total 124 118 108 99 449

3.11 The data in Table 3.1, taken from Snedecor and Cochran
(1967, p.354), were obtained as part of an experiment to determine
the effects of temperature and storage time on the loss of ascorbic
acid in snap-beans. The beans were all harvested under uniform
conditions at the Iowa Agricultural Experiment Station before
eight o’clock one morning. They were prepared and quick-frozen
before noon the same day. Three packages were assigned at random
to each temperature and storage-time combination. The sum of the
three ascorbic acid determinations is shown in the Table.

Suppose for the purpose of model construction that the ascorbic
acid concentration decays exponentially fast, with a decay rate
that is temperature-dependent. In other words, for a given storage
temperature T, the expected concentration after time ¢ (measured
in weeks) is u = E(Y') = exp{a — Brt}. The initial concentration,
exp(a) is assumed in this model to be independent of the storage
temperature. Express the above theory as a generalized linear
model, treating temperature as a factor and storage time as a
variate.

[The above model is unusual in that it contains an interaction
between time and temperature, but no main effect of temperature.
By design, the concentrations are equal at time zero.]
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Estimate the times taken at each of the three temperatures for
the ascorbic acid concentration to be reduced to 50% of its original
value. Consider carefully how you might construct confidence
intervals for this half-life.

Compare your analysis with the factorial decomposition model,
using orthogonal polynomial contrasts, as described by Snedecor
and Cochran (1967, pp. 354-8).

The mean squared error for individual packets, obtained from
the replicates, was 0.706 on 24 degrees of freedom. Is this value
consistent with the above analyses?



CHAPTER 4

Binary data

4.1 Introduction

4.1.1 Binary responses

Suppose that for each individual or experimental unit, the response,
Y, can take only one of two possible values, denoted for convenience
by 0 and 1. Observations of this nature arise, for instance, in
medical trials where, at the end of the trial period, the patient has
either recovered (Y = 1) or has not (¥ = 0). Clearly, we could
also have intermediate values associated with different degrees of
recovery (see Chapter 5), but for the moment that possibility will
be ignored. We may write

pr(Y; =0)=1—my; pr(Y;=1)=m; (4.1)

for the probabilities of ‘failure’ and ‘success’ respectively.

In most investigations, whether they be designed experiments,
surveys or observational studies, we have, associated with each
individual or experimental unit, a vector of covariates or explana-
tory variables (z1,...,%p). In a designed experiment, this covariate
vector usually comprises a number of indicator variables associated
with blocking and treatment factors, together with quantitative
information concerning various aspects of the experimental mat-
erial. In observational studies, the vector of covariates consists
of measured variables thought likely to influence the probabil-
ity of a positive response. The principal objective of a statisti-
cal analysis, therefore, is to investigate the relationship between
the response probability m# = w(x) and the explanatory variables
x = (Z1,...,Zp). Often, of course, a subset of the zs is of primary
importance, but due allowance must be made for any effects that
might plausibly berattributed to the remaining covariates.

98



4.1 INTRODUCTION 99

4.1.2 Covariate classes

Suppose that, for the ith combination of experimental conditions
characterized by the p-dimensional vector (z;i,...,Z;p), observa-
tions are available on m; individuals. In other words, of the
N = my + my + ... + m, individuals under study, m; share the
covariate vector (Z;1,...,%;p). These individuals are said to form
a covariate class. If the recorded covariates are factors each having
a small number of levels, the number of distinct covariate vectors,
n, is often considerably fewer than the number of individuals, ¥V,
under study. In these circumstances, it is more convenient and
more efficient in terms of storage to list the data by the n covariate
classes than by the N individuals.

Table 4.1 Alternative ways of presenting the same data

(a) Data listed by subject No. (b) Data listed by covariate class
Subject Covariate Response Covariate Class size Response

No. (z1, z2) Y (z1, z2) m Y

1 1,1 0 1,1 2 1

2 1,2 1 1,2 3 2

3 1,2 0 2, 1 1 0

4 2,1 0 2,2 1 1

5 2,2 1

6 1, 2 1

7 1,1 1

To take an over-simplified example, suppose that a clinical trial
is undertaken to compare the effectiveness of a newly developed
surgical procedure with current standard techniques. In order
to recruit sufficient patients in a reasonable period, the trial is
conducted at two hospitals (z; = 1,2) (with different surgeons and
ancillary staff). In each hospital, patients judged by the protocol
as suitable for recruitment are assigned at random to one of the
two surgical procedures (z; = 1,2). One month into the study,
seven patients have been recruited. These patients are listed by
patient number in Table 4.1a and by covariate class in Table 4.1b.
Provided that only these two covariates are recorded, the number
of covariate classes remains equal to four however many patients
are recruited. Thus the efficiency of Table 4.1b increases as the
number of patients grows.
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Usually covariate classes are formed for convenience of tabu-
lation and to make the major effects of interest easier to detect
by visual scanning. In forming covariate classes from the original
data, information concerning the serial order of the subjects is
lost, so that we cannot, for example, reconstruct Table 4.1a from
Table 4.1b. If serial order of patients is considered irrelevant, no
information is lost when the data are grouped by covariate class.
On the other hand, the possibility of detecting whether serial order
is relevant is also lost in forming covariate classes. Thus, the claim
that no information is lost must be regarded either as a tautology
or as a self-fulfilling statement. In the example discussed in the
previous paragraph, the possibility of a learning effect on the part
of the surgeon or his staff should be considered. Such an effect, if
present, cannot be detected from an analysis of the grouped data in
the form displayed in Table 4.1b, but might possibly be detectable
as a serial trend in an analysis of the original data in Table 4.1a.

When binary data are grouped by covariate class, the responses
have the form y, /m1,...,yn/mn, where 0 < y; < m; is the number
of successes out of the m; subjects in the ith covariate class. The
vector of covariate class sizes m = (my,...,my,) is called the
binomial index vector or binomial denominator vector. Ungrouped
data, or data listed by individual subjects, can be considered as a
special case for whichm; =... =m, =1.

The distinction between grouped and ungrouped data is impor-
tant for at least two reasons.

1. Some methods of analysis appropriate to grouped data, par-
ticularly those involving Normal approximation, are not ap-
plicable to ungrouped data.

2. Asymptotic approximations for models applied to grouped
data can be based on either of two distinct asymptotes, either
m — oo or N — 0o. Only the latter limit is appropriate for
ungrouped data.

4.1.3 Contingency tables

Suppose that the data are indexed by three explanatory factors, 4
having a levels, B having b levels and C' having c levels. Among
the subjects observed, therefore, there are at most a x b x ¢
covariate classes. There may in fact be fewer covariate classes than
this maximum either because, by chance, one or more covariate
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classes were not observed or because certain factor combinations
are physically or logically impossible (Section 3.7.1). For each
covariate class, the number of successes and the number of failures
is counted. Such data may be presented as a 2 x a x b x ¢ table
of counts called a contingency table. For instance, the data in
Table 4.1 give rise to the 2 x 2 x 2 table

| y=0 y=1 [y=0 y=1
To=1 1 1 2 =1 1 0
z1=1 =2
Tg =2 1 2 2 =2 0 1

In constructing models for such data, one is normally interested
in how the response probabilities are affected by the covariates
rather than how the individuals are distributed over covariate
classes. If the prevalence of the various covariate classes were
of interest, it would be appropriate to analyse the marginal table
summed over the response. The methods discussed in Chapter 6
may be helpful here. However, if the response probabilities are of
interest, it is best to regard the marginal table of covariate class
totals, m, as fixed, whether or not they were predetermined by
design. The formal analysis then proceeds conditionally on the
observed value of the vector m.

4.2 Binomial distribution

4.2.1 (Genesis

The binomial distribution arises naturally in a number of contexts
where the observations Y are non-negative counts bounded above
by a fixed value. Two ways in which it can arise are now described.

Suppose that Y7,Y; are independent Poisson random variables
with means p1, us. It follows that the total, Y7 +Y2, has the Poisson
distribution with mean gy + g3. The conditional distribution of Y;
given that Y; + Y3 = m is given by

pr(Y1 =y |Yi+Yo2 =m) = <m>1ry(1—7r)m'y, y=0,1,...,m
y

(4.2)

where m = p3 /(1 +p2). This conditional distribution depends only

on the ratio of the Poisson means and not on u; + pz. Details of
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the derivation are given in Exercise 4.4. The notation Y’ ~ B(m, )
means that Y has the binomial distribution (4.2) with index m and
parameter .

The Bernoulli distribution (4.1) is a nearly degenerate case of the
binomial distribution for which m = 1. A second and more natural
way in which the binomial distribution arises in practice is as the
sum of independent homogeneous Bernoulli trials. For instance,
in the formation of covariate classes as discussed in section 4.1.2,
if the individuals so grouped are homogeneous and independent,
the totals have the binomial distribution with the same parameter.
Details of this and related derivations are given in Exercise 4.2.

4.2.2 Moments and cumulants

The cumulants of the binomial distribution (4.2) are most easily
derived using the representation of the binomial as a sum of in-
dependent homogeneous Bernoulli random variables whose distri-
bution is given in (4.1). The moment generating function of (4.1)
is

My (§) = Eexp(§Y) =1 — 7 + mexp(§). (4.3)
Hence, the cumulant generating function is
Ky (€) = log My (§) = log{1 — 7 + mexp(§)}-
It follows that the moment generating function of ¥; +... 4+ ¥y, is
{1—-7m+mexp(§)}™
and that the cumulant generating function is
mlog{l — = + mexp(£)}. (4.4)

From the Taylor expansion of (4.4), we find that the first four
cumulants are

K1 = mm, k3 = mm(l —m)(1 — 2m),

kg =mm(l —7), kg =mm(l—m){l —6x(1 —m)}.

All cumulants of Y have the form mxpolynomial in w. The
expressions for the moments are more complicated except in the
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special case m = 1 for which all moments of all orders are equal
to .

It is sometimes of interest in applications to examine what hap-
pens to the distribution of the sum when the Bernoulli components
lack homogeneity. Suppose, therefore, that ¥ = Y1 + ... + Y,
where Y; ~ B(1,7;) and the components are independent. From
the additive property of cumulants, it is readily seen that the cu-
mulants of ¥ are

K1 = E T = mm,

Kg = Zw,-(l —m)=ma(l —7) — (m — Dka(m) < ma(l —7),
kg =y m(l—m)(1—2m),
Kg = Zﬂ'i(l - 7'(','){1 — 67‘(’,‘(1 — 7T,')},

where ko (m) = S (m; — #)2/(m — 1) is the ‘sample variance’ of the
ws. Evidently, the sample variance of Y is deflated relative to the
binomial variance. This calculation appears to contradict the com-
mon intuition that lack of homogeneity should increase variability
rather than decrease it. The reason for the apparent contradiction
is that the calculations just given are not relevant to the problem
of heterogeneity as usually met. In practice, it is usually known
only that there is variability among the ms: the complete set of
values my,..., T, is rarely known. A more relevant calculation,
therefore, is to regard my,..., T, as independent random variables
with mean 7. It is then easily shown that, whatever the distribution
of m;, Y; ~ B(1, 7). Hence, thesum Y = Y1 +...4Y,, is distributed
as B(m, ) and the binomial distribution is recovered.

For an extension of these calculations, see Exercises 4.6 and 4.17.

4.2.3 Normal limit

From the cumulant generating function (4.4), we see that, for large
m, all cumulants of Y are of order m. Consequently, the cumulants
of the standardized random variable

Y —mm
mn(l — )

are 0, 1, O(m~2), O(m™!) and so on, decreasing in half powers
of m. For r > 2, the rth cumulant of Z is O(m!~"/2). As m —
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for any fixed w, the cumulants of Z tend to those of the standard
Normal distribution, namely 0,1, 0,0, .... Since convergence of the
cumulants implies convergence in distribution, approximate tail
probabilities may be obtained from

Y>y)~1-98(2"
pr(Y 2 y) ‘ (z7) (45)
pr(Y <y) =~ ®(27)
where ®(.) is the cumulative Normal distribution function, y is an
integer,

1 1
_ y—mm—3 +=y—m7r+§

The effect on probability calculations of the continuity correction
of :t-;— is of order O(m~%2) and hence asymptotically negligible. In
medium-sized samples, however, the effect of the continuity correc-
tion is appreciable and almost always improves the approximation.

An improved version of (4.5) utilizing third- and fourth-order
cumulants is given in Appendix B.

The rate of convergence to Normality is governed primarily by
the third cumulant and is fastest when = = -;— The error incurred
in using (4.5) is asymptotically O(m~?) in general: if 7 = 11)_ the
error reduces to O(m™1). In practice, the approximation is usually
satisfactory if mm(1 —7) > 2 and if |27| or |z*| does not exceed
2.5. Note that although the absolute error

e(y) = |pr(Y > y) — 1+ ®(27)]

. . . . 1
incurred in using (4.5) is asymptotically small even for large 2,
the relative error,

€(y)
pr(Y > y)

may be quite large if 2z~ is large.
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4.2.4 Poisson limit

Suppose that 7 — 0, m — oo in such a way that p = m= remains
fixed or tends to a constant. From (4.4), the cumulant generating
function of Y tends to

glog{l + m(exp(¢) — 1)} — p{exp(€) — 1},

which is the cumulant generating function of a Poisson random
variable with mean u: see section 6.2. In fact, in this limit, all
cumulants of Y differ from those of the Poisson distribution, P(u),
by terms of order O(m™!). Probability calculations based on the
Poisson distribution are in error by terms of the same order. By
contrast, the Normal approximation, with or without the continuity
correction, has an error of order O(m™12).

4.2.5 Transformations

There is a large body of literature concerning transformations of
the binomial and other distributions designed to achieve a specified
purpose, usually stability of the variance or symmetry of the
density. Such transformations are considered in Exercises 4.8-4.11.
In this section, we consider two transformations, one connected
with achieving approximate additivity in linear logistic models,
the other concerned with Normal approximation. We consider the
latter first.

Suppose that Y ~ B(m,r) and let £ = mn be the mean of Y. It
is shown in Appendix C that for large values of m, the cumulants
of the signed deviance statistic

W = w(Y) = £[2¥ log(¥/p) + 2(m — ¥) log{(m — ¥)/(m — u)}]"*

+ 1—-2nm (4.6)

6/ (mn(1—7x)) )

differ from those of a standard Normal random variable by terms

of order O(m™!). The sign used in (4.6) is that of ¥ — p and the

transformation is monotone increasing in Y. In other words, w(Y’)

is approximately symmetrically distributed as far as this can be
achieved in the discrete case. In fact, the variance of w(Y) is

5—2n(l —7)

2 _ -2
ow =1+ 36mn(l — ) +0(m™).
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The cumulants of w(Y)/ow differ from those of N(0,1) by terms
of order O(m~%2), suggesting that a Normal approximation for W
ought to give accurate results.

In order to use the discrete Edgeworth approximation as pre-
sented in Appendix B, we define the continuity-corrected abscissa
and the Sheppard correction as follows:

wt =w(y+ 3)
1+ -
T = P E—
24mm(l — m)
From equation (B.3), approximate tail probabilities are given by

pr(Y < y) ~ ®(wrr/ow).

Note that the ratio of 7 to ow is

1-7(1-n)
mfow =1~ 36mn(l — )
1 1

36m 36mn(l—m)

Analogous approximations are available for the right-hand tail
probability. These approximations are more accurate than (4.5).

The empirical logistic transformation is a transformation of ¥
designed to achieve approximate additivity in linear logistic models.
These are discussed more fully in the section that follows. Suppose
therefore, that ¥ ~ B(m, 7) and that we require an approximately
unbiased estimate of the log odds,

A =10g(1 W7r>'

It is natural to begin by trying transformations of the form log[(Y+
c)/(m-Y + c)] for some constant ¢ > 0. The maximum-likelihood
estimator has this form with ¢ = 0 and has asymptotic bias of

order O(m™!). For the particular choice ¢ = %, we have the
transformation .
Y+3

Z=1 (——2—) 4.7

o8 m-Y + % 4.7
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which has the property that
E(Z) =X+ 0(m™).

This is known as the empirical logistic transformation (Cox, 1970).
For any other choice of constant, the bias is O(m™!): see Exer-
cise 4.15.

Gart and Zweifel’s (1967) results support the estimation of
var(Z) by v = (y+ 3)™' + (m —y + 3)~'. The idea behind
transformation is that it may be simpler to use a linear regression
model for Z with weights v™! rather than to use a non-linear
model for the untransformed responses. This is often a simple
and attractive alternative to maximum likelihood. Because the
argument is asymptotic in nature, the transformation is useful only
if all the binomial indices are fairly large.

4.3 Models for binary responses

4.3.1 Link functions

To investigate the relationship between the response probability =
and the covariate vector (x,,...,,), it is convenient, though per-
haps not absolutely necessary, to construct a formal model thought
capable of describing the effect on 7 of changes in (z;,...,7p). In
practice, this formal model usually embodies assumptions such as
zero correlation or independence, lack of interaction or additivity,
linearity and so on. These assumptions cannot be taken for granted
and should, if possible, be checked. Furthermore, the behaviour of
the model should, as far as possible, be consistent with known
physical, biological or mathematical laws, especially in its limiting
behaviour.

Linear models play an important role in both applied and
theoretical work — and with good reason. We suppose therefore

that the dependence of 7 on (z,,...,Z,) occurs through the linear
combination »
n= Z ;B (4.8)
j=1
for unknown coefficients fi,. .., p. Unless restrictions are imposed

on # we have —00 < 7 < oo. Thus, to express m as the
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linear combination (4.8) would be inconsistent with the laws of
probability. A simple and effective way of avoiding this difficulty
is to use a transformation g(x) that maps the unit interval onto
the whole real line (—o00,00). This remedy leads to instances of
generalized linear models in which the systematic part is

Y=m = Zx”ﬂ], i=1,...,n (4.9)

A wide choice of link functions g(=) is available. Three functions
commonly used in practice are

1. the logit or logistic function
g1(m) = log{m/(1 - m)};
2. the probit or inverse Normal function
g2(m) = @~ (m);
3. the complementary log-log function
g3(m) = log{— log(1 — =)}.
A fourth possibility, the log-log function
ga(m) = —log{—log(m)},

which is the natural counterpart of the complementary log-log
function, is seldom used because its behaviour is inappropriate for
T < 11,-, the region that is usually of interest. All four functions can
be obtained as the inverses of well-known cumulative distribution
functions having support on the entire real axis. The corresponding
density functions are discussed in Exercises 4.22-4.23. The first two
functions are symmetrical in the sense that

g1(m) = g1 (1 — ).

The latter two functions are not symmetrical in this sense, but are
related via
g93(m) = —g4(1 — 7).

All four functions are continuous and increasing on (0, 1).
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Fig. 4.1. A graphical comparison of three link functions with the logistic
function: the 45° line is the logistic function.

Figure 4.1 compares the four functions. The logistic function is
taken as the standard and g»(7), g3(m), g4(m) are plotted against
g1(m) for values of 7 in the range 0.01 to 0.99.

The logistic and the probit function are almost linearly related
over the interval 0.1 < 7 < 0.9. For this reason, it is usually
difficult to discriminate between these two functions on the grounds
of goodness-of-fit; see, for example, Chambers and Cox (1967).
For small values of m, the complementary log-log function is close
to the logistic, both being close to log(n). As w approaches 1,
the complementary log-log function approaches infinity much more
slowly than either the logistic or the probit function. Similar
comments apply to the log-log function as can be seen from
Figure 4.1.

All asymptotic and approximate theory presented in this chapter
applies regardless of the choice of link function. However, we
shall be concerned mostly with the logistic function, not so much
because of its simpler theoretical properties, but because of its
simple interpretation as the logarithm of the odds ratio. Apart
from this, the logistic function has one important advantage over
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all alternative transformations in that it is eminently suited for the
analysis of data collected retrospectively. See section 4.3.3.

4.3.2 Parameter interpretation

In order to summarize the conclusions of an analysis in an easily
digested form, it is helpful to state the magnitudes of the estimated
effects on an easily understood scale. The scale most suitable for
this purpose is often different from the scale or link function used
to achieve additivity of effects, namely g(w). For instance, if a
linear logistic model has been used with two covariates z; and z,,
we have the model

™
108(m> = fo + f121 + P22

for the log odds of a positive response. Equivalently, the model
may be written in terms of the odds of a positive response, giving

™
-7~ exp(fo + Br121 + Ba23).

Finally, the probability of a positive response is

- exp (o + Biz1 + B22)
1+ exp(Bo + F121 + Boxa)’

This is the inverse function of g; (7). Assuming that z; and z,
are functionally unrelated, the conclusions based on such a model
may be stated as follows. The effect of a unit change in x5 is to
increase the log odds by an amount 2. Equivalently, but perhaps
preferably, we may say that the effect of a unit change in z; is
to increase the odds of a positive response multiplicatively by the
factor exp(8;). It is important here that x, be held fixed and not
be permitted to vary as a consequence of the change in z3. These
statements are fairly easy to comprehend because the direction and
magnitude of the stated effect are unaffected by the values of x,
and .

The corresponding statements given on the probability scale are
more complicated because the effect on 7 of a unit change in z3
depends on the values of z; and z;. The derivative of m with
respect to s is

or
6.’1)2

=7(1 —m)fa.
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Thus, a small change in z2 has a larger effect, as measured on the
probability scale, if 7 is near 0.5 than if 7 is near 0 or 1. Perhaps
the simplest device to assist in the presentation of conclusions is to
give the graph of

m(n) = exp(n)/{1 + exp(n)}

and to state the effect on 7 of changes in z3. The effect on the
probability can then be read from the graph. This method works
equally well whatever the link function used. The required inverse
link functions are

2 93 *(n) = ®(n),
m3(n) = g3 '(n) = 1 — exp(—e"),
91 "(n) = exp(—e™™).

and  my(n)

All of these functions are defined for —oo0 < 1 < oo and increase
continuously from zero at —oo to one at oo.

4.3.3 Retrospective sampling

One important property of the logistic function not shared by the
other link functions is that differences on the logistic scale can
be estimated regardless of whether the data are sampled prospec-
tively or retrospectively. To illustrate the difference between these
two sampling schemes, suppose that a population is partitioned
according to two binary variables, (D, D) referring to the presence
or absence of disease, and (X, X) referring to exposure or non-
exposure to the toxin or carcinogen under investigation. Suppose
that the proportions of the population in the four categories thus
formed are as shown in Table 4.2.

Table 4.2 Hypothetical frequencies of disease and ezposure status

Disease status

D D Total
Ezxposure X moo = 0.70 mo1 =0.02  mp, =0.72
status X mo = 0.25 m1 = 0.03 m. = 0.28

Total m.0 = 0.95 w1 = 0.05 1.0
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In a prospective study, an exposed group of subjects is selected
together with a comparable group of non-exposed individuals. The
progress of each group is monitored, often over a prolonged period,
with a view towards comparing the incidence of disease in the two
groups. In this way, the row totals, giving the numbers of subjects
in each of the exposure categories, are fixed by design. The column
totals are random, reflecting the incidence of disease in the overall
population, weighted according to the sizes of exposure groups in
the sample.

In a retrospective study, diseased and disease-free individuals
are selected — often from hospital records collected over a period
of several years. In this design, the column totals are fixed by
design and the row totals are random, reflecting the frequency of
exposure in the population, weighted according to the sizes of the
disease groups in the sample.

Considering the prospective study first, the logits for the two
exposure groups are

log(mo1/moo) = —log(35) = —3.555 and
log(my1/m0) = —log(8.3) = —2.120.

The difference of logits is thus
A =log(my) /mo) — log{mor /7o) = 1.435.

This difference could also be estimated by sampling retrospectively
from the two disease groups D and D because

A= 108(7711/7701) - l08(7710/7700)-

In fact, in the present example, the retrospective design is substan-
tially more efficient than the prospective design. This is because
the disease is rare even among those who are exposed to the toxin
or carcinogen. Thus, for a prospective study to be effective, a large
number of initially healthy subjects must be followed for a pro-
longed period in order that a sufficiently large number of subjects
may eventually fall victim to the disease. In a retrospective study,
on the other hand, the investigator has access via hospital records
to all cases of the disease recorded over a substantial period of time.
In the case of rare diseases, it is common to take a 100% sample of
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the diseased individuals and to compare these with a similar sized
sample of disease-free subjects. Since exposure is fairly common,
ranging from 26% among those who are disease-free to 60% among
those with the disease, a substantial number of exposed and non-
exposed subjects will be observed both among the cases (D) and
among the controls (D).

More generally, if there are several exposure groups and other
covariates, we may write the linear logistic model in the form

pr(D | x) = exp(a + B7x) /[1+ exp(a + f7x)] (4.10)

for the probability of contracting the disease given that the subject
has covariates x. Included in x is the information on the exposure
category to which the individual belongs, together with other
factors considered relevant to the incidence of the disease.

Model (4.10) is specified in a form appropriate for data sampled
prospectively. Suppose, however that the data are sampled retro-
spectively. Introduce the dummy variable Z to define whether an
individual is sampled or not, and denote the sampling proportions
by

mo=pr(Z =1|D) and m =pr(Z = 1| D).

It is essential here that the sampling proportions depend only on
D and not on x. We may now use Bayes’s theorem to compute the
disease frequency among sampled individuals who have a specified
covariate vector x.
pr(Z = 1| D, x) pr(D| x)

pr(Z = 1|D, x) pr(D|x) + pr(Z = 1|D, x) pr(D|x)

moexp(a + AT x)
7y + mo exp(a + BT x)

exp(a* + A7 x)
1+ exp(a* + BTx)’

pr(D|Z =1,x) =

where a* = a+log(mg/m1). In other words, although the data have
been sampled retrospectively, the logistic model (4.10) continues
to apply with the same coeflicients 8 but a different intercept. It
follows therefore, that the logistic models described here in the con-
text of prospective studies can be applied to retrospective studies
provided that the intercept is treated as a nuisance parameter.
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This derivation follows the lines of Armitage (1971) and Breslow
and Day (1980). No such simple inversion exists for probit or
complementary log-log models.

4.4 Likelihood functions for binary data

4.4.1 Log likelihood for binomial data

The responses ¥,...,y, are assumed to be the observed values
of independent random variables Yi,...,Y, such that ¥; has the
binomial distribution with index m; and parameter m;. It is
convenient initially to consider the log likelihood as a function of
the n-vector # = my, ..., T,. Subsequently, when we wish to study
specific linear models such as (4.10), the log likelihood is considered
as a function of the coefficients appearing in the model. Using (4.2),
the log likelihood may be written in the form

l{my) = z":[y, log(1 o ) + m;log(l — w,)] (4.11)

i=1

The constant function of y not involving x, namely

s ()

has been omitted because it plays no role.

The systematic part of the model specifies the relation between
the vector x and the experimental or observational conditions as
summarized by the model matrix X of order n x p. For generalized
linear models, this relationship takes the form

Y= = Z.’I:,],@], i=1,...,n, (4.12)

so that the log likelihood (4.11) can be expressed as a function
of the unknown parameters f,...,0,. It is a good tactical
manoeuvre, however, not to make this substitution but to keep
the two expressions separate. For instance, we may wish to
compare several models by adding or deleting covariates. This
operation changes the set of parameters, but leaves expression
(4.11) unaltered.
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In the case of linear logistic models, we have

g(m) = m =log{m /(1 —m)} = > ;5.
i

Substitution into (4.11) gives
y) = Z Zyi-’liijﬂj - Zmi log(l + epo:c“@-), (4.13)
i J i j

where we have written [(8;y) instead of I(x(8);y). The important
point to notice here is that, because the logistic link is also the
canonical link, the log likelihood depends on y only through the
linear combinations XTy. These p combinations are said to be
sufficient for 8. In fact, as will be seen shortly, the likelihood
equations in this special case amount to setting the observed linear
combinations XTy equal to their expectation, namely EXTY; ﬂ)
This may be viewed a special case of the method of moments.

Section 2.4.4 and Table 2.1 give the canonical link functions for
other distributions.

4.4.2 Parameter estimation

Following the general technique given in section 2.5, we now derive
the likelihood equations for the parameters @ that appear in (4.12).
First note that the derivative of the log-likelihood function, in the
form given in (4.11), with respect to m; is

ﬂ _ Y —myTy
67‘('1' B 7T«,',(1 —7T1')-

Using the chain rule, the derivative with respect to 3, is
Z yz m;m; Om;
6ﬂr i= 771 1 - 771 6ﬂr

In the case of generalized linear models, it is convenient to express
Om; /85, as a product

Omy _ dm Omi _ dmi
0B, B dn; 00 B dn;

Tip.
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Thus the derivative with respect to G, is

O _ 5~ yi—mimdmy (4.14)

8, - mi(1 —m;) dn;

The Fisher information for g is
82l m; om; Om;
_E(aﬂraﬂ3> h 21: (1l — ;) 6ﬂr 00

d
—Z (dms/dn)° R e T

b (1-—m)

= {xwa} (4.15)

rs’

where W is a diagonal matrix of weights given by

W= d1ag{m1 (3:: )2/7r,-(1 - wi)}.

In the case of linear logistic models, equation (4.14) reduces to
ol/oB = XT(Y — p)

when written in matrix notation. The likelihood equations then
amount to equating the sufficient statistic, XTY, to its expectation
as a function of B In addition, the diagonal matrix of weights
appearing in the Fisher information reduces to

W = diag{m;m;(1 — m)}.

Following the lines of the general Newton-Raphson procedure
described in Chapter 2, parameter estimates may be obtained in
the following way. Given initial estimates BO, we may compute
the vectors #y and f);. Using these values, define the adjusted
dependent variate, Z, with components

L = A.+yi_mi7?ri an;
! Tk m; dﬂ'i,

all quantities being computed at the initial estimate B, Maximum-
likelihood estimates satisfy the equation

X"wxpg =X"wz, (4.16)
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which can be solved iteratively using standard least-squares meth-
ods. The revised estimate is

B, = (XTWX)'X"wWz

where all quantities appearing on the right are computed using the
initial estimate.

Failure to converge is rarely a problem unless one or more
components of B are infinite, which usually implies that some of
the fitted probabilities are either zero or one. Infinite parameter
estimates can occur if the data are sparse and y; = 0 or y; = m;
for certain components of the response vector. Although the
iterative procedure does not converge under these circumstances,
nevertheless the sequence of fitted probabilities, #() generally
tends quite rapidly towards # and the deviance towards its limiting
value. After a few cycles of (4.16) the fitted values m;; are
normally quite accurate but the parameter estimates and their
standard errors may not be. Two criteria ought therefore to
be tested to detect abnormal convergence of this type. The
primary criterion ought to be based on the change in the fitted
probabilities, for instance by using the deviance. A supplementary
test for parameter divergence can be based on the change in
B or in the linear predictor, 5. Abmnormal convergence means
that the log likelihood is either very flat or, more likely, has an
asymptote. Consequently, the computed parameter estimates and
their estimated standard errors are not to be trusted.

Some results concerning the existence and uniqueness of par-
ameter estimates have been given by Wedderburn (1976) and by
Haberman (1977). These results show that if the link function is
log concave, as it is for the four functions discussed in section 4.3.1,
and if 0 < y; < m; for each 7, then ﬁ is finite and the log likelihood
has a unique maximum at ﬁ

Starting values ﬂ(o) can be obtained using the method described
in Chapter 2, beginning with ‘fitted values’ i = (y+ 3)/(m+1). A
good choice of starting value usually reduces the number of cycles
in (4.16) by about one or perhaps two. Consequently, the choice of
initial estimate is usually not critical. A bad choice may, however,
result in divergence.
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4.4.3 Dewiance function

The residual deviance is defined to be twice the difference between
the maximum achievable log likelihood and that attained under the
fitted model. Under any given model, Hy, with fitted probabilities
#, the log likelihood is

l(x;y) = Z{yi log #; + (m; — y;) log(1 — #;) },

1

which is just (4.11) written in a more symmetrical form. The
maximum achievable log likelihood is attained at the point #; =
i /m;, but this point does not usually occur in the model space
under Hy. The deviance function is therefore

D(y; &) = 2l(w;y) — 2l(#;y)
= 22{% log(yi/fi) + (m; — yi)log(H>}-

This function behaves in much the same way as the residual
sum of squares or weighted residual sum of squares in ordinary
linear models. The addition of further covariates has the effect of
reducing D.

It is often claimed that the random variable D(Y;#) is asymp-
totically or approximately distributed as Xﬁ,p, where p is the num-
ber of fitted parameters under Hy. This claim is then used to justify<
the use of D as a goodness-of-fit statistic for testing the adequacy
of the fitted model. Proofs of the limiting x2_, distribution are
based on the following assumptions whose relevance in any given
application must be open to question.

Assumption 1: The observations are distributed independently ac-
cording to the binomial distribution. In other words, the possibility
of over-dispersion (Section 4.5) is not considered.

Assumption 2: The approximation is based on a limiting operation
in which dim(Y) = n is fixed, m; — oo for each ¢, and in fact
mimi(1 —m;) — oo.

In the limit given by assumption 2, D is approximately indepen-
dent of the estimated parameters B and hence approximately inde-
pendent of the fitted probabilities #. Approximate independence
is essential for D to be considered as a goodness-of-fit statistic, but
this property alone does not guarantee good power.
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If n is large and m;7; (1 — ;) remains bounded the whole theory
breaks down in two ways. First, the limiting x? approximation no
longer holds. Second, and more importantly, D is not independent
of # even approximately. As a consequence, a large value of D
could be obtained with high probability by judicious choice of 8
and x. In other words, a large value of D cannot necessarily be
considered to be evidence of a poor fit. For an extreme instance of
this effect, see section 4.4.5.

The deviance function is most directly useful not as an absolute
measure of goodness-of-fit but for comparing two nested models.
For instance, we may wish to test whether the addition of a further
covariate significantly improves the fit. Let Hy denote the model
under test and H4 the extended model containing an additional
covariate. The corresponding fitted values are denoted by i, and
ft 4 respectively. The reduction in deviance

R D(y; frg) — D(y; a) = 2U(frp3¥) — 2(fao;¥) (4.17)
is identical to the likelihood-ratio statistic for testing Hy against H4.
This statistic is distributed approximately like x? independently of
ft under assumption 1 above provided that either n is large or that
assumption 2 is satisfied. In particular, D(Y;fi;) need not have
an approximate 2 distribution nor need it be distributed inde-
pendently of fi,. The x? approximation is usually quite accurate
for differences of deviances even though it is inaccurate for the
deviances themselves.

4.4.4 Bias and precision of estimates

To a first order of approximation, maximum-likelihood estimates
are unbiased with asymptotic variance equal to the inverse Fisher
information matrix (4.15). Specifically, for large n,

BB~ ) =0 1)
cov(B) = (XTWX) {1+ O(n™V)}.
These approximate results are also true for the alternative limit in
which n is fixed and m — co. The errors are then O(m; ).
It is possible to give an expression for the bias of 8 that covers all
link functions. However, in order to keep the expressions as simple
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as possible, we shall restrict attention to linear logistic models. In
that case, the bias of £ involves the 3-way array

Kot = 3 Tir@isTit mims(1 — m;)(1 = 2m;),
i
which is just the skewness array of the log likelihood derivative
0l/0B. If we denote by k., the elements of the Fisher information
matrix XTWX, and by s™° the elements of the inverse matrix, we
have A o
blas(ﬂ,) ~ — Z Iﬁr’zlﬁ]’kni,j,k/l
ijk
The approximate skewness array of Bis

cum(,@r,,@sa,@t ‘2ZI€71I€3’]I€t kl{,,'] k-
ijk

Bias and skewness terms represent the major departures of the
distribution of B from the usual Normal approximation. Edgeworth
corrections will usually improve the accuracy of the approximation.

The corresponding expressions for other link functions are given
by McCullagh (1987, p.209). Computational tactics for generalized
linear models are discussed in sections 15.2--15.3.

4.4.5 Sparseness

By sparseness we mean that a sizeable proportion of the observed<
counts are small. An extreme instance of this phenomenon occurs
in Table 4.1a, where data are listed by subject number and hence
m; = 1 for each i. More generally, we say that the data are sparse
if many components of the binomial index vector are small, say 5
or less. Sparseness does not necessarily imply that there is little
information in the data about the values of the parameters. On
the contrary, if the data recorded are extensive, (n large), the
asymptotic approximation (4.18) is usually quite accurate. The
effect of sparseness is noticed mainly on the deviance function and
Pearson’s statistic, which fail to have the properties required for
goodness-of-fit statistics.

To illustrate the nature of the effect, suppose that ¥; ~ B(1,m;)
and that a linear logistic model such as (4.10) has been fitted by
maximum likelihood, yielding fitted values

#t; = exp(x! B)/[1 + exp(xT B)].
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The residual deviance function is
D= 2Z{y,- log(?—'i) + (1 —y) log(i : g’)}
= 2Z{y, logy; + (1 — ) log(1 — ;)

f’ﬁ ) — log(1 - fr,-)}.

i

Y - yilog(l

Since y = 0 or 1, we have ylogy = (1 — y) log(1 —y) = 0. Further,
log(#:/(1 — #;)) = xI'B. Thus

= —2BTXTY -2 log(1 - )
x— 22 log(1 — #;)

since XTY = XTjiis the maximum-likelihood equation. Ev1dently,
therefore, D is a function of ﬁ in this case. In other words, given 8,
D has a conditionally degenerate distribution and cannot be used
to test goodness of fit. Exact degeneracy occurs only for linear
logistic models if m; = 1, but near degeneracy occurs for any link
function provided that the m; are small.

The effect of extreme sparseness on Pearson’s statistic is less
obvious but can be seen from the following example. Suppose that
the observations are identically distributed and ¥; ~ B(1, 7). Then
# = ¢ and Pearson’s statistic reduces to

_ (yi—ﬂ)z_
=2 G "

The sample size is not very useful as a test for goodness of fit! The
deviance function fares no better, for

D = -2n{jlog§ + (1 —§)log(1 - 9)},

is a function of .

For intermediate cases in which the m; are small but mostly
greater than one, we may use D or X? as test statistics. However,
in the computation of significance levels it is essential to use the
conditional distribution of the statistic given the observed ﬁ Exact
conditional moments of X? can be computed in some important



122 BINARY DATA

special cases: see, for example, the Haldane-Dawson formulae
for two-way tables in Exercise 6.16. More generally, however,
approximate formulae are available for the conditional mean and
variance of X? for linear logistic models (McCullagh, 1985). If n
is large, it is best to use a Normal approximation for X2 in which
the conditional mean and variance are

E(X*|B)~n—-p- %Z{l — 6y (1 — 7;)} Vi

+ 35 midr(1 — &)1 - 27 Vig Vi (1 — 275)
ij

var(X1B) =~ (1= p/m){2 3 (o) + Yo 281 - 2,)Vi, )

(] -
1]

where V;; are the elements of V = X(XTWX)7!XT, the ap-
proximate covariance matrix of f). These expressions are easy to
compute following the fitting of a linear logistic model because the
matrix V is readily available. Note that, unlike D, the conditional
variance of X? is ordinarily not zero for pure binary data.

Similar expressions are available for the conditional cumulants
of the deviance statistic but these are too complex for practical
use. See, for instance, McCullagh (1986).

It is good statistical practice, however, not to rely on either D or
X? as an absolute measure of goodness of fit in these circumstances.
It is much better to look for specific deviations from the model of a
type that is easily understood scientifically. For instance, we may
look for interactions among the covariates or non-linear effects by
adding suitable terms to the model and observing the reduction in
deviance. The reduction in deviance thus induced is usually well
approximated by a x? distribution.

4.4.6 Extrapolation

Extrapolation beyond the range of the observed z-values in order to
predict the probability of failure at extreme z-valdes is a hazardous
exercise because its success depends heavily on the correctness of
the assumed model, particularly on the choice of link function. It is
common to find that two models that give similar predictions over
the range of observed z-values may give very different predictions
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when extrapolated. The need for extreme extrapolation arises most
commonly in reliability experiments, where failure is a rare event
under naturally-occurring conditions. Experimentation is carried
out under an accelerated testing regime using extreme stresses or
high doses to increase the observed failure rate. For instance, in
certain toxicology experiments, laboratory animals are subjected
to unusually high doses of a suspected toxin or carcinogen. On the
basis of the observed responses at high dose levels, it is required
either to predict the failure rate at much lower dose levels, or to set
confidence limits on the dose z¢ that would produce an acceptably
low failure rate, mg, the so-called maximum safe dose or maximum
acceptable dose.

Suppose, by way of example, that the observed dose levels in log
units and the responses are as shown in Table 4.3. It is required to
predict the failure rate at dose levels equal to 1/50 unit and 1/100
unit, corresponding on the log scale to z = —3.912 and —4.605
respectively. On fitting the model

g(m) = Bo + P1x

for various choices of g(7), we find the fitted probabilities as
shown in Table 4.3. On treating (,@o, ,@1) as bivariate Normal with
covariance matrix (4.18), we find the predicted failure rates and
confidence intervals as shown in Table 4.4. Clearly, the predicted
failure probabilities are heavily dependent on the choice of link
function, although the fitted probabilities in Table 4.3 are almost
identical for the four link functions.

Table 4.3 Hypothetical responses in a tozicology erperiment

Dose Response Fitted probability
(log units) y/m logit  probit c-loglog log-log
0 3/10 0.280 0.281 0.288 0.278
1 5/10 0.540 0.540 0.519 0.558
2 8/10 0.780 0.782 0.793 0.766

The converse problem of setting approximate confidence inter-
vals for the dose zg that gives rise to a failure probability ¢ is most
easily accomplished using Fieller’s method. The linear combination

,éo + ,él-'L'O — g(mo)
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Table 4.4 Failure rates predicted by four models at low doses

90% Confidence interval

~4,
605 (3.5x107%, 0.25

c-log log  0.00994 (=7.76, —1.26
(107522 0.15

loglog  2.3x1072*  (-7.09, —0.63

To link (o) g-scale m-scale

logit 0.00513 (-9.47, —1.07)  (7.7x107%, 0.26)

3012 probit 0.00061 (-5.72, ~0.75)  (5.3x1077, 0.23)
c-log log  0.01684 (-7.04, —1.11)  (8.8x107%, 0.28)

loglog  11x107'?  (-6.13, —0.50) (1072, 0.19)

logit 0.00239  (—10.82, —1.25)  (2.0x107%, 0.22)

probit 0.00011 (—6.54, —0.87)  (3.1x107°, 0.19)

) )

) )

is approximately Normally distributed with mean 0 and variance
v3(z0) = var(Bo) + 2zo cov(fo, A1) + 2 var(B)

The resulting confidence ‘interval’ is the set of all zg-values satis-
fying
Bo + Prxo — g(mo) .
4.19
U(.’L‘o) a/2 ( )

where ®(k*) = 1—a. The set (4.19) may be a finite interval, a semi-
infinite interval or the complement of an interval. The numerical
values produced by (4.19) are again heavily dependent on the choice
of link function.

In practice, it is usually a good idea to compute the set (4.19) for
a suitable selection of link functions. Only if these are in reasonable
agreement can any real confidence be placed in the predictions.

An alternative method for constructing approximate confidence
intervals for zg using the likelihood function directly is outlined in
Exercises 4.19 and 4.20.

4.5 Over-dispersion
£
4.5.1 Genesis

By the term ‘over-dispersion’, we mean that the variance of the
response Y exceeds the nominal variance — in this case the nominal
binomial variance, mn(1— ). Over-dispersion is not uncommon in
practice. In fact, some would maintain that over-dispersion is the
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norm in practice and nominal dispersion the exception. The inci-
dence and the degree of over-dispersion encountered greatly depend
on the field of application. In large-scale epidemiological studies
concerning geographical vdriation in the incidence of disease, the
binomial variance is often an almost negligible component of the
total variance. Unless there are good external reasons for relying
on the binomial assumption, it seems wise to be cautious and to
assume that over-dispersion is present to some extent unless and
until it is shown to be absent.

Over-dispersion can arise in a number of ways. The simplest,
and perhaps the most common mechanism, is clustering in the
population, a mechanism previously proposed by Lexis (1979): see
Stigler (1986, p. 229-238). Families, households, litters, colonies
and neighbourhoods are common instances of naturally-occurring
clusters in populations. Clusters usually vary in size, but we shall
assume for simplicity that the cluster size, k, is fixed and that the
m individuals sampled actually come from m/k clusters. In the ith
cluster, the number of positive respondents, Z;, is assumed to have
the binomial distribution with index k¥ and parameter w;, which
varies from cluster to cluster. Thus, the total number of positive
respondents is

Y = Zl+Zz+...+Zm/k.

If we write E(m;) = 7 and var(m;) = 727(1 — 7), it may be shown
that the unconditional mean and variance of Y are

E(Y)=mn

var(Y) = mn(1 — m){1 + (k — 1)7%} (4.20)
= o?mm(l — 7).
Note that the dispersion parameter 62 = 1 4 (k — 1)7% depends on
the cluster size and on the variability of = from cluster to cluster,
but not on the sample size, m. This is important because it enables
us to proceed as if the observations were binomially distributed and
to estimate the dispersion parameter from the residuals.
Over-dispersion can occur only if m > 1. If m = 1, the mean
necessarily determines the variance and all higher-order cumulants.
In general, the preceding derivation via cluster sampling forces the
dispersion parameter to lie in the interval

1<o?2<k<m
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because 0 < 72 < 1. It is often desirable, in order to accommodate
under-dispersion, to extend the domain of definition to include
values of ¢2 in the interval 0 < ¢2 < 1.

The beta-binomial distribution (Exercise 4.17), is sometimes
used as an alternative model for over-dispersion. This distribution
has the property that the variance ratio var(Y)/{mn(1 — =)} is
a linear function of m, rather than a constant as in (4.20). By
plotting residuals against m it is possible, in principle at least, to
discriminate between these two models. The examples that we have
examined, however, seem to favour the constant dispersion factor
in (4.20) over the beta-binomial model.

4.5.2 Parameter estimation

With specific forms of over-dispersion, such as that described in
Exercise 4.17 leading to the beta-binomial model, one can use
maximum likelihood to estimate the regression parameters and the
dispersion parameter jointly. Though this is an attractive option
from a theoretical standpoint, in practice it seems unwise to rely on
a specific form of over-dispersion, particularly where the assumed
form has been chosen for mathematical convenience rather than
scientific plausibility. For that reason, in what follows we assume
that the effect of over-dispersion is as shown in (4.20). In other
words, the mean is unaffected but the variance is inflated by an

unknown factor o2.

With this form of over-dispersion, the models described in
section 4.3 may still be fitted using the methods of section 4.4, as if
the binomial distribution continued to apply. The only difference
occurs in section 4.3.3 where the x2_, and the x? approximations
are replaced by o?x%_, and 02} respectively. In section 4.4.4, the

covariance matrix of B is replaced by
cov(B) ~ s2(XTWX) L. (4.21)

For further details, see Chapter 9.

The expressions for bias and skewness given in section 4.4.4
are not valid without further assumptions concerning the effect
of over-dispersion on the higher-order cumulants: see, for instance,
Exercise 4.18. -

There remains only the problem of estimating the dispersion
factor, which is required for setting confidence limits on 8 and on
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components of #. This is exactly analogous to the problem of esti-
mating ¢? in ordinary Normal-theory linear or non-linear models.
Suppose first that there is replication: in other words, for each
covariate value x, several observations (yi,mi),...,(y,,m,) are
observed. These observations are independent and essentially iden-
tically distributed apart from the fact that the indices m;,...,m,
may be unequal. The estimate of m based on this covariate class
alone is
T =y, /m,.

and the expected value of the within-class weighted sum of squares

r

Z(yj — my#r)?/m;

j=1

is equal to (r — 1)o?n(1 — 7). In other words,

2= Z(y"_mﬁ)z (4.22)

r—1 mﬁr(l—fr)

is an approximately unbiased estimator of 02 on r — 1 degrees
of freedom. On pooling together these estimators, one for each
covariate class in which replication occurs, we obtain the replication
estimate of dispersion on ) (r — 1) degrees of freedom. This
estimator has a slight bias of order O(m!) in the binomial case
(for 02 = 1) and has comparable bias otherwise. The value of the
replication estimate of 2 is independent of the fitted model.

In the absence of replication, or if the number of degrees of
freedom for replication is small, an estimate of % may be based on
the residual sum of squares appropriately weighted. If the fitted
model is correct,

54 = 1 (ys — mi’;l',')z _
o= n—p Z mfi(l — ;) - Xz/(n —p) (4.23)

is approximately unbiased for g2 provided that p is small compared
with n. The estimated covariance matrix of 8 is then

estimated var(B) = 6%(XTWX) L.
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Note that if m; = 1 for each  we must have g2 = 1. The repli-
cation estimator (4.22) has this property to a close approximation
but (4.23) based on Pearson’s statistic does not.

The alternative estimator of o2 based on the normalized residual
deviance is approximately equal to 5% in the non-sparse case for
which all m; are large. In the sparse case, however, 5% is consistent
for 02 whereas D(y; i)/(n — p) is not. The latter claim is evident
from the discussion in section 4.4.5. For instance, if ¥; ~ B(1,x)
for each i, (4.23) and (4.22) give

02 =8s=n/(n~-1),
which tends to unity as n becomes large. By contrast,

D 2
- —n_nl{frlogfr + (1—#)log(1—1#)},

n—1

whose value ranges from 0 to 1.386 = 2log 2 as # ranges from 0 to
0.5.

The approximate bias and variance of % in the absence of
over-dispersion are given in section 4.4.5. In the presence of over-
dispersion satisfying (4.20), the bias of 2 is of order O(n™!). Both
the bias and the variance depend on the effect of over-dispersion
on the third and fourth cumulants of Y. If the effect of over-
dispersion on these cumulants is as described in Exercise 4.18,
explicit expressions can be obtained for the approximate bias and
variance of 2. These formulae are moderately complicated and are
of limited usefulness in practice because the higher-order dispersion
factors must be estimated from the available data. Even for
linear models, the estimation of higher-order cumulants is seldom
worthwhile unless the data are very extensive.

4.6 Example

4.6.1 Habitat preferences of lizards

The following data are in many ways typical of social-science
investigations, although the example concerns the behaviour of
lizards rather than humans. The data, taken from Schoener (1970),
have subsequently been analysed by Fienberg (1970b) and by
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Table 4.5 A comparison of site preferences of two species of lizard,
grahami and opalinus

T

Perch Early Mid-day Late
D H
S (in) (ft) G O Total O Total G O Total

G
Sun <2 <5 20 2 22 8 1 9 4 4 8
>5 13 0 13 8 0 8 12 12

4

0

>2 <5 8§ 3 11 1 5 5 8
>5 6 0 6 0 0 1 2

0

3

1
Shade <2 <5 34 11 45 69 20 89 18 10 28
>5 31 5 36 55 4 59 13 3 16
8

>2 <5 17 15 32 60 32 92 8 16
>5 12 1 13 21 5 26 4 4 8

, perch helght D, perch diameter; S, sunny/shady; T', time of day;
G, grahami; opalmus

Bishop et al (1975). Data concerning the daytime habits of two
species of lizard, grahami and opalinus, were collected by observing
occupied sites or perches and recording the appropriate description,
namely species involved, time of day, height and diameter of perch
and whether the site was sunny or shaded. Time of day is recorded
here as early, mid-day or late.

As often with such problems, several analyses are possible
depending on the purpose of the investigation. We might, for
example, wish to compare how preferences for the various perches
vary with the time of day regardless of the species involved. We find
by inspection of the data (Table 4.5) that shady sites are preferred
to sunny sites at all times of day but particularly so at mid-day.
Furthermore, again by inspection, low perches are preferred to high
ones and small-diameter perches to large ones. There is, of course,
the possibility that these conclusions are produced by an artefact
of the data-collection process and that, for instance, occupied sites
at eye level or below are easier to spot than occupied perches higher
up. In fact, selection bias of this type seems inevitable unless some
considerable effort is devoted to observing all lizards in a given
area.

A similar analysis, but with the same deficiencies, can be made
for each species separately.
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Suppose instead that an occupied site, regardless of its position,
diameter and so on, is equally difficult to spot whether occupied
by a grahami or an opalinus lizard. This assumption would be
plausible if the two species were similar in size and colour. Suppose
in addition that the purpose of the investigation is to compare the
two species with regard to their preferred perches. Thus we see
that, of the 22 occupied perches of small diameter low in the tree
observed in a sunny location early in the day, only two, or 9%,
were occupied by opalinus lizards. For similar perches observed
later in the day, the proportion is four out of eight, i.e. 50%. On
this comparison, therefore, it appears that, relative to opalinus,
grahami lizards prefer to sun themselves early in the day.

To pursue this analysis more formally, we take as fixed the total
number mi;z; of occupied sites observed for each combination of
i = perch height, j = perch diameter, ¥ = sunny/shady and
[ = time of day. In the language of statistical theory, these totals or
covariate-class sizes are ancillary provided that the purpose of the
investigation is to compare preferences or to examine the differences
between the site preferences of the two species. The response
variable y;ji; gives the observed number or, equivalently, the
observed proportion of the m;;x; occupied sites that were occupied
by grahami lizards. By symmetry, we could equally well work with
Mijki — Yijki, the number of sites occupied by opalinus lizards. We
take the random variable Yj;x; to be binomially distributed with
index mjr; and parameter 7k, Thus 7 is the probability that an
observed occupied site is in fact occupied by a grahams lizard. Of
course, the possibility of over-dispersion relative to the binomial
distribution must be borne in mind.

At the exploratory stage, probably the simplest analysis of these
data is obtained by transforming to the logistic scale. Using the
empirical logistic transformation (4.7), we have the transformed
value for y; /m; = 20/22, namely

21 = log(20.5/2.5) = 2.1041

with approximate variance 1/20.5 + 1/2.5 = 0.4488. A straightfor-
ward linear analysis of the transformed values is usually a satisfac-
tory method of analysis if all the observed counts are moderately
large. In this example not all the counts are large and for that
reason, we must-confirm our findings using a different technique. To
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Table 4.6 Computation of logistic factorial standardized contrasts for
lizard data N

Absolute
Transformed Estimated  Raw  Estimated standardized

value variance contrast variance Parameter contrast
2.1041 0.4488 30.9092 20.16 I —

3.2958 2.0741 11.0986 20.16 H 2.47
0.8873 0.4034 —12.4508 20.16 D 2.77
2.5649 2.1538 -5.3629 20.16 HD 1.19
1.0986 04159 —5.4698 20.16 S 1.22
1.7451 0.2136 —-0.1739 20.16 HS 0.04
0.1214 0.1217 3.9168 20.16 DS 0.87
2.1203 0.7467 5.4014 - 20.16 HDS 1.20
1.7346 0.7843 —8.3505 11.79 T 2.43
2.8332 2.1176 —1.9645 11.79 HT. 0.57
1.0986 0.8889 —-2.1333 11.79 DTy, 0.62
0.0000 4.0000 —6.2926 11.79 HDT}, 1.83
1.2209 0.0632 2.0122 11.79 STy 0.59
2.5123 0.2402 —1.7595 11.79 HST:L 0.51
0.6214 0.0473 —0.4950 11.79 DSTy, 0.14
1.3633 0.2283 2.0210 11.79 HDST;, 0.59
0.0000 0.4444 —3.2438 45.27 To 0.48
3.2189 2.0900 4.9987 45.27 HTq 0.74
0.4520 0.4675 3.2022 45.27 DTg 0.48
0.0000 1.3333 2.8773 45.27 HDT, 0.43
0.5664 0.1493 —5.6243 45,27 STq 0.84
1.3499 0.3598 —6.2738 45.27 HSTg 0.93
0.0000 0.2353 —1.2453 45.27 DSTq 0.19
0.0000 0.4444 0.4582 45.27 HDSTg 0.07

maintain balance, the observation (0, 0) is transformed to 212 = 0.0
with ‘variance’ 4.0.

The first two columns of Table 4.6 give the transformed values
and their estimated variances listed in the usual standard order
corresponding to the factors H, D, S and T. Four steps of Yates’s
algorithm (not given) produce the raw contrasts, again associated
with the four factors in the same standard order. In the case of
the factor 7', which has three ordered levels, linear and quadratic
contrasts were used to complete the decomposition. Variances are
computed in a similar way, the coefficients being squared. Thus, all
main effects and interactions involving H, D and S only have the
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Expected half-normal order statistic

Fig. 4.2.  Half-normal plot of ordered absolute standardized logistic
contrasts for the lizard data. The solid line is at 45°.

same variance, 20.16, which is the total of column 2. Similarly for
terms involving T7, and for terms involving Tg. Finally we compute
the standardized contrasts: of these, only the main effects of H
and D and the linear effect of time, with standardized contrasts in
excess of 2.4, appear to be significant.

A half-Normal plot (Daniel, 1959) of the ordered absolute stan-
dardized logistic contrasts against their Normal-theory expected
values (Fig. 4.2), suggests that the main effects of height and di-
ameter and the linear effect of time are significant though not over-
whelmingly so. The three-factor interaction H.D.Tp also deviates
from the theoretical line, but this appears to be an aberration well
within the sampling limits especially when due allowance is made
for the effect of selection. As a matter of policy, no allowance for
selection would normally be made when judging the significance
of main effects in a full factorial design. Such effects that are not
expected in advance to be null should be excluded from the half-
normal plot, though this has not been done in Fig. 4.2.

The unit slope observed in Fig. 4.2 is evidence that ¢ = 1 and
hence there is no suggestion of over-dispersion.

Because of the numerous small observed counts in this particular
example, some caution is required in the interpretation of contrasts
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in Table 4.6. It is possible, for example, that the addition of 1/2
to each count before transforming could swamp the data. Indeed
such an effect seems to have occurred for the sunny/shady contrast.
Here, few opalinus lizards were observed in sunny locations, so that
the addition of 1/2 to each of these counts has a marked effect on
the S contrast, reducing it towards zero and so diluting its apparent
significance. )

We now consider an alternative analysis using a generalized
linear model fitted by maximum likelihood, which avoids transfor-
mation problems. The preceding analysis in Table 4.6 and Fig. 4.2
suggests that the structure of these data is fairly simple; there
appear to be no strong interactions on the logistic scale. We are
therefore led initially to consider the linear logistic model including
all four main effects. Such a model can be written symbolically as
H+ D+ S+ T or, in subscript notation,

logit(mjkt) = p+ i + B + v + &, (4.24)

where a, 3, v and § refer to the four factors H, D, S and T. In
fact this model fits the data quite well with no evidence of over-
dispersion. All main effects including § are significant at the 5%
level, illustrating the drawbacks of the previous analysis where S
appeared to be insignificant. None of the two-factor interactions
appears significant; the relevant statistics are given in Table 4.7.
Parameter estimates associated with the model (4.24) are given in
Table 4.8, where we use the convention of setting the first level of
each factor to zero. It is possible here to replace T by a single
contrast corresponding to late afternoon versus earlier in the day
without unduly affecting the fit. This replacement reduces the
number of parameters by one but does not greatly simplify the
model or statements of conclusions.

Finally, an informal examination of the standardized residuals
reveals no unexpected features or patterns.

The principal conclusions to be drawn are as follows. An
occupied high perch is more likely to be occupied by a grahami
lizard than is an occupied low perch. The ratio of the odds for
high versus low perches is an estimated 3.10 = exp(1.13), and
this ratio applies under all conditions of shade, perch diameter
and time of day. It would be false to conclude from this analysis
that grahami lizards prefer high perches to low perches. We may,
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Table 4.7 Ezamination of two-factor interactions for lizard data

Model description® Degrees of freedom Deviance First difference

Main effects only 17% 14.20

Main + T'.S 15 12.93 1.27
Main +T.-H 15 13.68 0.52
Main 4+ T.D 15 14.16 0.04
Main+ S.H 16 11.98 2,22
Main + S.D 16 14.13 0.07
Main + H.D 16 13.92 0.28

* The factors here are time of day (T'), sunny/shady (S), height (H)

and diameter (D).
t Degrees of freedom are reduced by one because no occupied sites
were observed for (i,7,k,1) = (2,2,2,2).

Table 4.8 Parameter estimates for the linear logistic model (4.24)

Parameter Estimate S.E.
R 1.945 0.34
H, height > 5ft 1.13 0.26
D, diameter > 2in -0.76 0.21
S, shady —0.85 0.32
T(2), mid-day 0.23 0.25
T(3), late -0.74 0.30

however, conclude that grahams: lizards have less aversion to high
perches than do opalinus lizards, so that an occupied high perch
is more likely to contain a grahami lizard than an occupied low
perch,

Similar conclusions may be drawn regarding the effect of shade,
perch diameter and time of day on the probability that an occupied
site contains a graham: lizard. The odds are largest for small-
diameter lofty perches observed in a sunny location at mid-day (or
in the morning). In fact, only grehami and no opalinus lizards were
observed under these conditions. Because there is no interaction
among the effects, the odds are smallest for the converse factor
combinations.

These conclusions differ from those of Fienberg (1970b) and
Bishop et al. (1975), who found an interaction between H and D
and between S and T regarding their effect on species’ preferences.
The principal reason for this difference appears to be the fact
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that these authors attempted to consider several unrelated issues
simultaneously using only a single model, and did not condition
on the totals m;ji;, which are regarded as ancillary in the analysis
given here.

4.7 Bibliographic notes

The statistical literature on the analysis of discrete data is very
extensive and there is a wealth of excellent text-books treating the
subject from a number of different angles. Cox (1970) offers a
good introduction to the subject and combines a pleasant blend of
theory and application in a slim volume. Plackett (1981) is a good
introductory text covering much of the material in this chapter
and in the following three chapters, but with a slightly different
emphasis. Breslow and Day (1980) concentrate on applications in
cancer research. Fleiss (1981) discusses applications in the health
sciences generally. Haberman (1978, 1979) concentrates mainly
on social-science applications. Engel (1987) gives an extensive
discussion of over-dispersion.

There is some overlap with the survival-theory literature, where
success is sometimes defined rather arbitrarily as two-year or five-
year survival: see, for example, Kalbfleisch and Prentice (1980) or
Cox and Qakes (1984).

Other books dealing partially or wholly with binary data include
Adena and Wilson (1982), Aickin (1983), Armitage (1971), Ashton
(1972), Bishop, Fienberg and Holland (1975), Bock (1975), Everitt
(1977), Fienberg (1980), Finney (1971), Gokhale and Kullback
(1978), Maxwell (1961), Plackett (1981) and Upton (1978).

4.8 Further results and exercises 4

4.1 Suppose that Y),...,Y;, are independent Bernoulli random
variables for which

pr(Y;=0)=1—-7 and pr(¥;=1)=m.

Show that any fixed sequence comprising y ones and m — y zeros
has probability 7¥(1 — x)™~Y. Hence deduce that the total Y, =
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Y, +...+Y,, has the binomial distribution (4.2) with index m and
parameter w.

4.2 Suppose that Y3 ~ B(m,, ) and Y2 ~ B(m;, w) are indepen-
dent. Deduce from Exercise 4.1 that Y, ~ B(m_, 7).

4.3 Suppose that ¥} ~ B(m,,w1) and Yz ~ B(mgy,m;) are
independent. Show that
pI'(Y. = y.) = (1 - Wl)mlﬂg'(l - 772)m2_y. PO(wa mlamZay-)a

where ¢ = m(1 — m2)/{m2(1 — 71)} is the odds ratio and Py(%; -)
is the polynomial in ¢

b
Po(; mi,ma,g.) = ("J") (y’"_”j)wf.

j=a

The range of summation extends from ¢ = max(0,y, — my) to
b = min(my,y,). Show also that

m,
%wmmwyh<y>

which is consistent with the previous exercise.

4.4 Suppose that Y7,Y, are independent Poisson random vari-
ables with means u and pu respectively. Show that

Y =Y1+Y: ~ P(u+pu)
Y1|Y.=m ~ B(m, 1/(1+ p)).
Show how you might use this result to test the composite null
hypothesis Hg: p = 1 against the one-sided alternative Hy: p > 1.

4.5 Let Yi,...,Y, be independent random variables such that
Y; ~ B(m,m;) and let ¥ = >_Y; be the sum. Show that, given

EY)=mq
var(Y) = m (1 — @) — m(n — 1)ka(m)

where m, = nm. Give the expression for kz(w) in terms of
TyyeoeyTp.
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4.6 Inthe notation of the previous exercise, assume that 7,,..., 7,
are independent random variables with common mean m and com-
mon variance 72m(1 — 7). Show that, unconditionally,

EY)=mn
var(Y) = m,w(1 — m){1 + (m — 1)7?}
Deduce that 0 < 72 < 1, so that var(Y) > m,n(1 - «).
4.7 Define

Y
P(y) = e #u¥/y!.
Let m = u/m. Show that, for fixed u, as m —y — oo,

By) (_@_)1/2'

m-y

P(y)

4.8 Suppose that Y ~ B(m, ) and that m is large. By expanding
in a Taylor series, show that the random variable

Z = arcsin{(Y/m)"}

B(y) = (’") (1= )Y,

has approximate first two moments

1-2
E(Z) ~ arcsin(n'/?) — — T
8y/mn(l—m)

var(Z) ~ (4m)~L.

4.9 Let K(6) be a cumulant function such that the rth cumulant
of X is the rth derivative of mK(6). Let u = mK’(f) be the
mean of X and let k3(u), s3(u) be the variance and third cumulant
respectively of X, expressed in terms of u rather than in terms of 6.
Show that

K3 d
r3(p) = ka(p)ka(p) and i @log Ka(n)-

Verify that the binomial cumulants have this form with

K(6) = log(1 + €°).
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4.10 Show that if the cumulants of X are all O(m) for large m,
then Y = ¢(X) is approximately symmetrically distributed if g(.)
satisfies the second-order differential equation

3x3(1)g" (1) + ¢'(W)Ka(u) = 0.

Show that if k(1) and k3(u) are related as in the previous exercise,
then

9(x) = /z'ﬁf;l/s(u) dp.

[N.B. k2(u) is the variance function denoted by V(u) in section 2.2:
x3(p) is an obvious extension.]

4.11 Find the corresponding equations that give the variance-
stabilizing transformation of X.

4.12 Logistic discrimination: Suppose that a population of indi-
viduals is partitioned into two sub-populations or groups, G; and
G,, say. It may be helpful to think of G, in a epidemiological
context as the carriers of a particular virus, comprising 100m, % of
the population, and G2 as the non-carriers. Measurements Z made
on individuals have the following distributions in the two groups:

Gy: Z ~ Np(py, X)

G2:  Z ~ Np(p,y, X).
Let z* be an observation made on an individual drawn at random
from the combined population. The prior odds that the individual

belongs to G, are m, /(1 — m,). Show that the posterior odds given
Z* are i -

L

odds(Y =1|Z*) = x exp(a + B7z")
1

where the logistic regression coefficients are given by
o= LWIE y — TS,
B =" — ma)

Comment briefly on the differences between maximum likelihood
estimation of a and B via the Normal-theory likelihood and esti-
mation via logistic regression. [Efron, 1975].
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4.13 Go through the calculations of the previous exercise, replac-
ing the Normal distributions by exponential distributions having
the same means.

4.14 Suppose that Y ~ B(m,e*/(1 + ¢*)). Show that m — Y
also has the binomial distribution and that the induced parameter
is ' = — . Consider

Y+ )

/\leg(m—Y+cz

as an estimator of A. Show that, in order to achieve consistency
under the transformation ¥ — m — Y, we must have ¢; = c,.

4.15 Using the notation of the previous exercise, write
Y =mr+ mr(l —7) Z,
where Z = O,(1) for large m. Show that

l1—-m

E{log(Y + ¢)} = log(mm) + % - + O(m ™3,

2mm
Find the corresponding expansion for E{log(m -Y 4+ c)} Hence,
if ¢; = ¢ = ¢, deduce that

. (1-2m)(c—3)

EQ)= X+ + O(m™%?),

mn(l — )

[Cox, 1970, section 3.2].

4.16 Suppose that Y7,...,Y, are independent and that Y¥; ~
B(m;, 7). Show that the maximum-likelihood estimate is # =
Y,/m,, and

2 1

$=— Z(Yi — m#)? [ {mi®(1 - )}

has expectation
m,
E(s?) =

m, —1

Hence show how the estimator (4.22) may be modified to eliminate
bias in the null case of no dispersion. [Haldane, 1937].



140 BINARY DATA

4.17 Show that if Y|P ~ B(m,p), where P has the beta
distribution

fe(p) =p*'(1 = p)’ ' /B(a, B), (0<p<1),
then Y has the beta-binomial distribution
m) B(a+y, m+ﬁ—y)

(¥ =y) = <y B(a, )

fory=0,...,mand a, 3 > 0. Show that
E(Y)=mr and
var(Y) = ma(1 — m){1 + (m — 1)7%}
and express m and 72 in terms of @ and 3. [Crowder, 1978; Plackett,
1981 p.58; Williams, 1982; Engel, 1987].

4.18 Suppose, following the cluster-sampling mechanism described
in section 4.5.1, that

Y:ZI+Zz+...+Zm/k

where Z; ~ B(k,7;) are independent. Assume in addition that the
cluster probabilities are independent random variables satisfying
E(m) =m, var(m)=mmn(l—-m), k3(m)=mrm(l—m)(1-2m).
Show that the marginal cumulants of Y are

EY)=mn
var(Y) = mr(1 — m){1 + (k — 1)1}

k3(Y) =mm(1l - )(1 —2m) {1 +3(k — )2 + (k — 1)(k — 2)73}.

[With obvious extensions, similar calculations for the fourth cumu-
lant give

£4(Y) =mn(1 —m){1 + 7(k — 1)13 + 6(k — 1)(k — 2)73
+ (k —1)(k — 2)(k — 3)74}
—6mn?(1 ~m)2{1 + 6(k — 1)1 + 4(k — 1)(k — 2)T3
+ (k= 1)(k — 2)(k — 3)74 + (k — 1)(2k — 3)72 }.

breaking the early pattern.]
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4.19 Consider the dose-response model
g(m) = Bo + Prz.

Under the hypothesis that the response probability at z¢ is equal
to mo, show that the model reduces to

g(m) = Bo(1 —z/x0) + g(mo)x/T0 .

How would you fit such a model using your favourite computer
program?

4.20 Let D(zq) be the residual deviance under the reduced model
in the previous exercise. How would you use a graph of D(zo)
against zo to construct an approximate confidence set for the .
parameter zo? For the logistic model, compute this interval using
the data in Table 4.3 for mo = 0.01. Compare the answer with that
given by (4.19).

4.21 Suppose that in a given population, the proportions of
individuals in the various categories are as shown in Table 4.2. In a
prospective study, 100 subjects in each of the exposure groups are
observed over the requisite period. Find the expected numbers in
each of the four cells. Show that the estimate of the log odds-ratio
has approximate variance

var(A)) ~ 0.472.

In a retrospective study, 100 cases with the disease and 100 disease-
free controls are obtained. Their exposure status is subsequently
ascertained. Find the expected numbers in the four cells. Show
that the estimate of the log odds-ratio has approximate variance

var(Az) ~ 0.093.

Hence compute the relative efficiency of the retrospective design.

4.22 Show that the logistic density
fx(z) = exp(z)/[1 + exp(z)]?

is symmetrical about zero. Find the cumulative distribution func-
tion and show that the 100p percentile occurs at

zp = log(p/(1 - p))-
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Show that the moment generating function of X is
Mx(t) = wt/sin(nt) = (1 + t)[(1 —¢t).
for —1 < t < 1. Hence deduce that the even cumulants of X are
_ .2 — o 4 _ 6 _ 8

kg =73, K4 =2m"/15, K¢ =167"/63, kg =167"/15,....
Deduce that k. ~ 2(2r — 1)!{1 + 2727} for large r. Check this
approximation numerically for the cumulants listed above.

The exact cumnulants are given by the series expansion

Kor = 2(2r — 1)1C(2r) = 2(2r — I {1+ 2727 437 4472 .},

where ((z) is the Riemann zeta function.

4.23 Let X be a unit exponential random variable. Show that
the density function of ¥ =log X is

fr(y) =exp(y—e¥) for —o0o<y<oo.
Plot the density. Find the cumulative distribution function and
obtain an expression for the 100p percentile.
Show that the moment generating function of Y is
My (t) =T(1+1¢).
Hence deduce that the cumulants of Y are
Rrar(Y) = $0(1) = (1)1 (r +1).
Show in particular that the first four cumulants are
Ky = —y >~ —0.57721, Ky =7Y6, K3 =—2.40411, K4 =n"/15.

Comment briefly on the relation between the even cumulants of ¥
and those of the logistic density.
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Table 4.9 Number of eggs recovered after 2 days out of 50 of each type'

Adult species

A B C
egg species egg species egg species
a b ¢ a b ¢ a b ¢
25 24 15 25 15 22 35 21 28
day1 26 14 26 day1 31 22 33 dey1 36 19 34
26 24 32 24 12 30 33 16 31
29 14 32 14 8 13 24 24 23
day 2 28 13 19 day 2 18 12 20 dey 2 38 24 27
27 19 16 - - - 34 36 27
26 10 13 13 6 14
day3 20 7 15 day 3 18 11 19
14 14 23 8 5 12

tData courtesy of Mr S. Teleky, University of Chicago.

4.24 Show how you would use your friendly computer program to
compute the approximate conditional mean and variance of Pear-
son’s statistic using the formulae given at the end of section 4.4.5.
[Hint: express 3 Vi;(1 — 27;) as the vector of fitted values in a
supplementary weighted linear regression problem. This step is un-
necessary if your friendly program permits matrix multiplication.]

4.25 Beetles of the genus Tribolium are cannibalistic in the sense
that adults eat the eggs of their own species as well as those of
closely related species. Any species whose adults can recognize
and avoid eggs of their own species while foraging has a distinct
evolutionary advantage. Table 4.9 presents the results of one
experiment conducted at the University of Chicago by Mr S. Teleky
of the Department of Evolutionary Biology. The aim of this study
was to determine whether any of the three Tribolium species,
castaneum (A), confusum (B), or madens (C) has evolved such
an advantage.

The experimental procedure used was to isolate a number of
adult beetles of the same species and to present them with a vial
of 150 eggs — 50 of each type — the eggs being thoroughly mixed
to ensure a uniform distribution on the vial. The number of eggs
of each type remaining after two days was counted and recorded
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and is displayed in Table 4.9. Eggs are coded here using the lower-
case letters of the adult species. Typically, several such experiments
with the same adult species were run in parallel, the adults for each
experiment being chosen from a large population of that species.
Thus, for adult species A, three experiments were run in paralle]
beginning on each of three days. Days 1, 2 and 3 are not necessarily
consecutive, nor is day 1 for species A the same as day 1 for species
Bor C.

Analyse the data bearing in mind the objective of the experiment
and the design of the experiment. Make due allowance for over-
dispersion in the computation of standard errors and confidence
intervals. Is there any evidence that any of the three adult species
has evolved a preference for eggs of the other species?

4.26 The data shown in Table 4.10 were collected by Sir Francis
Galton as part of his study of natural inheritance—in this case the
study of the inheritance of eye colour in human populations.

1. Set up a six-level factor, P, one level corresponding to each of
the distinguishable eye-colour combinations of the two parents.

2. Set up the corresponding factor, G, for the distinguishable eye-
colour combinations of the grandparents. How many levels
does this factor have?

3. Fit the linear logistic model P, treating the number of light-
eyed children as the binomial response. Examine the standard-
ized residuals and set aside any obviously discrepant points.

4. Re-fit the previous model to the remaining data. Compute
the fitted probabilities for all eye-colour combinations of the
two parents. Arrange these fitted probabilities in a 3x3 table.
Comment on any marked trends or other patterns.

5. Add the factor G to the previous model. Look for trends or
other patterns among the levels of G. What evidence is there
for a grandparent effect above and beyond the parental effect?

6. Outliers are often caused by transposing digits or otherwise
misrecording the data. What alternative explanation can you
offer for the most discrepant points in this example?

7. Is there any evidence of over-dispersion? Estimate the disper-
sion parameter.

8. What additional information could be extracted from these
data if the eye-colours of the father and mother were separately
recorded? Comment on the relevance of this information
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less than siz brothers or sisters each, classified by eye-colour of parents

and grandparents.!

Table 4.10 Number of light-eyed children in each of 78 families of not

Light-eyed
children

Total

Number of grandparents

Number of parents

children

Hazel Dark Light Hazel Dark

Light

12

12

10
12

12

10

10

10

10

10

11

Continued
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Table 4.10 Continued.

Light-eyed
children

Total

Number of grandparents

Number of parents

children

Hazel Dark Light Hazel Dark

Light

10

11

11

11

10

10
14

13

tSource: Galton (1889, p.216-217).
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(a) from a biological viewpoint and (b) from a sociological
viewpoint.

9. Fit the linear logistic model G. Compute the fitted probability
for each level of G. Label the levels of G appropriately and
comment on any trends or patterns in the fitted probabilities.

10. Examine the residuals from the previous model. Comment
briefly on any unusual patterns, particularly in families 32
and 56.

4.27 Using the notation of section 4.4.3 in which ¥; ~ B(m;,w;),
let Hy C H, denote two nested models for the probability vector
#, with deviances D(y, #¢) and D(y, #,) respectively. Show that,
in the case of linear logistic models, the deviances satisfy the
Pythagorean relationship

D(yaﬁ.O) = D(yvil) + D(i‘l,'frO)-

Hence deduce that for logistic models, but not otherwise, D(f,, %)
is the likelihood-ratio statistic for testing Hy against H; as alter-
native. :

4.28 In the previous exercise, suppose that Hy and H; denote
a constant and a single-factor model respectively. Show that the
fitted values and the deviance functions are then independent of the
link used for model specification. Show also that weighted squared
Euclidean distance with weights m; satisfies the Pythagorean rela-
tionship. What other discrepancy functions satisfy the Pythagorean
relationship in this special case? [Efron, 1978].

4.29 The asymptotic bias of the components of ﬁ in linear logistic
models is given by

E(’ér _ ,HT) ~ __%nr,snt,uns,t’u,
using the index notation of McCullagh (1987, p. 209), in which £™*
is the inverse Fisher information matrix. Express &, ;. in terms of
the components of the model matrix.
For small B, justify the approximation

E(B) ~ B x (1+p/m.),

showing that the bias vector is approximately collinear with the
Parameter vector.
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4.30 Let R; be the unobserved true response for unit ¢ with
m} = pr(R; = 1) satisfying the linear logistic model

logit(n}) = BT x;.

Suppose that the observed response is subject to mis-classification

as follows.
pr(Y,- = IIR,' =0) =6,'

pr(Y; =0|R; = 1) = ¢;.

Show that if the mis-classification errors satisfy

then the observed response probability m; = pr(Y; = 1) satisfies
lOgit(ﬂ',’) = ﬂTx,-.
Discuss briefly the plausibility of the assumption concerning the

mis-classification probabilities. [Bross, 1954; Ekholm and Palm-
gren, 1982; Palmgren, 1987; Copas, 1988].



CHAPTER 5

Models for polytomous data

5.1 Introduction

If the response of an individual or item in a study is restricted to
one of a fixed set of possible values, we say that the response is
polytomous. The k possible values of Y are called the response
categories. Often the categories are defined in a qualitative or
non-numerical way. A familiar example is the classification of
blood types, with unambiguous but qualitative categories O, A,
B, AB. Another example is the ILO scale, 0/0, 0/1,...,3/3, used
for classifying chest X-ray images according to apparent severity
of lung disease. These categories, defined rather arbitrarily using
‘standard’ reproductions, are not devoid of ambiguity. Other
instances of the type of response considered in this chapter are
rating scales used in food testing, measures of mental and physical
well-being, and many variables arising in social science research
which are, of necessity, not capable of precise measurement.

We need to develop satisfactory statistical models that distin-
guish several types of polytomous response or measurement scale.
For instance, if the categories are ordered, there is no compelling
reason for treating the extreme categories in the same way as the
intermediate ones. However, if the categories are simply an un-
structured collection of labels, there is no reason a priori to select a
subset of the categories for special treatment. Considerations such
as these lead us to consider qualitatively different classes of link
functions for different types of response scale. Whatever the nature
of the scale, we may talk without ambiguity about the response
probabilities m,,. .., 7. If the categories are ordered, however, we
may prefer to work with the cumulative response probabilities

Mm=m, Y2=m+m, ..., %=L

149
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Obviously, cumulative probabilities are not defined unless the
category order is unambiguous. It makes little sense to work with
a model specified in terms of «y; if the response categories are not
ordered.

5.2 Measurement scales

5.2.1 General points

Measurement scales can be classified at a number of levels. At
one level, we may distinguish between pure scales and compound
scales. Bivariate responses are perhaps the simplest instances of
compound measurement scales. One can contemplate bivariate
responses in which one response is ordinal and the other binary or
even continuous. Other examples of compound scales are discussed
in section 5.2.5. Among the spectrum of pure measurement scales,
we may 1dentify the following major types:

1. nominal scales in which the categories are regarded as ex-
changeable and totally devoid of structure.

2. ordinal scales in which the categories are ordered much like the
ordinal numbers, ‘first’, ‘second’,... . In this context it does not
ordinarily make sense to talk of ‘distance’ or ‘spacing’ between
‘first’ and ‘second’ nor to compare ‘spacings’ between pairs of
response categories.

3. interval scales in which the categories are ordered and numer-
ical labels or scores are attached. The scores are treated as
category averages, medians or mid-points. Differences between
scores are therefore interpreted as a measure of separation of
the categories.

Cardinal scales require quite different kinds of models, such as
those discussed in Chapters 3,6 and 8, and are not considered here.
Binary measurements are special cases of all of the above in which
k = 2. The distinction between ordinal, interval and nominal does
not then arise.

In applications, the distinction between nominal and ordinal
scales is usually but not always clear. For instance responses
relating to perception of food quality — excellent, good, ..., bad,
appalling — are clearly ordinal. Responses concerning preferences
for newspaper or television programme would usually be treated
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as nominal, at least initially. Political hue and perceived quality
may well be sufficient grounds for the subsequent examination of
particular contrasts. Hair colour and eye colour can be ordered to
a large extent on the grey-scale from light to dark and are therefore
ordinal, although the relevance of the order may well depend on
the context. Otherwise, unless there is a clear connection with the
electromagnetic spectrum or a grey-scale, colours are best regarded
as nominal.

5.2.2 Models for ordinal scales

We consider ordinal scales first, mainly because these occur more
frequently in applications than the other types. In many of these
applications such as food-testing, classification of radiographs,
determination of physical or mental well-being and so on, the
choice and definition of response categories is either arbitrary or
subjective. It is essential, therefore, if we are to arrive at valid
conclusions, that the nature of those conclusions should not be
affected by the number or choice of response categories. As a
consequence, if a new category is formed by combining adjacent
categories of the old scale, the form of the conclusions should be
unaffected. Of course, the amalgamation of response categories in
this way will normally reduce the available information, change the
estimate, the attained significance level and so on. The important
point is that the same parameter is being measured however many
categories are combined. This is an important non-mathematical
point that is difficult to make mathematically rigorous: it is not
simply a matter of retaining the same Greek letter after category
combination.

Such comnsiderations lead fairly directly to models based on the
cumulative response probabilities y; = pr(Y < j) rather than
the category probabilities m;. The two sets of probabilities are
equivalent, but simple models for the cumulative probabilities are
likely to have better properties for ordinal response scales than
equally simple models based on the category probabilities. In
particular, linear models using the logistic scale, log{~;/(1 — 7;)},
or the complementary log-log scale, log{—log(1 — 7;)} are found
to work well in practice (McCullagh, 1980).

The simplest models in this class involve parallel regressions on
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Fig. 5.1a. Diagram showing how the response probabilities for the logistic
model (5.1) vary with x when 3 > 0. Response categories are represented
as four contiguous intervals of the z-axis. Higher-numbered categories
have greater shade density.

r=4

Fig. 5.1b. Diagram showing how the probabilities for the four response
categories in the complementary-log-log model (5.3) vary with z when
B> 0. m(z) and me(x) each change by a factor of 10 or more, whereas
m3(z) is almost constant over 1 <z < 4.

the chosen scale, such as
log{7j(x)/(1 - 7]'()()} = 0]' - ﬂTxv .7 =1,.. k=1 (51)

where vj(x) = pr(Y < j|x) is the cumulative probability up to
and including category j, when the covariate vector is x. Model
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(5.1) is known as the proportional-odds model because the ratio of
the odds of the event ¥ < j at x = x; and x = x3 is

2/ = %(X1)) o BTk - x
vi(x2)/(1 —v;(x2)) exp{—p" (x1 — X2)}, (5.2)

which is independent of the choice of category (j). In particular,
if x is an indicator variable for two treatment groups, 77 and 75,
(5.2) may be written as

odds(Y < j|T1) .
m-exp(—lk), ]—1,...,](3—1,
where A measures the treatment effect. The negative sign in
(5.1) is a convention ensuring that large values of B*x lead to an
increase of probability in the higher-numbered categories. Both
0 and B in (5.1) are treated as unknown and 6 must satisfy
01<6<...<Ok-1.

For the complementary log-log link, the model corresponding to
(5.1) is

log[—log{1 — v;(x)}] = 6; - B"x, j=L... k=1 (53

which is known as the proportional-hazards model (Cox, 1972a;
McCullagh, 1980). In all of these models we must have 8; < 6, <
... < 8;_1 to ensure that the probabilities are non-negative.

Both (5.1) and (5.3) correspond to the same model formula and
the same response variable, but with different choice of link func-
tion. The response is the set of cumulative observed proportions
(or totals). Apart from choice of sign, the model formula in both
cases is

R+x

where R is the response factor having & — 1 levels and x is itself
a model formula, not involving R, for the covariates used. The
observations in this instance are not independent, but that is
an aspect of the random part of the model and is considered in
section 5.4.

Model (5.1) may be derived from the notion of a tolerance dis-
tribution or an underlying unobserved continuous random variable
Z, such that Z — BT x has the standard logistic distribution. If the
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unobserved variable lies in the interval §;_; < Z < 6; then y = 5
is recorded. Thus we find

pr(Y < j) = pr(Z < 6;) = pr(Z — BTx < 6; — pTx)
__exp(8; — " x)
1+ exp(f; — BTx)

Model (5.3) has a similar derivation based on the extreme-value
distribution.

Figure 5.1 illustrates the way in which the response probabilities
m;(x) vary with z for the single-variable case in which g > 0.
In that case the larger the value of z the greater the probability
of falling in the highest-numbered category. The probability for
the lowest-numbered category decreases with z. For intermediate
categories, the probability increases with z up to a certain point
and thereafter decreases. Over certain ranges of x, the probability
for some of the intermediate categories is almost constant: over the
same range the probabilities for the extreme categories may change
quite appreciably.

It is sometimes claimed that (5.1), (5.3) and related models are
appropriate only if there exists a latent variable Z. This claim
seems to be too strong and, in any case, the existence of Z is
usually unverifiable in practice.

Suppose by way of extension that Z has the logistic distribution
with mean B7x and scale parameter exp(77x). In other words,
(Z — BTx)/exp(rTx) has the standard logistic distribution. We
are then led by the same argument to consider non-linear models
of the particular form

logit v;(x) = —(——) (5.4)

This model is not of the generalized linear type, but nonetheless
it is worthy of serious consideration. In the numerator, BT x plays
the role of linear predictor for the mean and in the denominator
7T x plays the role of linear predictor for the dispersion or variance.
Two model formulae are required to specify (5.4) in its most general
form. The numerator corresponds to the formula R + x as in (5.1)
and (5.3). The denominator corresponds to an arbitrary model
formula not involving R, which may differ from the formula in the
numerator.
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If, as in (5.2), x is an indicator variable for treatment, then we
have
dds(Y < ;T P — 0; —
odds( _J., 1) exp(ej Br _ b ﬂZ)
odds(Y <j|Tz) oy D)

- el - 2) xonfs(L - 1))

where o; = exp(7z;) is the scale parameter for the ith treatment
group. Thus the odds ratio is increasing in j if 01 < 02 and decreas-
ing otherwise. Model (5.4) is useful for testing the proportional-
odds assumption against the alternative that the odds ratio is
systematically increasing or systematically decreasing in j.

Other link functions can be used in (5.4) in place of the logistic
function.

Models in which the k — 1 regression lines are not parallel can
be specified by writing

0; + B} x

in place of the right side of (5.1) and (5.3). The corresponding
model formula is R + R.x, meaning that the slopes vary, though
not necessarily in any systematic way, with the levels of B. The
usefulness of non-parallel regression models is limited to some
extent by the fact that the lines eventually must intersect. Negative
fitted values are then unavoidable for some values of x, though
perhaps not in the observed range. If such intersections occur in
a sufficiently remote region of the x-space, this flaw in the model
need not be serious.

5.2.3 Models for interval scales

We now turn our attention to measurement scales of a slightly
different type where the categories are ordered, but in a stronger
or more rigid sense than that discussed in the previous section.
Interval scales are distinguished by the following properties:
1. The categories are of interest in themselves and are not chosen
arbitrarily.
2. It does not normally make sense to form a new category by
amalgamating adjacent categories.
3. Attached to the jth category is a cardinal number or score, s;,
such that the difference between scores is a measure of distance
between or separation of categories.
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Property 2 is essential because if we were to combine two categories,
we would need an algorithm for calculating the score for the new
category. Further, the derived model with the new scores should
be consistent with the old model in much the same way that the
proportional-odds model (5.1) behaves consistently when categories
are combined. In particular, the scores for the remaining categories
should be unaffected. These properties are difficult to achieve.

Genuine interval scales having these three properties are rare in
practice because, although properties 1 and 2 may be satisfied, it is
rare to find a response scale having well-determined cardinal scores
attached to the categories. Grouped continuous measurements, on
the other hand, may satisfy property 3, but usually not 1 or 2.
Nevertheless, it may occasionally be helpful to use artificial scores
— usually the first k integers — and to treat these as Cardinal
rather than ordinal. -

At this stage, we have three options for model construction.
The first is to work with the cumulative response probabilities
and, if necessary, to make suitable adaptations of the proportional-
odds and related models. For instance, in (5.1) we might consider
modelling the cut-points 6; as functions of the scores. To begin,
we might consider expressing 6; as

0 = G+ i (L5EE)
for unknown coefficients (o and ¢; > 0. On balance, this seems
unhelpful because the ‘cut-points’ ¢; are ordinarily considered to be
incidental parameters of little interest in themselves. More interest-
ing is the possibility of modelling departures from the proportional-
odds assumption by allowing certain systematic deviations from
parallelism. The most obvious way to achieve this is to replace
B in (5.1) by
BTx+ ¢Tx(c; — ) (5.5)

where ¢; is a suitable function of the scores. Two possibilities are

i + 8; s+ 8
c]-=]—+%l and cj=log1t(—]—%]—+l).

There is a certain qualitative similarity between (5. 5) and the effect
achieved in (5.4) without using scores.
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The second option is to examine the matrix of probabilities
{m;(x;)} or the matrix of log probabilities

nj(xi):logﬂj(xi)v J=1..,ki=1...,n

and to decompose 7;(x;) into a small number of effects or contrasts
in much the same way as is done in regression and analysis-of-
variance problems. In going from the log probabilities to the
probabilities it must be borne in mind that )7, m;(x;) = 1 for
each i. The inverse transformation is best written in the form

(%) = exp{n;(X:)}
Y Y exp{ny (xi)}

As a consequence, {n;(x;)} and {n;(x;) + a;} represent the same
set of probabilities and fitted values.

The simplest model, that of ‘independence’ or ‘no covariate
effect’ may be written as m;(x;) = m; or 7;(x;) =n; or

nj(x:) =05 + ;. (5.6)
In purely formal terms, (5.6) is equivalent to the model formula
column + row

for the log probabilities, where ‘column’ is a k-level response factor
indexed by j, and ‘row’ is a factor with n levels indexed by .

In order to model departures from (5.6), we may suppose that
the effect of the covariate is to increase the probability or log
probability in those categories for which the scores are highest.
Perhaps the simplest model that achieves this effect is

ni(%:) = mj + (BT x:)s; + e (5.7)

The corresponding model formula is
column + score.x + row, (5.8)
where score.x represents p covariates whose i,j components are

x;s;. In most applications, x is itself a model formula not involving
the response factor ‘column’.
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One interpretation of (5.7) is that a unit change in BT x changes
the log probabilities from 5; to 7; + s;. Consequently, the relative
odds for category j over category j' are changed from

.
—L = exp(n; — ;) to exp(m; —ny + 55 — s50).

or

J

In other words, the relative odds are increased multiplicatively by
the factor
exp(s; — s;)

per unit increase in the combination 87 x.
For a two-way table with one response variable and one explana-
tory factor (5.7) reduces to

Ny = nj + i + Gis;-

If, further, the explanatory factor has ordered levels, we may select
for special consideration the linear contrast r; = i — (n+1)/2, or
other suitable contrast. The reduced model is then the same as
above with (; replaced by fr;, namely

Nij =15 + ai + Pris;.

This is also known as the linearxlinear-interaction model, first
proposed by Birch (1963).

The third option for model building and significance testing is
to reverse the roles of the vector of scores s = (sy,...,s%) and
the vector of counts y = (y1,...,yx)- Instead of regarding y as
the response and s as a contrast of special interest, we may regard
the observed score as the response and y as the set of observed
multiplicities or weights. Thus, if ¥ = 4, y = (5,7,10,3) is
equivalent to 25 observations on S, namely S = s; five times,
S = s, seven times, § = s3 ten times and § = s4 three times. On
the assumption that the mean observed score is linearly related to
the covariates, we have

E(S|x;) = Zw] x;)8; = BTx,.

This is an incompletely specified model because the parameters 8
determine only the linear combination }; m;s; and not the indi-
vidual cell probabilities themselves. Note also the unsatisfactory
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property that F(S|x;) must lie between s; and s, whereas BT x;
is not similarly restricted. Despite these drawbacks, useful and
interesting conclusions can frequently be drawn from an analysis
of the observed mean scores

5',' = Z s]-y,-j/m,-.
J

In particular, if there are only two treatment groups, with observed
counts {y1;,%2;}, we may use as test statistic the standardized

difference
5, — 8,
J(Zr - () i+ )

where 7; = y.;/m.. Under the null hypothesis of no treatment
effect, and provided that the observations have independent multi-
nomial distributions, 7" is approximately standard Normal. This
statistic is due to Yates (1948) and Armitage (1955).

T =

5.2.4 Models for nominal scales

If the scale is purely nominal, we are forced to work with the
category probabilities, 7;, directly. By the same argument used in
the previous section, it is more convenient to work with logarithmic
probabilities #; given by

T = exp(nj)/Zexp(nj), for j=1,...,k
J

The aim is to describe how the vector (m,...,7) is affected by
changes in the covariates. In doing so, we must bear in mind that
n and n + c represent the same probabilities and fitted values.

In the absence of scores, the most general log-linear model has

the form
15(%:) = nj(x0) + B (Xi — Xo) + a (5.9)

for j = 1,...,k. In this expression, 7;(xo) is the set of base-line
log probabilities and B; is the change in the jth log probability per
unit change in each of the components of x. To be more precise,
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the odds in favour of category j over category j' are increased by
the factor

W?l(x) = 77:]():;)) x exp{(B; — B;)T (x — x0)}-

Thus contrasts among the vectors fB; are of interest rather than
the vectors themselves. '

Note that in (5.7), the use of response category scores enables
us to model the change in the log probabilities for all k response
cells using a single covariate vector #. In the absence of scores, it is
necessary in (5.9) to use k covariate vectors, 3,,..., 8. Since only
contrasts among the §; are estimable, we may set §; = 0. The
net result is that the nominal response model (5.9) contains many
more parameters than (5.7) in order to achieve a similar effect.

The model formula for (5.9) is

column + column.x + row,

which is the same as (5.8) with the quantitative variable ‘score’
replaced by the response factor ‘column’. As before, x may itself
be a complicated model formula not involving ‘column’.

5.2.5 Nested or hierarchical response scales

It is difficult to identify precisely the characteristics that distinguish
a nested or hierarchical response scale from the types previously
discussed. The following examples serve that purpose and show
that nested classifications occur in a large number of diverse
applications.

Ezample 1 : A study of mortality due to radiation. Suppose that,
in a study of the effects of radiation, exposed and non-exposed
individuals are classified at the end of the study period as dead
or alive. Further information is available regarding the cause of
jeath, at least to the extent that death can be attributed to a single
rause. The nature of the study requires that deaths be classified
18 ‘due to cancer’ or ‘due to other causes’. At a third stage, cancer
leaths are sub-divided into ‘leukaemia deaths’ and ‘deaths from
ither cancers’. The four mutually exclusive response categories
re therefore
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1. alive,
2. death from causes other than cancer,
3. death from cancers other than leukaemia,
4. death from leukaemia.
Figure 5.2 emphasizes the nested structure of the responses.

Study population
Response variable

Stage 1
Alive Dead Total mortality
Stage 2 Cancer mortalit;
Lancer mortauty
Other causes Cancer Total mortality
Stage 3 Leukaemia mortality

Other cancers Leukaemia Cancer mortality

Fig. 5.2. Hierarchical classification used in the study of radiation effects.

Here it is probably most appropriate to make a separate study
of each of the three response variables, one corresponding to the
dichotomy at each level of the hierarchy:

1. total mortality,

2. cancer mortality as a proportion of total mortality, and

3. leukaemia mortality as a percentage of cancer mortality.
Each of these variables may be affected by exposure, but perhaps in
quite different ways. For example exposure might have a marked
effect on the incidence of leukaemia (or thyroid cancer) without
having much effect on total mortality or on the incidence of all
cancers.

Ezample 2 : Fertility of lactating cows. There is some evidence
to support the claim that a winter diet containing a high proportion
of red clover has the effect of reducing the fertility of milch cows. In
order to test this hypothesis, we begin with, say, 80 cows assigned at
random to one of the two diets. Most cows become pregnant at the
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first insemination but a few require a second or third insemination
or occasionally more. After the first insemination, the most fertile
cows have become pregnant. The success rate for those that require
subsequent insemination is noticeably less than the initial success
rate. In this instance there is an indefinite number of stages
corresponding to first attempt, second attempt and so on. Three
stages are depicted in Fig. 5.3. The variable measured at each
stage is the pregnancy success rate. In that respect, this example
differs from the previous one, where the variables measured at
each stage were scientifically distinct. If indeed, red clover reduces
fertility, this reduction should be apparent at all stages, even
though the mean fertility of the remaining cows is reduced at each
successive stage. Information concerning the treatment effect must
be collected from the pregnancy rates observed at each stage.

m = 80 milch cows
Response variable

First insemination —
Py Pm—y Pregnancy rate

Second insemination _
Piya  Pim—y1—ys Pregnancy rate

Third insemination _
P;ys P;m—y1—y2—y3 Pregnancy rate

Fig. 5.3. Hierarchical response in an insemination erperiment:
P = pregnant, P = not pregnant.

There is, of course, the possibility of a more complicated treat-
ment effect whereby only the less fertile cows are affected. The
observed treatment effect would then be expected to increase at
successive stages. In the analysis, one should be aware that such
an interaction might occur and what its symptoms would be.

In order to build up a model for either kind of hierarchical
response, it is best to consider separately & — 1 responses, one
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for each level of the hierarchy. The m subjects available at
stage 1 respond positively with probability 71, or negatively with
probability 1—-;. The observed proportions are necessarily slightly
different from the theoretical proportions so that, at stage 2, the
experimental set or ‘risk set’ is reduced to m—y;. Among these, the
probability of a positive response is w2/(1 —+1), and the probability
of a negative response is (1 — 72)/(1 — v1). By the third stage,
the risk set is further reduced to m — 1 — y2. Among these, the
probability of a positive response is m3/(1—12), and the probability
of a negative response is (1 — v3)/(1 — v2). The response is thus
broken down into the sequence of conditional factors:

Stage Response Probability Odds
1 Yi|m ™ m/(1 =)
2 Y2|lm -y ma/(1 — ) m2/(1 — 72)
3 Y3|m—yi— 2 m3/(1 — 72) m3/(1 —3)

In the particular examples considered, each stage of the hierar-
chy corresponds to a simple dichotomy. It is natural therefore, to
consider binary regression models of the type discussed in Chap-
ter 4. Thus, in the radiation mortality example,

g(m1) = B1x
relates total mortality to exposure x via the link function ¢(-). By
extension,
2 T
I (1 ) = Pax
-Nn

relates cancer mortality as a proportion of total mortality to
exposure. Similarly,

I (1 = ) = B3
- 72

relates leukaemia cancer mortality as a proportion of total cancer
mortality to the exposure variables. There is no good reason here
to expect that the coefficients 8, 85, B3 might be equal or even
comparable. In addition, there is no strong argument for using
the same link function in the three regressions. If the identified
cancer types at stage three were ‘leukaemia’, ‘thyroid’ and ‘other’,
the trichotomy would be regarded as a nominal response scale and
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the methods of section 5.2.4 could be used. It would then become
impossible to insist on the same link function for each stage.

The insemination example has many of the same features but
differs in the important respect that the response is the same
at each stage. In constructing a model, however, we must make
allowance for the expected decline in fertility at successive stages.
A simple sequence of models having a constant treatment effect is
as follows:

g(m) = a1 + B7x,
g{m/(1 =)} = a2 + B x,
g{ms/(1 —712)} = as + BTx.

It is essential here to use same link function for each stage. In
particular, if the logistic link function is used, we have

i _ . T
log(1_7j> =a;+ 6 x. (5.10)

The incidental parameters «g,.-..,ar—; make allowance for the
expected decline in fertility. If x is an indicator variable for
treatment, model (5.10) asserts that treatment increases the odds
of success by a factor exp(8Tx) uniformly at each stage of the
experiment. Constancy of the effect can be tested in the usual
way by the addition of an interaction term between treatment and

stage.

5.3 The multinomial distribution

5.3.1 Genesis

The multinomial distribution is in many ways the most natural
distribution to consider in the context of a polytomous response
variable. It arises in a number of contexts, some apparently
artificial, others a consequence of simple random sampling.
Suppose that individuals in some population of interest possess
one and only one of the k attributes A;,...,Ax. The attributes
might be ‘colour of hair’, ‘socio-economic status’, ‘family size’,
‘cause of death’ and so on depending on the context. If the
population is effectively infinitely large and if a simple random
sample of size m is taken, how many individuals will be observed
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to have attribute 4;? The answer is given by the multinomial
distribution

m
pr(Y1 =y1,..., Y, = yg;m, ) = (y)wfl TR, (5.11)
where 7y,..., T are the attribute frequencies in the infinite popu-
lation and

(m) _oom!
y nu

The multinomial distribution arises here simply as a consequence
of the method of sampling. A different method of sampling such
as cluster sampling or quota sampling would give rise to a different
frequency distribution from (5.11).

The sample space or set of all possible values of the vector y
is the set of all integer-valued k-vectors satisfying 0 < y; < m,
Y y; = m and comprises (m,':fl‘ 1) points. The sample space is a
triangular lattice bounded by a regular simplex: see Fig. 5.4 for a
diagram of the trinomial distribution.

Another derivation of the multinomial distribution is as follows.
Suppose that Y7,..., Y% are independent Poisson random variables
with means p;,..., ux. Then the conditional joint distribution of
Y1,..., Y, given that Y, = m is given by (5.11) with m; = p;/p..

The multinomial distribution for which m; = 1/k is called the
uniform multinomial distribution.

5.3.2 Moments and cumulants

The moment generating function of the multinomial distribution,
M(m,x) is
m

My (t) = Eexp(z t]-Y]-> = {Z mj exp(t]-)} .

Thus the cumulant generating function is
Ky(t) = mlog{z 5 exp(t]-)}.
All cumulants have the form m xpolynomial in . In particular,
the first four joint cumulants are
E(Y;) = mr,

coutter = { L) 2 (312
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mr,(1 -7 )(1—-2m,) r=s=t

k3(Yr, Y5, V) = —mm,m(1 — 27,) r=s#t
2mm,wmy r, s, t distinct
mm,(1 — 7, )(1 — 67, (1 — 7)) r=s=t=u
—mm,my (1 — 61, (1 — 7)) r=s=t#u
k(Y Y, Y3, Y,) = ¢ —mmm(1 — 27w, — 2my + 6m,my) r=s#t=u
2mm mymy, (1 — 3m,) r=s#t#u
—6Mm, Ty 1, s,t, u distinct

Frequently, however, it is more convenient to work with the vector
of cumulative totals rather than with the cell counts. If we write
Z = LY where L is a lower-triangular matrix containing unit
values, we see that the vector of cumulative totals is a linear
function of Y. The first four cumulants of Z are

E(Z,) = my,,

Yrs = COV(Zr, Zs) = myr(1 —s) for 1<, (5.13)
k3(ZyryZs, Zs) = myp(1 = 275)(1 =) for r<s<it,
£4(Zry Zs, Zt, Zu) = mye(1 — 1) {1 = 2(7 — %) = 67:(1 — 1) }

for r<s<t<u.
In other respects as well, the cumulative multinomial vector has
simpler properties than the original vector. For instance, it is easily
seen that for r < s < t, Z, and Z; are conditionally independent
given Z,. To be specific, given Z, = z,,
Zy ~ B(Zs» 71-/73)
Ly — 25 ~ B{m — 23, (7t - 73)/(1 - 73)}'

Linear combinations }_ s;¥; with fixed coefficients s; arise nat-
urally in calculations related to models of the type discussed in
section 5.2.3. The cumulants of such a combination are easily
obtained either from the expressions given above or by observing
that for m = 1, 3~ 5;Y; takes the values sy, ..., s; with probabilities
m,...,Tx. Consequently if we write

ps = E{Y 5;Y;/m} = Yo m;s;
we have that
2 2
var(Zs]-Yj) =my, mi(s; — )2 =m{Z7err (ZWJ'SJ') }
ks(5 %) = m 3 my(s; — )’
Similar expressions may be derived for higher-order cumulants
should these be required for Edgeworth approximation.
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5.3.3 Generalized inverse matrices

Provided only that the cell probabilities 7; are positive, the multi-
nomial covariance matrix Ly = m{diag(n)—wxT} has rank k—1.
The simplest generalized inverse is

Ty = diag{l/(mn;)},

which has rank k. This is not the Moore-Penrose inverse, but
for most statistical calculations the choice of generalized inverse
is immaterial and ¥~ given above is perhaps the simplest such
inverse. It is easily verified that

Y7 =%,

which is the defining property of a generalized inverse. In fact all
generalized inverses have the form £~ — ¢117 for some ¢. The
Moore-Penrose inverse has ¢ = 1.

The vector of cumulative totals, Z, may be regarded either
as a vector having k components, the last of which is fixed,
or alternatively as a vector having k¥ — 1 components, the last
component being ignored. In either case the covariance matrix has
rank k—1. The covariance matrix I' = {7,5} in (5.13) is a particular
instance of a Green’s matrix, whose inverse is a symmetric Jacobi
or tri-diagonal matrix. The particular form of inverse for k£ = 5 is
as follows:

7r1_l + 7r2‘l —7r51 0 0 0

—7y ! N —m;! 0 0

r=— 0 -mt wit4nt —mgt 0
0 0 T AL N Sn |

0 0 0 0 0

This is the Moore-Penrose inverse of ' in (5.13). All generalized
inverses have this form, but with arbitrary values in the final row
and column.

For a discussion of the geometry of generalized inverse matrices,
see Kruskal (1975) or Stone (1987).
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5.3.4 Quadratic forms

In order to test the simple null hypothesis Hy : # = 7@, it is
natural to construct, as a test statistic, a quadratic form in the

residuals, R; =Y — m7r](-0). Since Y R; =0, it follows that
Xx? =RTEy;R

is independent of the choice of generalized inverse. Taking the
particular inverse given in the previous section, we see that

=D R ) = 300 = ) g,
J J

which is the familiar statistic due to Pearson (1900).
Equally well, if we choose to work with the cumulative multino-
mial vector and the corresponding generalized inverse, we obtain

k1 kz
1

Z -—m7] (_ ) o N~ (Zi — my)(Zj1 — myjen)
i Ti+1 ; mmj i1

1 ij=1

with # and 4 computed under Hy. It is an elementary if rather
tedious exercise to show that the above quadratic form is identical
to X2, Quadratic forms such as these are invariant under nonsin-
gular linear transformation of the original variables.

The first three null cumulants of X2 are

E(X?) =k -1,
var(X?) = 2(k - 1)'"—m——1 +(S-1 — k%) /m,

k3(X?) = 8(k — 1)m—m_—1 +4(k —1)(k — 6)2
+(S-1 — k*)(22(m — 1) = 3k) /m? + (S—5 — k%)/m?,

where S, = Y 77. In the uniform case, §_; = k2, 5_, = k3.

If m is large, X? is approximately distributed as xZ_, with
cumulants k—1, 2(k—1), 8(k—1),.... The above exact calculations
give a measure of the departure in finite samples of X2 from its
limiting distribution.

Similar moment calculations for X? for two-way tables are given
in Exercise 6.16.
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5.3.5 Marginal and conditional distributions

The marginal distribution of each multinomial component of ¥ is
binomial: Y; ~ B(m,n;). Also, the joint marginal distribution of
(1, Ya,m — Y] —Y>) is multinomial on three categories with index
m and parameter (7, 72,1 —m; —m2). This latter property extends
to any number of components.

The conditional joint distribution of Y1,...,Y%, given that ¥; =
¥, is multinomial on the reduced set of categories, with reduced
index m — m — y; and probabilities renormalized to

m; — mi /(1 —m;).

Analogous results are available for the cumulative multinomial
vector, Z. The marginal distribution of Z; is B(m,~;). The
conditional distribution of Z; given Z; = z;, is B(zj, vi/~;) for
i < j. Also, the conditional distribution of Y1 given Z; = z;, is
B(m—z;, mj4+1/(1—7;)), which is the basis for the decomposition in
section 5.2.5. In fact, the multinomial distribution can be expressed
as a product of k£ — 1 binomial factors

pr(Y = y) = p(y1 ] 20) P(y2 | z1)p(ya| 22) .- . P(Yk—1] 2k—2),

where

i Yi (1= \™" 1Y (m— 25
wlsm) = (7755)” (55 (
p(ys 21 1= 1 1— 71 ”

and 29 = v = 0.

Evidently, the sequence Z,,...,Z; has the Markov property,
namely that the conditional distribution of Z; given the entire
sequence Z1,...,Z;j_1 up to j—1, depends only on the most recent
value, namely Z;_;. Also, the ‘past’ Z1,..., Z;_1, and the ‘future’
Zj41, ..., Zy are conditionally independent given the ‘present’, Z;.
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5.4 Likelihood functions

5.4.1 Log likelihood for multinomial responses

We suppose that there are available n independent multinomial
vectors, each with k categories. These observations are denoted
by ¥is--.,¥n, where y; = (yir,...,yi) and Y yi; = my is
fixed for each 7. As usual, it is more convenient to consider the
log likelihood initially as a function of the n probability vectors
x1,...,Tn. Subsequently, when we contemplate a specific model
such as (5.1) or (5.5), we may express the probabilities in terms of
the parameters that appear in that model.

From the ith observation y,, the contribution to the log likeli-

hood is
Wmiy;) = Zyij log ;.
J

It is understood here that the observations and the probabilities
are subject to the linear constraints

Zy,-j =m; and Zw,-]- =1
J J

for each i. Since the n observations are independent by assumption,
the total log likelihood is a sum of contributions, one from each of
the n observations. Thus,

(my) = yijlogm. (5.14)
i

Differentiation of the log likelihood with respect to m;; subject to
the constraint ) m;; =1 gives

ol(m:y)  yij —mumyy

671',']' 7Ti]‘
Equivalently, introducing matrix notation,

ol(my) e
on; = mzzi (yi mz”z)

=mZ; (y; — mi)- (5.15)
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This set of n derivative vectors can be collected into a single matrix

equation

PY) My - ),
where ¥ = diag{¥,,...,E,} is nkxnk of rank n(k — 1) and M
is a diagonal matrix of order nkxnk containing the multinomial
indices m; each repeated k times. The choice of generalized inverse
in (5.15) is immaterial because 17 (y, — ;) = 0 for each i.

In the above calculations, we have chosen to work with the
response vectors y; and the probability vectors ;. This turns
out to be a convenient but arbitrary choice. We could choose to
work instead with the cumulative response vectors z; together with
the cumulative probability vectors 7,. Analogous calculations then
give

Mriy) _ miLy (2 — may;), (5.16)

which can be obtained from (5.15) using the chain rule. In fact,

ol ol ol

= - for 1<j<k,
0vij Omy;  Omij_, 7

which is the same as (5.16).

5.4.2 Parameter estimation

The likelihood equations for the parameters are entirely straight-
forward to obtain at least in principle. We simply multiply (5.15)
by the derivative of m;; with respect to each parameter in turn
and sum over 7 and j. Alternatively, and equivalently, we multiply
(5.16) by the derivative of +;; with respect to the parameters and
sum over ¢ and j. Obviously, the form of the resulting equations
depends heavily on the particular choice of model. We now consider
some of the details of two particular choices.
Suppose that the model chosen has the form

logitv;; = Z T35 Br
r

for some fixed coefficients z7;, and unknown parameters §;. It is

helpful here to think of z};, as the components of a matrix X*
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of order nkxp* where p* is the dimension of 8*. In the case of
model (5.1), 8* has dimension p* = p + k — 1 with components

ﬂ* = (01,...,0k—17ﬂ17””ﬁ1’)'

The (7, j) row of X* has components (0, ..,1,..,0, x;), with the unit
value in position j. Consequently, the ith block of £ — 1 rows is

[Ik—l . lx,-].

Differentiation with respect to B* gives
Z al 67,']'
3,3* 0vi; 00

ol

= Y sl = %) —

%: ijr 113 tJ 871']'

where 0l /0v;; is given by (5.16). In fact,

Ol _ ¥y —MiTij _ Yij1 = MaTij1 for 1<j<k.

s 5 Tij—1
For the proportional-odds model (5.1), these calculations can be
simpliﬁed to some extent by exploiting the structure of the array
z};, but these details will not be pursued here.
For log-linear models such as (5.5)-(5.9), we have

logm;; = szjrﬁ:

for various choices of coefficients z;;, dependent on the choice of
model. In all of these cases, the likelihood equations take on a
particularly simple form, namely

*

szjr(yij_ﬂij)zo for r—1,...,p"

In other words, in this case maximum likelihood is equivalent to the
method of moments in which specific linear combinations 3 TiirYij
are equated to their expectations as a function of the parameters.
The actual combinations depend on the choice of model. For
instance if model (5.8) is used, the combinations are the ‘row’ and
‘column’ totals as well as the ‘interaction combinations’

inrsjyij for r= 1,. e P
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5.4.3 Deuviance function

The residual deviance function is twice the difference between the
maximum achievable log likelihood and that attained under the
fitted model. The maximum achievable log likelihood occurs at
the point 7;; = y;;/m;. The deviance function is therefore

D(y;#) = 2l(%;y) — 2l(#%;y)
= 221},’1 logfr,-]- - 221},‘1 logfr,-]-
=2 yij log(yis/ fug)-

ij

Under the conditions described in section 4.4.3, namely that f,;
are sufficiently large and that there is no over-dispersion, D(Y’; %)
has an approximate y? distribution. Its use as a goodness-of-fit
statistic, however is open to the objections raised in sections 4.4.3,
4.4.5 and 4.5.

5.5 Over-dispersion

Over-dispersion for polytomous responses can occur in exactly the
same way as over-dispersion for binary responses. Details are given
in section 4.5.1 and will not be repeated here. Under the cluster-
sampling model, the covariance matrix of the observed response
vector is the sum of the within-cluster covariance matrix and
the between-cluster covariance matrix. Provided that these two
matrices are proportional, we have

E(Y) = mn,

cov(Y) = o’%, (6.17)
where ¥ is the usual multinomial covariance matrix. The dispersion
parameter o2 has the same interpretation given in section 4.5.

Parameter estimation (other than ¢2) is unaffected by over-
dispersion and proceeds along the lines described in section 5.4.2
as if the multinomial distribution continued to apply. However,
the covariance matrix of ﬁ, obtained from the multinomial log
likelihood, needs to be inflated by the dispersion factor ¢2. The
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only additional step therefore is the estimation of this dispersion
factor. For the reasons given in section 4.5.2, we use

&% = X?/{n(k - 1) - p}
= X?/{residual d.f.}, (5.18)

where X? is Pearson’s statistic. This estimate is approximately
unbiased for a2, is consistent for large n regardless of whether the
data are sparse and moreover is approximately independent of the
estimated ﬂ

For further details see Chapter 9.

5.6 Examples

5.6.1 A cheese-tasting experiment

The following data, kindly provided by Dr Graeme Newell, were
obtained from an experiment concerning the effect on taste of
various cheese additives. The so-called hedonic scale has nine
response categories, ranging from ‘strong dislike’ (1) to ‘excellent
taste’ (9). In this instance, four additives labelled A, B, C and D
were tested. The data are given in Table 5.1.

Here the effects are so great that the qualitative ordering (D, A,
C, B) can easily be deduced from visual inspection. Nevertheless
it is of some interest to check whether the models described earlier
are capable of describing these differences and of evaluating the
statistical significance of the differences observed.

Table 5.1 Response frequencies in a cheese-tasting experiment

Response category

Cheese 1* 11 T IV V VI vII vl Ixt Total

A 0 0 1 7 8 8 19 8 1 52

B 6 12 11 7 6 1 0 0 52

C 1 1 6 8 23 7 5 1 0 52

D 0 0 1 3 7 14 16 11 52
Total 7 10 19 27 41 28 39 25 12 208
*I = strong dislike; tIX = excellent taste.

Data courtesy of Dr Graeme Newell, Hawkesbury Agricultural College.
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The nature of the response is such that a model of the form
(5.1) or (5.3) is most obviously appealing. We first try the logistic
model with intercept parameters 8,,...,60g and treatment effects
B1,..., 04 In this instance, (5.1) can be written in the form

logitv;; = 6; — 6;

forj =1,...,8and i = 1,...,4. As usual, only contrasts among
the treatment effects 3; are estimable. We adopt the convention
whereby 3, = 0. The resulting estimates, standard errors and
correlation matrix of the Js are given below.

Logistic treatment effects for cheese-tasting data

Additive Estimate SE Correlations
A Bi=-1613 0.378 1.0
B B2 = —4.965 0.474 0.525 1.0
C [y = -3.323 0.425 0.574 0.659 1.0
D ﬂ4 = 0.0 — — — —

Positive values of J represent a tendency towards the higher-
numbered categories relative to the chosen baseline — in this case,
the probabilities for cheese D. Negative values indicate the reverse
effect. The observed estimates quantify and confirm the ordering
(D, A, C, B) from best to worst. The quoted standard errors
are based on the assumption that g2 = 1, namely that no over-
dispersion is present. The correlations, unlike the covariances, are
unaffected by the choice or estimate of 2.

The deviance for these data is reduced from 168.8 on 24 de-
grees of freedom under the model of zero additive effect (8 = 0)
to 20.31 on 21 degrees of freedom under the proportional-odds
model. Because of the small numbers in the extreme cells the
chi-squared approximation for the deviance is not very good here.
Residual analysis is awkward partly for the same reason and partly
because row sums are fixed. Using the crude standardization
(i5 — §ij)/Imattiz(1 — 745)]2, we find two cell residuals exceeding
the value 2.0. The values are 2.23 and 2.30 corresponding to cells
(1,4) and (2, 6) with fitted values 3.16 and 2.47 respectively. How-
ever, if residual calculations were based on the cumulative totals
zij = ¥i1 + ... + yij, arguably a more appropriate procedure here,
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the apparently large discrepancies would disappear. At the very
least, residuals based on 2;; have the strong conceptual advantage
that only & — 1 of them are defined for each multinomial observa-
tion. Correlation among the residuals is a problem regardless of
definition but the problem seems more acute for residuals based on
2;j. However, these extreme residuals are hardly sufficiently large
to refute the model which is, at best, an approximation to reality.

As a further check on the adequacy of the proportional-odds
model, we fitted the generalized rational model (5.4) with the
treatment factor as the model formula in both numerator and
denominator. In other words

6, — Gi
exp(T;)’

logit vi; =

This gives a reduction in deviance of 3.3 on 3 degrees of freedom, so
that there is no evidence that the variability of responses is affected
by the cheese additive.

So far we have assumed 02 = 1 without justification. However,
the estimate for 02 from (5.13) is 20.9/21 or almost exactly unity.
Here p = 11 is the total number of parameters including the 8s.

A more serious problem that we have so far ignored is that obser-
vations corresponding to different treatments are not independent.
The same 52 panellists are involved in all four tests. This is likely
to induce some positive correlation p between the ratings for the
different treatments. Variances of contrasts would then be reduced
by a factor 1— p? relative to independent measurements. Inferences
based on supposing that p = 0 are therefore conservative. In other
words the general qualitative and quantitative conclusions remain
valid with the computed variances being regarded as approximate
upper limits. R

Finally we examine the effect on 8 of reducing the number of
response categories. Various combinations are possible: here we
combine categories 1,...,4 and 7, 8, 9, thus reducing the original
nine categories to four. This arrangement makes all cell counts
positive. The new estimates for 8 are (—1.34,—4.57,—-3.07,0)
corresponding to an average reduction of about 0.7 standard errors
compared with the previous analysis. Reduction of the number of
categories does not always have this effect. Estimated variances are
increased by an average of about 19%. Correlations are virtually
unaffected.
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The available evidence suggests that, when the data are sparse,
the estimate of 8; may be too large in magnitude. Grouping of
the tail categories has the effect of reducing this bias. A very
small-scale simulation experiment based on 25 repetitions using
the values of @ and B obtained from the data in Table 5.1 and the
same row totals indicates the following:

1. the bias in the estimates 3; is no more than 5%.

2. the deviance or likelihood-ratio goodness-of-fit statistic is ap-
proximately distributed as x2;: at least the first two moments
do not differ appreciably from those of this reference distribu-
tion.

3. the standard errors obtained from the diagonal elements of
(5.11) are, if anything, a little too large — by about 10%.

The first claim is buttressed to some extent by the findings in
section 7.5.3, where the nuisance parameters are eliminated by suit-
able conditioning. Because of the small scale of the simulation, the
remaining conclusions are tentative. Nonetheless the conclusions
are positive and they show that, even with data as sparse as those in
Table 5.1 and where the number of parameters (11) is moderately
large in comparison to the number of observations (32), the usual
asymptotic results are quite reliable at least for the parameters of
primary interest.

9.6.2 Pneumoconiosis among coalminers

The following example illustrates the use of a quantitative covariate
in an ordinal regression model. For comparative purposes we apply
both (5.1) and (5.10). Difficulties associated with residual plots are
also illustrated.

The data, taken from Ashford (1959), concern the degree of
pneumoconiosis in coalface workers as a function of exposure ¢
measured in years. Severity of disease is measured radiologically
and is, of necessity, qualitative. A four-category version of the ILO
rating scale was used initially, but the two most severe categories
were subsequently combined.

A preliminary plot of the transformed variables

) 1 ) ) 1
log (_ﬂﬁ2_> and log ( ynt Yot ) (5.19)

mi —ya + 3 m; =y — Y2+ 3
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Table 5.2 Period of exposure and prevalence of pneumoconiosis amongst
a group of coalminers

Number of men

Category 111

Period Category I: severe
spent (yr) normal Category 11 PREUMOCconiosis

5.8 98 0 0

15.0 51 2 1

21.5 34 6 3

27.5 35 5 8

33.5 32 10 9

39.5 23 7 8

46.0 12 6 10

51.5 4 2 5

against ¢; reveals approximately parallel but non-linear relation-
ships. Further investigation shows that the transformed variables
(5.19) are approximately linear in log ¢;. We are thus led to consider
the model

log[yij /(1 — ;)] = 0; — Blogt;,  j=1,24i=1,...,8 (5.20)

We might expect that the non-linearity of (5.20) in t could have
been detected by an appropriate analysis of the residuals after
fitting the model linear in £. This is indeed so but some care is
required. When the 24 cell residuals, appropriately standardized,
are plotted against ¢;, no strong curvilinear pattern is discernible.
On the other hand, a plot against ¢; of the cumulative residuals,
vi1—9i1 and y;1 + ¥i2 — §i1 — iz, appropriately standardized, clearly
_ reveals the non-linearity. When & = 3 this is equivalent to ignoring
the residuals associated with category 2 and changing the sign of
the category-3 residuals. The two plots are displayed in Figs. 5.5a
and 5.5b respectively. The simplified standardization used here
takes no account of the errors involved in using estimated values of
the parameters.

The analysis using (5.20) gives a value of B of 2.60 with standard
error (.38, while the values of él and éz are 9.68 and 10.58
respectively. No pattern is discernible among the residuals and the
fit is good. The conclusions, therefore, are that for a miner with,
say, five years of exposure, the odds of having pneumoconiosis are
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Fig. 5.5b. Plot of cumulative restduals against t for pneumoconiosis data.

one in exp(9.68 — 2.60log 5), 1.e. one in 243. Doubling the exposure
increases the risk by a factor of 2260 = 6.0, so that after 10 years
the risk rises to just under one in 40, and after 20 years to just
over one in seven. For severe pneumoconiosis the five-year risk
is one in exp(10.58 + 2.601og 5), i.e. about one in 600. This risk
increases at the same rate as before so that after 10 years exposure
the estimated risk is one in 100 and after 20 years is one in 17.

Ashford’s analysis of these data proceeds along the same lines
as that given here except that he uses the probit function in place
of the logit. His conclusions give similar fitted values but his
parameter estimates are different, partly because of his use of the
probit function and partly because of numerical inaccuracies.

We now proceed to illustrate the use of the alternative model
(5.10) in the context of the pneumoconiosis data. Imagine the
response categories arranged in the hierarchical format illustrated
in Fig. 5.3. The response at stage 1 is the dichotomy between
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disease and no disease whereas the response at stage 2 is the
dichotomy between the mild form of the disease and the severe
form. These responses are very much alike but technically distinct.
However, for comparative purposes, we assume here that the effect
of continued exposure is comparable for the two responses so that
(5.10) can be used. We take model (5.10) in the form

log( Ui, ) = a; — Pz, (5.21)
1 —7j

reversing the sign of the coeflicient in order to make the results at
least qualitatively comparable to those obtained from (5.20).

The odds in favour of category 1 are exp(a; — ;) so that the
odds or risk of having the disease in the first place is exp(—aj+5z;).
Here z; is a general measure of exposure — in this case ¢; or log?;.
Thus the risk of disease increases by the factor e? per unit increase
in z. Among those who have the disease, the risk, or odds of
having severe symptorms, is exp(—az + fz;), so that again the risk
increases by the factor e? per unit increase in z. There is clearly
the possibility that a different g might be involved in the second
expression.

Because of the special structure of the model (5.10) each trino-
mial observation can be broken into two binomial components. The
first component specifies the number of diseased individuals as a
proportion of the total number at risk, while the second component
gives the number of severely diseased as a proportion of those with
the disease. Thus

y11/m11 = 0/98, y12/my2 = 0/0,

y21/ma1 = 3/54, y22/maz = 1/3,

y31/m3, = 9/43, ys2/maz = 3/9,
and so on with m;; = wi; + yij4+1 + ... + ¥k giving the total in
categories j through k inclusive.

These binomial observations y;;/m;; can be regarded as inde-
pendent observations with probabilities 7;; satisfying

lOg[ﬂ'i]'/(l — Wij)] = —Qy + ,H.’L‘i, j = 1,2; 7= 1, . ,87 (522)

If the relationships are not parallel it may be necessary to write J;
instead of 3 in (5.22). The binomial log likelihood for the logistic
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model (5.22) is identical to the multinomial log likelihood for the
model (5.21).

For these data, the covariate log?; is strongly preferred to i;;
there is inconclusive evidence on whether §; # (3. As measured
by the deviance or likelihood-ratio statistic, the fit of (5.22) is
comparable to that of (5.20). The goodness-of-fit statistics are
5.1 on 13 d.f. for (5.20) and 7.6 on 12 d.f. for (5.22). One degree
of freedom is lost because y,2 is degenerate or non-random when
(5.22) is used. For model (5.22) the residuals give some indication
of a faint pattern; for this reason the former model (5.20) might be
preferred. In any case the estimate of 3 is 2.32 with approximate
standard error 0.33, these values being similar to those obtained
earlier despite the slight difference of interpretation. Thus we are
led to the estimate of 2232 = 5.0 as the increase in risk associated
with doubling the exposure time.

To summarize we can say that (5.1) and (5.10), or equivalently
(5.20) and (5.22), are different ways of describing the risk associated
with increasing exposure. The conclusions from either analysis
support the claim that doubling the exposure increases the risk
by an estimated factor of between 5 and 6. Approximate 95%
confidence limits for this factor are (3.2, 10.2). It would be of
interest to know (i) whether the risk would continue to increase
if exposure were to cease, and (ii) whether the risk would increase
more slowly if dust levels were reduced. The data given here do not
allow us to investigate these questions; indeed as the data stand,
such effects would be likely to be confounded with age.

5.7 Bibliographic notes

Many of the methods and models discussed in Chapter 4 for bi-
nary data carry over to polytomous responses with only minor
alterations. Consequently, most of the references listed in section
4.7 are also relevant here although there is enormous variation in
emphasis and coverage. Agresti (1984) concentrates almost entirely
on methods for ordinal response variables, including measures of as-
sociation, which are not covered here. Haberman (1978, 1979) em-
phasizes methods for fitting a variety of log-linear models, mainly
with social science applications in mind. Fienberg (1980) p.110 con-
siders a variety of link functions, all of which are variations on the
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logit. Both Haberman and Fienberg devote considerable attention
to algorithmic details and the computation of maximum-likelihood
estimates for two and three-way tables. Details of the iterative pro-
portional fitting algorithm (Deming and Stephan, 1940; Darroch
and Ratcliff, 1972) for log-linear models can be found in the book
by Bishop et al. (1975). This algorithm forms the core of several
log-linear computer packages, but it is not sufficiently general to
cover the range of models considered here.

Aickin (1983) makes a distinction between nominal and nested
response scales similar to the distinction made in section 5.2, but
does not consider proportional-odds or proportional-hazards mod-
els for ordinal responses. For further discussion of measurement
scales see Stevens (1951, 1958, 1968).

The idea of representing ordered categories as contiguous inter-
vals on a continuous scale goes back at least to Pearson (1901),
who investigated coat-colour inheritance in thoroughbred horses.
An extension of this idea to two variables led to the development
of the tetrachoric and polychoric correlation coefficients and to the
quarrel with Yule (Yule, 1912; Pearson and Heron, 1913).

The proportional-odds model described in section 5.2 was pre-
viously used by Hewlett and Plackett (1956), Snell (1964), Walker
and Duncan (1967), Clayton (1974), Simon (1974), Bock (1975)
and others. Ashford (1959), Gurland et al. (1960) and Finney
(1971) used the probit link in place of the logistic.

Williams and Grizzle (1972) discuss a number of methods in-
cluding the proportional-odds model as well as scoring methods in
the log-linear context. See also Haberman (1974a,b). McCullagh
(1980) compares the use of scores in log-linear models with direct
application of the proportional-odds model. He concludes that
the proportional-odds and related models based on transforming
the cumulative proportions are to be preferred to scoring methods
because they are invariant under the grouping of adjacent response
categories.

Graubard and Korn (1987) discuss the effect of the choice of
scores in testing for independence in two-way tables.

Goodhardt, Ehrenberg and Chatfield (1984) use the Dirichlet-
multinomial model to accommodate over-dispersion in brand-choice
data. This is a natural extension of the beta-binomial model dis-
cussed in Chapter 4. For further discussion of specific forms of
over-dispersion in this context, see Engel (1987).
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Existence and uniqueness of maximum-likelihood estimates for
a large subset of the models discussed here has been investigated
by Pratt (1981) and by Burridge (1982).

Numerical methods for dealing with composite link functions
such as (5.1) are discussed by Thompson and Baker (1981).

5.8 Further results and exercises 5

5.1 Show that

2”‘: j+k—1>_ m+ k
. k-1 B k)
j=0

Hence deduce that the number of integer-valued sample points y
m+k—1

satisfying 0 < y; <m and Y y; = mis (™ ""). [Hint: consider
the series expansion of (1 —z)~'(1 —z)™™]

5.2 Suppose that ¥ ~ M(1,#) and Z = LY is the vector of
cumulative totals of Y. Show that

E(Z,Z,Z,..)=~ for r<s<t<...
Hence show that
cov(Zy,Zs) =4 (1 —~,) for r<s.
Derive the third- and fourth-order cumulants of Z.

5.3 Show that the following expressions are equivalent:
> v (=) + mi)
Y w1l —y —vm1)
Z YiVi+1T5+1
1=y = -y
H1- T},
All sums run from 1 to k£ with the convention that v, = 1 and
o = Y0 = Tk+1 = Yk+1 = 0.

Find the minimum and maximum values for fixed k£ > 2.
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5.4 By considering the case in which the differences 6; — 6; are
known, show that the asymptotic covariance matrix for (91, ﬁ) in
(5.1) is given by (X" WX)~!. The model matrix X is n x (p+1),
with the constant vector in column 1, and W is diagonal with
ccmponents
w; = 3my{1 -3, 7%}

Deduce that this approximation gives a lower bound for cov(ﬁ)
when no assumptions are made about . Show that the approxi-
mation is accurate if k¥ = 2 or if the log odds-ratios are small.

Hence show that in the two-sample problem following (5.2), the
approximate variance of A is 1/w, + 1/wy (Clayton, 1974). This
approximation appears to be satisfactory for |A| < 1, which is
usually the most interesting range in applications.

5.5 The data in Table 5.3, taken from Lowe et al. 1971, give the
frequencies of anencephalus, spina bifida and other malformations
of the central nervous system among live births in various South
Wales communities. The principal object of the study was to
investigate the effect, if any, of water hardness on the incidence
of such diseases. What type of response scale is involved here?
Analyse the data paying particular attention to the following
points.
1. possible effects of water hardness on the incidence of CNS
disorders.
2. differences between manual and non-manual workers in the
incidence of CNS disorders.
3. anomalous geographical effects.
4. any systematic differences in the distribution of types of CNS
disorders.

Give a brief non-technical summary of your conclusions.

5.6 Show that the complementary log-log model (5.3) is equiva-
lent to the continuation-ratio or nested response model

g{m;(x)/(1 =71 (x))} = a5 = B"x

if g(-) is the complementary log-log function. Express @; in terms
of the ‘cut-points’ #,,...,0,—) appearing in (5.3). [Léddrd and
Matthews, 1985].

Check this claim numerically by replacing the logistic link in
(5.20) and (5.21) with the complementary log-log link. Why are
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the fitted values for category II different for the two models? Show
also that the corresponding logit models (5.1) and (5.10) are not
equivalent.

5.7 Consider the multinomial response model (5.7) with scores
8 =(1,0,...,0). Show that, with these scores, the log-linear model
is equivalent to the nested response model

lOglt m (Xi) =m+ ﬂTxi

75 (Xi) }
I\ Y =, > 2.
loglt(1 P l(xz)> 7; J 2

5.8 Let Y;; be the observations in a two-way table with n inde-
pendent rows such that Y; ~ M(m;, ) on k categories. Consider

the statistic
T = ZT,'S]'Y,']',
ij

with given scores r;,s;, as a possible statistic for testing the
hypothesis of independence or no row effect. Show that, under

the hypothesis
E(T) = m,pirpis

var(T) = E mirio?
i
where

r=y mri/m,,
s = D T8, fis = ) y.j85/m.,
=D mi(s5 — ), = > v(85 — fia)?/m..
Explain why, for fixed n, &, the ‘standardized statistic’
T —m, pirfis
Vaiy mar?

is approximately Normally distributed but not with unit variance
in the limit as m; — oco. Show that the ‘correct’ standardization is

T —m, pirfls
0,054/,

where 02 = 3" m;(r; — pr)%/m.. [Yates, 1948].
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5.9 Consider the proportional-odds model
logit v; (z:) = 0; — Bz;

with z and 3 both scalars. Denote by éj, 7; the fitted parameters
and probabilities under the hypothesis that § = 0. Show that the
derivative of the log likelihood with respect to 3 at 3 =0, §; = 8;,

is given by
T = Z R,‘j.’L‘iS]'

where R;; = Yj; — m;7; is the residual under independence and
8; = 4; + 4j—1. [Tests based on the log-likelihood derivative are
sometimes called ‘score tests’.]

5.10 Use the results of Exercises 5.2 and 5.7 to find the approx-
imate mean and variance of T in the previous exercise. Hence
construct a simple test of the hypothesis that 3 = 0. Show that in
the two-sample problem T is equivalent to Wilcoxon’s statistic.

5.11 Repeat the calculations of the previous two exercises replac-
ing the proportional-odds model with the complementary log-log
model. Which non-parametric test does T' now correspond to?

5.12 Show that the score test based on the log-linear model (5.7)
is identical to the score test based on the linear logistic model (5.1)
provided that ridit scores are used for the response categories in
(5.7). [Ridit scores (Bross, 1958) are proportional to the average
category rank.]

5.13 Table 5.4, taken from Yates (1948), gives teachers’ ratings
for homework, together with an assessment of homework facilities,
for 1019 schoolchildren. In both cases, A denotes the highest or
best rating and subsequent letters denote lower grades.

1. Which variable is the response?

2. Fit the model of independence and look for patterns among
the residuals. Compute X? and D and show that these are
approximately equal to their degrees of freedom.

3. Using integer-valued scores for both ratings, compute the statis-
tic T as described in Exercise 5.7. Show that the standardized
statistic is 1.527, corresponding to an approximate one-sided
p-value of 6.3%.

4. Fit the linear complementary log-log model (5.3) using a
quantitative integer-valued covariate for homework conditions.
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Show that 3 = 0.0476, se(ﬁ) = 0.027, corresponding to a
one-sided p-value of 3.9%. Comment on the direction and
magnitude of the estimated effect.

5. Fit the log-linear model (5.7) using integer-valued scores for
both rows and columns. Show that ,é/se(,é) = 1.525, and that
the reduction in deviance is 2.33 on one degree of freedom.
Why are these values so remarkably similar to Yates’s statistic
in part 3. above?

Table 5.4 Relation between conditions under which homework was
carried out, and teacher’s assessment of homework quality.

Homework Teacher’s rating

conditions A B C Total
A 141 131 36 308
B 67 66 14 147
C 114 143 38 295
D 79 72 28 179
E 39 35 16 90

5.14 In Example 2 of section 5.2.5, what modifications to the
design of the study would you make if the available test animals
comprised 60 milch cows and 20 heifers? What modifications would
be required in the analysis of the data from this experiment?

5.15 Logistic discrimination: Suppose that a population of indi-
viduals is partitioned into k sub-populations or groups, Gy,..., Gk,
say. It may be helpful to think of the groups as species or distinct
populations of the same genus. Measurements Z made on individ-
uals have the following distributions in the & groups:

Gj:  Z ~ Np(p;, X), j=1,...,k.

Let z* be an observation made on an individual drawn at random
from the combined population. The prior odds that the individual
belongs to G; are 7;/(1 — 7;). Show that the posterior odds for

: *
G, given z* are

T
odds(Y = j|2*) = —H_ x 2Pl +h;7)
1-7  .exp(a; + B] z*)’
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Find expressions for a; and f; in terms of g; and X.

What simplifications can be made if the £ Normal means p; lie
on a straight line in RP?

Comment briefly on the differences between maximum likelihood
estimation of a; and B, via the Normal-theory likelihood and

estimation via logistic regression.

5.16 Show that the quadratic form

k-1 1

) (Zj —m;)? (_+ ) _9 Z —mY;)(Zj+1 — MYj+1)
1 m 7T]' Tj+1 m7r]+1 ’

given in section 5.3.4, is identical to Pearson’s X? statistic. In
the above expression Z; are the components of the cumulative
multinomial vector and E(Z;) = mr;.

Table 5.5 Effect of mother’s age and smoking habits on gestation period
and pertnatal mortality

Gestation Mother’s age Cigarettes Perinatal mortality
period (days) smoked mortality [total births
<5 50,365
197260 <P >0 9/49
- <5 41/188
>5 4/15
<5 24/4036
o614 <30 >5 6/465
204 <5 14/1508
>5 1/125

Source: Wermuth (1976).

5.17 Table 5.5, taken from Wermuth (1976), gives the gestation
period and perinatal mortality rates for a group of German women,
many of whom were pregnant for the first time or had complica-
tions with previous pregnancies. Which are the response variables?
Examine first how the gestation period or probability of premature
birth is related to mother’s age and smoking habits. Second, exam-
ine how the perinatal mortality rate is related to gestation period,
mother’s age and smoking habits. Summarize your conclusions in
non-technical language.
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Table 5.6 Frequency table for the 54 numbers used in the Illinots lottery
for the 12-month period ending 12 Nov 1988. Siz numbers are drawn

each week.

Tens Units Total
0 1 2 3 4 5 6 7 8 9

0+ 9 8 5 6 4 7 7 6 61
10+ 5 5 6 3 5 4 5 5 3 2 43
20+ 6 3 7 10 9 10 9 7 1 7 69
30+ 11 6 2 9 10 4 8 4 9 6 69
40+ 5 10 3 7 8 3 4 4 1 4 49
50+ 3 5 4 4 5 21

Total 30 38 30 38 43 30 30 27 21 25 312
Source: Chicago Tribune, 14 Nov 1988.

5.18 Pick-6 is the weekly Illinois lottery in which the winning
ticket comprises six unordered numbers in the range 1-54. The
winning numbers are chosen by a physical randomizing device in
which 54 numbered ping-pong balls are mixed by a draught of air
in a closed transparent container. Six balls carrying the winning
numbers are permitted to escape, one at a time, through a hole in
the top of the apparatus. The frequency of occurrence of each the
54 numbers in a 12-month period is shown in Table 5.6.
By fitting a log-linear model or otherwise, test the following
hypotheses, all of which refer to the uniformity of the numbers
generated by the randomizing device.
1. that the variation of the frequencies in Table 5.6 is consistent
with the hypothesis of uniformity.

2. that the variation of the column totals in Table 5.6 is consistent
with the hypothesis of uniformity.

3. that the variation of the row totals in Table 5.6 is consistent
with the hypothesis of uniformity.

4, that the frequency of occurrence of the numbers 45-54 is the
same as that of the remaining numbers.

You are now given the additional information that for the first
24 weeks only the numbers 1-44 were used: thereafter all 54
numbers were used. Test hypotheses (1.) and (2.) above making
due allowance for this change of regime after 24 weeks,

5.19 Repeat the calculations of the previous exercise making due
allowance for the fact that the six balls are chosen each week
without replacement from the pool of 44 or 54 balls. Show that for
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large m, and provided that the number of balls remains constant
from week to week,

(k- 1)X2 2
E—n Xk—1
where in this case, k = 44 or 54, n = 6, m = 52 and X? is
Pearson’s statistic computed in the usual way as if the counts
were multinomial variables on k categories. This finite population
correction, which is not asymptotically negligible, should also be
used to correct deviance statistics derived from Poisson models,
Alternatively the counts may be taken as binomial variables with
index 52 for numbers 1-44 and 28 for numbers 45-54. It is then
necessary to include an offset in all models.
5.20 Under the conditions described in the previous exercise show
that
E(X?) =k —n,
(k—=n)?m-1
X =9 .
var(X") k-1 m

Check that these calculations are correct for n =1 and n = k — 1.



CHAPTER 6

Log-linear models

6.1 Introduction

In this chapter we are concerned mainly with counted data not
in the form of proportions. Typical examples involve counts of
events in a Poisson or Poisson-like process where the upper limit
to the number is infinite or effectively so. One example discussed
in section 6.3 deals with the number of incidents involving damage
to ships of a specified type over a given period of time. Classical
examples involve radiation counts as measured in, say, particles
per second by a Geiger counter. In behavioural studies counts of
incidents in a time interval of specified length are often recorded.
Under idealized experimental conditions when successive events
occur independently and at the same rate, the Poisson model is
appropriate for the number of events observed. However, even
in well-conducted laboratory experiments, departures from the
idealized Poisson model are to be expected for several reasons.
Geiger counters experience a ‘dead-time’ following the arrival of
a particle. During this short interval the apparatus is incapable
of recording further particles. Consequently, when the radioactive
decay rate is high, the ‘dead-time’ phenomenon leads to noticeable
departures from the Poisson model for the number of events
recorded. In behavioural studies involving primates or other
animals, incidents usually occur in spurts or clusters. The net
effect is that the number of recorded events is more variable than
the simple Poisson model would suggest. Similarly with the data on
ship damage, inter-ship variability leads to over-dispersion relative
to the Poisson model. Here, unless there is strong evidence to the
contrary, we avoid the assumption of Poisson variation and assume
only that
var(Y;) = a?E(Y;), (6.1)

193
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where o2, the dispersion parameter, is assumed constant over the
data. Under-dispersion, a phenomenon less common in practice, is
included here by putting 02 < 1 (Chapter 9).

In log-linear models the dependence of u; = E(Y;) on the
covariate vector x; is assumed to be multiplicative and is usually
written in the logarithmic form

logu, =n; = ﬂTxi; i=1,...,n. (6.2)

When we use the term log-linear models we mean primarily the
log-linear relationship (6.2); often (6.1) is tacitly assumed as a sec-
ondary aspect of the model but the choice of variance assumption
is usually less important than the choice of link and covariates in
(6.2). In applications both components of the log-linear model, but
primarily (6.2), require checking.

All log-linear models have the form (6.2). Variety is created by
different forms of model matrices; there is an obvious analogy with
analysis-of-variance and linear regression models. In the theoretical
development it is not usually necessary to specify the form of X,
though in applications, of course, the form of X is all-important. In
section 6.4, which deals with the connection between log-linear and
multinomial response models, some aspects of the structure of X
are important. It is shown that, under certain conditions, there is
an equivalence between log-linear models and certain multinomial
response models dealt with in Chapters 4 and 5.

6.2 Likelihood functions

6.2.1 Poisson distribution

In Chapters 4 and 5 we encountered the binomial and multinomial
distributions. These are appropriate as models for proportions
where the total is fixed. In the present chapter we concentrate
on the Poisson distribution for which the sample space is the set of
non-negative integers. In particular there is no finite upper limit
on the values that may be observed. The probability distribution
is given by

pr(Y =y) = e #u¥/yl; y=0,1,2,...,
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from which the cumulant generating function
p(et —1)

may be derived. It follows that the mean, variance and all other
cumulants of Y are equal to p. Any random variable whose
cumulants are O(n), where n is some quantity tending to infinity,
has the limiting property

(¥ — w)/k* ~ N(0,1) + Op(n ™).
In particular for the Poisson distribution, as y — oo
(Y = p)/u™? ~ N(0,1) + Op(n™2).
This proof may also be applied to the binomial and hypergeometric

distributions. For the latter distribution, the appropriate limit is
approached as the minimum marginal total tends to infinity.

0.7 1 0.4 4
0.6 - uw=0.5 pnw=10
0.5 - 0.3 1
0.4
0.2
0.3 A
0.2 1 014
0.1 I
0'0 T T 1.7 T T 1 T T l. T L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
0.4 - 0.20
©n=20 pn=>50
0.3 4 0.15 -
0.2 o 0.10 -
0.1 0.05 |
0'0 T T ll { ! T 1 T 1 ll ll "I.
0 1 2 3 4 5 6 012345678 9101112

Fig. 6.1. The Poisson distribution for p = 0.5,1.0,2.0 and 5.0.
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Illustrations of the Poisson distribution are given in Fig. 6.1
for p = 0.5, 1.0, 2.0, and 5.0. These illustrate the extent of the
skewness particularly for small values of u, and the approach to
the Normal limit for large . Such a Normal limit refers to the
cumulative distribution and not to the density.

The following properties of the Poisson distribution are some-
times useful in applications. The variance-stabilizing transform is
Y2 in the sense that for large

EY'Y)y~p?  and  var(YY?) ~1/4,

the error terms being O(x~!). In fact the subsequent terms in an
asymptotic expansion are

E(YY?) > p'2{1 - 1/(8p)}
var(Y¥2) ~ {1 + 3/(8u)}/4,

showing that the variance is only approximately constant. See
Exercises 4.8-4.11 and 6.1.

The power transformation to symmetry is Y%3 (Anscombe,
1953) in the sense that the standardized skewness of Y'%3 is O(u™!)
rather than O(p~"2) for Y or Y2, In fact the cumulants of Y3
are

E(YP) ~ {1 - 1/(9u)}
var(Y %) = R4 {1 + 1/ (60))
ks (Y¥3) = O(u™).

See Exercise 6.1. Thus the standardized skewness of Y3 is
O(u~¥?) rather than the O(u~!) claimed above. Neither of these
transformations involves the unknown u, although the value of u
is required when computing tail probabilities.

An alternative transformation derived as a quadratic approxi-
mation to the signed deviance statistic produces both approximate
symmetry and stability of variance. This is

(Y) _ 3yl/2 _ 3Y1/6p,1/3 ¥ “—1/2/6; Y 7/__ 0,
— ()2 + p= 2 6; Y =0.

Since g(Y') is approximately standard Normal for large p, tail
probabilities may be approximated by

pr(Y 2 y) ~1 - ®(g(y - 3)),
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with an error of order x~! rather than O(u~%2). This approxi-
mation is surprisingly accurate even for modest values of u. For
instance with u = 5 we obtain the following approximation:

y 7 8 9 10 11 12 13

LV > y) (€xact) 02378 0.1334 0.0681 0.0318 0.0137 0.0055 0.0020
PRE =Y (approx) 0.2373 0.1328 0.0678 0.0318 0.0137 0.0055 0.0021

Non-monotonicity of the function g(y) is not a serious concern
because, for discrete y, the effect occurs only if 4 > 38 and then in
a region of negligibly small probability.

6.2.2 The Poisson log-likelihood function

For a single observation y the contribution to the log likelihood is
ylog it — . Plots of this function versus p, log u and p'/3 are given
in Fig. 6.2 for y = 1. To a close approximation it can be seen that,

for y > 0,
ylogu — p~ylogy —y — %' (u® — y'B)?/2.
For a derivation of this approximation see Exercise 6.2. The signed

square root of twice the difference between the function and its
maximum value is 3yY6(y*/3 — 1/3), which is the leading term in

the transformation g(y) above.
For a vector of independent observations the log likelihood is

py) = (9ilog pi — pa), (6.3)
so that the deviance function is given by
D(y;p) = 2U(y,y) — 2l(,y)
=2 {yilog(yi/m) — (vs — ms)}

1/3, 1/3 /3
~9 Z yi/a(yi/ - Ni/ )2
If a constant term is included in the model it can be shown that
Y- (yi — f1;) = 0, so that D(y; z) may then be written in the more
usual form 2 3" y; log(y;/ fi;).
Another approximation to D(y;u) for large u is obtained by
expanding as a Taylor series in (y — p)/u. We find
D(y; #) = 32, (yi — )/ iy
which is less accurate than the quadratic approximation on the z/3
scale, This statistic is due to Pearson (1900).
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Fig. 6.2. The Poisson log likelihood function for y = 1, using scales
i, logu and ul/s, together with quadratic approzimation on cube root

scale.

6.2.3 Ouver-dispersion

Suppose now that the dispersion of the data is greater than that
predicted by the Poisson model, i.e. var(Y) > E(Y). This phe-
nomenon can arise in a number of different ways. We might, for
example, observe a Poisson process over an interval whose length
is random rather than fixed. Alternatively the data might be
produced by a clustered Poisson process where each event con-
tributes a random amount to the total. In other words, we observe
Y = Z,4+Zy+...+Zy where the Zs are independent and identically
distributed and NV has a Poisson distribution independent of Z. We
find that

E(Y)=E(N)E(Z)
and  var(Y) = E(N)var(Z) + var(N){E(Z)}? = E(N)E(Z?),

so that there is over-dispersion if E(Z2) > E(Z).
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Another way in which over-dispersion may arise is as follows.
In behavioural studies and in studies of accident-proneness where
there is inter-subject variability, the number of incidents Y for a
given individual might be Poisson with mean Z. This mean itself
may be regarded as a random variable which we may suppose in
the population to have the gamma distribution with mean g and
index ¢u. In other words F(Z) = p and var(Z) = u/¢, mimicking
the Poisson distribution itself. This mixture leads to the negative
binomial distribution

o _ D(y+gue™ 3
pI'(Y _y7”7¢) - y'r(¢ﬂ)(1 +¢)y+¢” ! y_0a1a27'--

(Plackett, 1981, p. 6). The mean and variance are E(Y) = p
and var(Y) = p(l + ¢)/é. If the regression model is specified in
terms of p, say p = p(8), and if ¢ is unknown but constant, then
the estimating equations for @ are in general different from those
obtained by weighted least squares, and only in very simple cases
do the two methods coincide. However, it may be shown that the
two sets of parameter estimates, one based on the negative binomial
likelihood and the other on the Poisson likelihood, differ by a term
that is O,(¢~2) for large ¢. For modest amounts of over-dispersion
this difference may be neglected (see also section 9.2).

An alternative mixing scheme, in which the variance of Z is
proportional to the square of its mean, is obtained by assuming Z
to have the gamma distribution with mean p and constant index
v independent of p. This mixture again leads to the negative
binomial distribution, but now parameterized in such a way that

var(Y) = p + p?/v.

The variance function is now quadratic instead of linear.

If the precise mechanism that produces the over-dispersion or
under-dispersion is known (e.g. as with electronic counters), specific
methods may be used. In the absence of such knowledge it is
convenient to assume as an approximation that var(Y) = o2y for
some constant o2. This assumption can and should be checked, but
even relatively substantial errors in the assumed functional form
of var(Y') generally have only a small effect on the conclusions.
Parameter estimates may be obtained by maximizing the Poisson
log likelihood (6.3) using, for example, the general method of
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Chapter 2, with the inverse matrix of second derivatives being
multiplied by an estimate of o2 in order to obtain an appropriate
measure of precision for 8. For details see Chapter 9.

6.2.4 Asymptotic theory

The usual asymptotic results concerning consistency and asymp-
totic Normality of B are valid provided that the eigenvalues of the
information matrix increase without limit. This condition is usu-
ally satisfied if p is fixed and n — oo or, for fixed n and p, if y; — o©
for each i. The asymptotic covariance matrix of ﬂ is 02i;1 where
ig, the negative matrix of second derivatives of (6.3), emerges in a
very natural way in the iterative weighted least-squares estimation
procedure.
The dispersion parameter o2 can, if required, be estimated by

2

= Xw-p) = N B Jap) e
i i

By analogy with (4.14) and (5.13) the effective degrees of freedom
for 52 are given by f = (n — p)/(1 + 372) so that approximate
confidence limits for individual components of 8 would be based
on the t¢ distribution if o? is unknown. This is a minor refinement
and for most purposes, unless many of the means are less than 1.0,

the Normal or t,_, approximation is adequate.

6.3 Examples

6.3.1 A biological assay of tuberculins

Fisher (1949) published some data concerning a biological assay of
two tuberculins, designated Standard and Weybridge, using ‘bovine
subjects’. The observations are measurements in millimetres of
a thickening of the skin observable in a set number of hours
after intradermal injection of the tuberculin. The following is a
simplified description of the experiment. One hundred and twenty
cows were divided into four classes, I, II, III and IV, of 30 cows
each. The four tuberculin treatments applied were

A Standard double,

B Standard single,
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C Weybridge single,

D Weybridge half,
where ‘single’ refers to the amount 0.05 mg. On each cow there were
four sites of application, with each cow receiving each of the four
tuberculin treatments. The cow classes I, II, III and IV differed
only in the sites on the neck, here numbered 1-4, at which the
various tuberculins were applied in accordance with the layout
in Table 6.1a. In other words, all 30 cows in class IV had the
Weybridge half preparation applied at site #1, Weybridge single
at site #2 and so on. The observations in Table 6.1b are the totals
for each site and cow class of the observed thickenings on 30 cows.

Table 6.1a Latin square design used for tuberculin assay

Sites Cow class
on neck I II 111 1A
1 A B C D
2 B A D C
3 C D A B
4 D C B A

Table 6.1b Responses in mm. in a biological assay of tuberculins

. Cow class
Sites
on neck I II I11 v Total
1 454 249 349 249 1301
2 408 322 312 347 1389
3 523 268 411 285 1487
4 364 283 266 290 1203
Total 1749 1122 1338 1171 5380

After extensive preliminary investigation and prior to summariz-
ing the data in the form of Table 6.1, Fisher concluded (a) that the
effect of treatment and choice of site were multiplicative and (b)
that the variance of any observation was roughly proportional to
its expected value. Thus, although the response is a measurement,
not a count, the methods of this chapter apply.

The systematic part of the model is thus log-linear where the
model matrix X is the incidence matrix for a non-cyclic 4 x 4



202 LOG-LINEAR MODELS

Latin square with the tuberculin treatments A, B, C and D indexed
according to a 2 x 2 factorial arrangement with no interaction. In
this way we can examine the relative potency of the two tuberculin
preparations either at the high-dose level or at the low-dose level.
The required model formula is thus

site + class + volume + tuberculin

where site and class are factors having four levels each and tu-
berculin is a two-level factor denoting Standard and Weybridge
respectively. The remaining variate volume, or log(volume), can
be treated either as a quantitative covariate taking values —1,0,1
for ‘half’, ‘single’ and ‘double’ respectively or as a two-level factor
denoting ‘low dose’ and ‘high dose! for each tuberculin. In the latter
case ‘low dose’ for the Standard preparation does not represent the
same volume as ‘low dose’ for Weybridge. If volume denotes the
quantitative covariate, then the tuberculin effect is the contrast
between Weybridge and Standard at equal volumes. By contrast,
if volume denotes the two-level factor, the tuberculin effect is the
contrast between Weybridge half and Standard single, these being
the low-dose levels, or between Weybridge single and Standard
double at the high-dose level. The choice of parameterization is
a matter of taste or convenience. Both parameterizations produce
the same fitted values and identical conclusions, but it is impor-
tant to understand how the parameterization of volume affects the
tuberculin contrast.

Parameter estimates found by maximizing (6.3) and are simi-
lar to those obtained by Fisher (1949) who used a non-iterative
method. The values are given in the Table below.

Equation (6.3) Fisher
B Standard single 0.0000 0.0000
A Standard double 0.2095 0.2089
D Weybridge half 0.0026 0.0019
C Weybridge single 0.2121 0.2108

Using (6.4) we find 6% = 1.410/7 = 0.2014 compared with Fisher’s
value of 0.2018. Taken together with the relevant components of
the inverse matrix of second derivatives the standard errors for the
treatment contrasts on the log scale are:
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Contrast Estimate SE Correlation
High dose vs low dose 0.2095 0.0124
V_Veybndge vs Standard 0.0026 0.0123 —0.0053
single double

Confidence limits may be constructed based on the t7-distribution.
These estimates show that the Weybridge single is slightly more
potent than the Standard double dose but not significantly so, the
ratio of estimated responses being exp(0.0026). Similarly, doubling
the dose increases the response by an estimated factor exp(0.2095)
equal to a 23.3% increase. This factor applies to both Standard
and Weybridge.

The relative potency of Weybridge to Standard is the ratio of the
volume of Standard to the volume of Weybridge required to pro-
duce equal responses. The estimate obtained here is 20-2121/0-2095 —
2.017 compared with Fisher’s estimate of 2.009 (which should ap-
parently have been 2.013).

In the analysis just given it is assumed (a) that the response at
one site on the neck is unaffected by the treatment applied at other
sites and (b) that the effect on the logarithmic scale of doubling
the dose of the Standard preparation is the same as doubling the
dose of the Weybridge preparation. This latter assumption can and
should be checked by including in the model the interaction term
between preparation and volume. This is equivalent to regarding
the treatments A, B, C and D as an unstructured four-level factor
instead of as two two-level factors having no interaction. The
required model formula is

site + class + volume.tuberculin.

An F-test on 1,6 degrees of freedom, rather than a x? test, is
required here because o? is unknown. Alternatively, and perhaps
preferably, a f-test based on the parameter estimate may be used.

In the design of this experiment it was recognized that the
variability between responses on different animals would be very
large but that on different sites on the same animal the variability
would be considerably less. It is essential, therefore, in the interests
of high precision to make comparisons of the two preparations on
the same animal. In the arrangement described in Table 6.1 each
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cow is assigned a class I-IV, so that contrasts between sites and
between treatments are within the same animal. On the other
hand, contrasts between treatment classes are between animals
and thus involve an additional component of dispersion. Strictly,
the analysis should have been made conditional on the observed
column totals but in fact, as we shall see in the following section,
this would make no difference to the numerical values of the
treatment contrasts or to their estimated precision. However,
because of this additional component of variability the standard
errors for the treatment-class contrasts in the log-linear model
that we have used are inappropriate. This complication does not
invalidate the analysis given here because the effects of interest
are contrasts within the same animal and do not involve between-
animal variation. For further details see section 14.3.

Fisher gives a detailed discussion of the conclusions to be drawn
from these data, including a study of the components of dispersion
just described. The principal conclusion, that the relative potency
is just in excess of 2.0, is complicated by the later discovéry, using
careful comparative tests with guinea-pigs, that the estimated
relative potency was 0.9. Thus it would appear that the two
tuberculin preparations must be qualitatively different, though
such a difference is unlikely to show up in a study confined to
a single species.

Further details of this experiment, including the individual
measurements at each site on each cow after 48, 72 and 96 hours,
are given in Fisher’s paper.

6.3.2 A study of wave damage to cargo ships

The data in Table 6.2, kindly provided by J. Crilley and L.N. Hem-
inway of Lloyd’s Register of Shipping, concern a type of damage
caused by waves to the forward section of certain cargo-carrying
vessels. For the purpose of setting standards for hull construction
we need to know the risk of damage associated with the three
classifying factors shown below.

Ship type: A-E
Year of construction: 1960-64, 196569, 1970-74, 1975-79
Period of operation: 1960-74, 1975-79
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Table 6.2 Number of reported damage incidents and aggregate months
service by ship type, year of construction and period of operation

Ship Year of Period of Aggregate Number of
type construction operation months service damage incidents
A 1960-64 1960-74 127 0
A 1960-64 1975-79 63 0
A 1965—-69 196074 1095 3
A 1965-69 1975-79 1095 4
A 1970-74 1960-74 1512 6
A 1970-74 1975-79 3353 18
A 1975-79 1960-74 0 0*
A 1975-79 1975-79 2244 11
B 196064 1960-74 44882 39
B 1960-64 1975-79 17176 29
B 1965-69 196074 28609 58
B 1965-69 1975-79 20370 53
B 1970-74 1960-74 7064 12
B 1970-74 1975-79 13099 44
B 1975-79 196074 0 0*
B 1975-79 1975-79 7117 18
C 196064 196074 1179 1
C 1960-64 1975-79 552 1
C 1965-69 196074 781 0
C 1965-69 1975-79 676 1
C 1970-74 196074 783 6
C 1970-74 1975-79 1948 2
C 1975-79 1960-74 0 0*
C 1975-79 1975-79 274 1
D 196064 196074 251 0
D 1960-64 1975-79 105 0
D 1965-69 1960-74 288 0
D 1965-69 1975-79 192 0
D 197074 1960-74 349 2
D 1970-74 1975-79 1208 11
D 1975-79 196074 0 0*
D 1975-79 1975-79 2051 4
E 1960-64 1960-74 45 0
E 1960-64 1975-79 0 0**
E 1965-69 1960~74 789 7
E 1965-69 1975-79 437 7
E 1970-74 1960-74 1157 5
E 1970-74 1975-79 2161 12
E 1975~-79 1960-74 0 0*
E 1975~-79 1975-79 542 1
*Necessarily empty cells. ** Accidentally empty cell

Data courtesy of J. Crilley and L.N. Heminway, Lloyd’s Register of
Shipping.
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The data give the number of damage incidents (as distinct from
the number of ships damaged), the aggregate number of months
service or total period at risk and the three classifying factors. Note
that a single ship may be damaged more than once and furthermore
that some ships will have been operating in both periods. No ships
constructed after 1975 could have operated before 1974, explaining
five of the six (necessarily) empty cells.

It seems reasonable to suppose that the number of damage
incidents is directly proportional to the aggregate months service
or total period of risk. This assumption can be checked later.
Furthermore, multiplicative effects seem more plausible here than
additive effects. These considerations lead to the initial very simple
model:

log(expected number of damage incidents)
= (B + log(aggregate months service)
+ (effect due to ship type)
+ (effect due to year of construction)

+ (effect due to service period). (6.5)

The last three terms in this model are qualitative factors. The
first term following the intercept is a quantitative variate whose
regression coefficient is known to be 1. Such a term is sometimes
called an offset.

For the random variation in the model, the Poisson distribution
might be thought appropriate as a first approximation, but there
is undoubtedly some inter-ship variability in accident-proneness.
This would lead to over-dispersion as described in section 6.2.2.
For these reasons we assume simply that var(Y) = ¢2E(Y) and
expect to find o2 > 1. Parameter estimates are computed using
the Poisson log likelihood.

The main-effects model (6.5) fits these data reasonably well
but some large residuals remain, particularly observation 21 for
which the observed value is 6 and the fitted value is 1.47, giving a
standardized residual of 2.87. Here we use the standardization
(y — 1)/ (Gp?), with 62 = 1.69. By way of comparison, the
deviance residual is 2.15.

As part of the standard procedure for model checking we note
the following:
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1. All of the main effects are highly significant.

2. The coefficient of log(aggregate months service), when esti-
mated, is 0.903 with approximate standard error 0.13, con-
firming the assumed prior value of unity.

3. Neither of the two-factor interactions involving service period
is significant.

4. There is inconclusive evidence of an interaction between ship
type and year of construction, the deviance being reduced from
38.7 with 25 degrees of freedom to 14.6 with 10. This reduc-
tion would have some significance if the Poisson model were
appropriate but, with over-dispersion present, the significance
of the approximate F-ratio (38.7 — 14.6)/(15 x 1.74) = 0.92
vanishes completely. Here, 1.74 is the estimate of o2 with the
interaction term included.

5. Even with the interaction term included, the standardized
residual for observation 21 remains high at 2.48.

We may summarize the conclusions as follows: the number of
damage incidents is roughly proportional to the length of the period
at risk and there is evidence of inter-ship variability (62 = 1.69);
the estimate for the effect due to service period (after vs before
the 1974 oil crisis) is 0.385 with standard error 0.154. These
values are virtually unaffected by the inclusion of the interaction
term. Thus, on taking exponents, we see that the rate of damage
incidents increased by an estimated 47% with approximate 95%
confidence limits (8%, 100%) after 1974. This percentage increase
applies uniformly to all ship types regardless of when they were
constructed.

Ships of types B and C have the lowest risk, type E the highest.
Similarly the oldest ships appear to be the safest, with those
built between 1965 and 1974 having the highest risk. Parameter
estimates from the main-effects model on which these conclusions
are based are given in Table 6.3. Table 6.4 gives the observed rate of
damage incidents by ship type and year of construction. The reason
for the suggested interaction is that the risk for ships of types A, B
and C is increasing over time while the risk for type E appears to
be decreasing. The above conclusions would be somewhat modified
if observation 21 were set aside.

One final technical point concerns the computation of residual
degrees of freedom for the model containing the interaction term.
The usual method of calculation used in some computing packages
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Table 6.3 Estimates for the main effects in the ship damage example

Parameter Estimate Standard error
Intercept -6.41 —
Ship A 0.00 —
type B -0.54 0.23

C -0.69 0.43
D -0.08 0.38
E 0.33 0.31

Year of 1960-64 0.00 —
construction 1965—-69 0.70 0.19
1970-74 0.82 0.22
1975-79 0.45 0.30

Service 1960-74 0.00 —
period 1975-79 0.38 0.15

Table 6.4 Observed rate of damage incidents (x10® per ship month at
risk) by ship type and year of construction

Year of construction

Ship
type 1960-64 196569 1970-74 1975-79
A 0.0 3.2 4.9 4.9
B 1.1 2.3 2.3 2.5
C 1.2 0.7 2.9 3.6
D 0.0 0.0 8.3 2.0
E 0.0 11.4 5.1 1.8

gives 13 instead of 10. However, the appropriate reference set
for the computation of significance levels is conditional on the
observed value of the sufficient statistic for the model containing
the interaction term. One component of the sufficient statistic is
the two-way marginal summary given in Table 6.4. The first three
columns of this table involve sums of two observations. Apart from
the four zeros which give degenerate distributions, each remaining
cell in the first three columns contributes one degree of freedom,
giving 11 in all. One further degree of freedom is lost because of
the effect due to service period. The entries in the *75-'79 column
involve only one observation each and therefore contribute only a
constant to the value of the statistic.
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6.4 Log-linear models and multinomial response models

The following sections deal with the connection between log-linear
models for frequencies and multinomial response models for pro-
portions. The connection between the two stems from the fact that
the binomial and multinomial distributions can be derived from a
set of independent Poisson random variables conditionally on their
total being fixed.

6.4.1 Comparison of two or more Poisson means

Suppose that Y7, ...,Y are independent Poisson random variables
with means y,...,ur and that we require to test the composite
null hypothesis Ho:ppy = ... = pgp = ef. The alternative

hypothesis under consideration is that for some unknown 3,

log Hj = Bo + ,Hlxj,

where z; are given constants. Standard theory of significance
testing (Lehmann, 1986, section 4.3) leads to consideration of the
test statistic T = > x;Y; conditionally on the observed value of
m = Y y;, which is the sufficient statistic for Gy. In other words,
in the calculation of significance levels we regard the data as having
the multinomial distribution with index m and parameter vector
(k71,...,k71). This conditional distribution is independent of
the nuisance parameter Gy so that the one-sided significance level
for alternatives 3, > 0, namely p* = pr(T > tqs; Hp), can be
computed from the multmomlal distribution. Conditioning on the
observed total m = 3" y; has the effect of eliminating the nuisance
parameter from all probability calculations.
Note that under Hy the unconditional moments of T are

(T) = ijeﬂ° ~ Zx]-y,/k
var(T) = Z glefo Z z3y. [k,

which depend on By. The conditional moments on the other hand
are

E(T\Y) Z-'L']y /k
var(T|Y)) = ) (z; — 7)%y./k-
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Note that the estimate of the unconditional variance of T is quite
different from the exact conditional variance. The conditional vari-
ance is unaffected by the addition of a constant to each component
of z.

The statistic T can equivalently be regarded as the total of a
random sample of size m taken with replacement from the finite
population z,...,zx. Under Hy, the k values are selected with
equal probability: under H,4 the probabilities are exponentially
weighted in favour of the larger zs if 81 > 0 or the smaller zs if
G <0.

The Poisson log-likelihood function for {8y, 1) in this problem
is

ly(BosB1) = Bo Y _ w5 + P Z-’L'jyj = > exp(Bo + frz;).

In order to see how this is transformed into a multinomial response
model we make the parameter transformation

r = explfo + fiz;).
The log likelihood for (7, 8;) becomes

ly(r,01) = y.logT — 7 + B _ zjy; — mlog{ Y exp(f1z;) }

J
=l (rsm) + lyim(Brs ).

The first term above is the Poisson log likelihood for 7 based on
m =Y, ~ P(r). The second component is the multinomial log
likelihood for 3; based on the conditional distribution,

Yi,..., Y |Y.=m ~ M(m,n)

with 7; = exp(6i1z;)/ > ; exp(S1z:). The important point here is
that the marginal likelihood based on Y, depends only on 7 whereas
the conditional likelihood given ¥, depends only on §;. Provided
that no information is available concerning the value of Gy and
consequently of 7, we must conclude that all of the information
concerning (3; resides in the conditional likelihood given Y.

The Fisher information matrix for (,3;) is

irg = diag{l/‘r, Zﬂj(l‘j - 5)2}
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and these parameters are said to be orthogonal. It follows un-
der suitable limiting conditions that the estimates 7, ,Hl must be
approximately independent. The relevance of this result in the
present circumstances is unclear because the precision of [31 is
most naturally assessed from the conditional distribution given Y,
whereas the precision of # = Y, is based on the marginal distribu-

tion of Y.

6.4.2 Multinomial response models

The results given in the previous section may readily be extended to
show that certain log-linear models are equivalent to multinomial
response models of the kind discussed in section 5.2. The following
discussion is based largely on Palmgren (1981).

It is convenient to arrange the observations Y;; in a two-way
table with n rows and k columns. Thus ¢ runs from 1 to n and j
from 1 to k. In practice 7 is often a compound index generated by
the levels of two or more factors, but this complication is ignored
in the algebra that follows. Consider the log-linear model

log pij = $i + x3;8 (6.6)
where pu;; = E(Y;), x;; are known p-dimensional vectors, f is
the parameter of interest and ¢,, ..., ¢, are incidental parameters.

Under this model the dimension of the parameter space, n + p,
increases as n — oo for fixed p. Consequently maximum-likelihood
estimates cannot be guaranteed to be efficient or even consistent
in the limit as n — oo. On the other hand the conditional log
likelihood derived below depends only on B and not on ¢ and
standard asymptotic theory applies directly to the conditional
likelihood.
The log likelihood is

ly(¢,8) = Z{yu ¢ + x1;B) — exp(¢s + x;8)}

= Z Piyi. + Z yijxijﬂ - Z exp(¢; + xz;ﬂ)
i ij ij

Now write m; = y;. for the ith row total and make the parameter
transformation

Ti= Y wii =) exp(ds + x5;B).
j i
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The log likelihood, now considered as a function of (1, 8), can be
written in the form

ly(r,0) =) (milogm — )

1

+ Z{ij,-jx}’;ﬂ — mylog (Z] exp(x?jﬂ))}

= ln(T3m) + ly|m(Bs ).

The first term above is the Poisson log likelihood for 7 based
on the row totals Y;, ~ P(r;). The second term is the conditional
log likelihood given {Y;,}, which depends only on 8 and not on the
incidental parameters. All the information concerning f resides
on the second component. In particular, it is apparent that ﬁ
and cov(B) based on ly|,(B;y) are identical to those based on
the full log likelihood. In other words, the log-linear model (6.6)
is equivalent to the multinomial response model in which the
probabilities are

. exp(x; )
Y exp(xfB)

The equivalence described above between the log-linear model (6.6)
and the multinomial response model (6.7) depends heavily on the
assumption that the parameters 7; and hence ¢; are unrestricted
apart from the necessary inequalities 7; > 0. In particular, the log-
linear model (6.6) has the property that the row totals convey no
information concerning B. This property makes good sense in the
context of multinomial response models because the row totals by
themselves cannot provide any information concerning the ratios
of the components.

To take a specific example, consider the lizard data analysed
in section 4.6. In that section, species was regarded as the binary
response and the remaining factors, H, D, S, and T, were regarded
as explanatory. For each combination of H, D, § and T, we
conditioned on the total number of lizards observed, treating the
proportion of opalinus lizards as the response. The linear logistic
model with R (= species) as response and containing the main
effects of H, D, S, and T is equivalent to the log-linear model with
model formula

(6.7)

HDST + R(H+D+S+T1T). (6.8)
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It is essential here that the full four-factor interaction H.D.S.T be
included even though, by the usual criteria of significance testing,
a component of it might be formally statistically insignificant.

Note that the fitted values for the four-way margin H.D.S.T
in the log-linear model (6.8) are set equal to the observed values,
which are the multinomial or binomial totals. Inclusion of this
term in all log-linear models is essential in order that the log-
linear models should correspond to the various binomial response
models fitted in section 4.6. Note, however, that the inclusion of
an arbitrary term or terms in a log-linear model is not equivalent
to conditioning on the corresponding sets of marginal totals.

6.4.3 Summary

When the parameter of interest is the ratio of Poisson means or,
equivalently, the value of a Poisson mean as a fraction of the
total, it is usually appropriate to condition on the observed total.
Conditioning on the total leads to multinomial or binomial response
models of the log-linear type.

Not all log-linear models are equivalent to multinomial response
models and, conversely, not all multinomial response models can be
generated from log-linear models. For instance, the proportional-
odds and related models discussed in section 5.2.2 cannot be
derived by conditioning in a log-linear model without extending
the accepted definition of a log-linear model.

The derivations given in the preceding sections show that, as
far as parameter estimates and the matrix of second derivatives is
concerned, it makes no difference numerically whether we condition
on the row totals or not, provided that appropriate nuisance
parameters are included in the log-linear model. In this respect
conditioning appears almost optional, by contrast with Chapter 7
where conditioning affects the entire likelihood, the position of the
maximum and the estimate of precision. Exact significance tests
are possible only by conditioning on the required totals.

One important consequence of these results is that certain multi-
nomial response models can be fitted using computer packages
designed primarily for log-linear models. Such log-linear models
invariably contain a large number of incidental parameters relating
to the multinomial totals. Thus numerical methods that rely on
solving systems of linear equations, where the number of equations
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is equal to the number of parameters, may grind to a halt for nu-
merical reasons. The alternative method of iterative proportional
scaling (see e.g. Bishop et al., 1975, p. 83) may be used instead.
If computational facilities permit, however, it is best to fit the
multinomial response model directly.

6.5 Multiple responses

6.5.1 Introduction

Suppose that several responses each having two or more categories
are observed. In a pharmaceutical trial for instance, a drug is
designed with a particular target effect in mind but invariably there
are side-effects of varying duration and severity. By their nature,
side-effects are difficult to predict but in simple cases might be
classifiable according to severity and duration as shown below.

Table 6.5 Classification of target response and supple-
mentary responses in a pharmaceutical trial

Side-effect
Target effect Severity Duration
complete cure none temporary
partial cure mild permanent
no improvement moderate
severe
In an experiment where several responses A, B,C,... are ob-

served, the following lines of inquiry would often be considered
worth pursuing.

1. Model construction for the dependence of each response mar-
ginally on covariates x.

2. Model construction for the joint distribution of all responses.

3. Model construction for the joint dependence of all response
variables on covariates x.

For instance, in the pharmaceutical example it would be of interest
to know whether the primary response was independent of the
nature and severity of side-effects. Duration and severity as shown
in Table 6.5 are not variation independent and hence cannot be



6.5 MULTIPLE RESPONSES 215

statistically independent. However it is possible that duration
might be independent of severity conditionally on there being a
detectable side-effect. A model for the joint distribution of all
responses provides a description of the complete effect of the drug.

More realistically, however, pharmaceutical trials are usually
designed as comparative experiments comparing the effects of two
or more drugs. The aim then is to compare the joint response
probabilities for one group of subjects with the corresponding
probabilities for another group and to find a succinct description of
any systematic differences. Problems of this nature are considered
in section 6.5.4.

6.5.2 Independence and conditional independence

Suppose that we have a single sample of subjects and that several
polytomous responses A, B,C,... are recorded for each subject.
No external variables or covariates are available and we require
a purely internal analysis of the joint dependence of the several
responses.

Mutual independence of the three responses A, B, C corresponds
to the log-linear model A+ B +C where A, B, C are factors having
the requisite number of levels. The next simplest model, involving
one interaction, namely Ax B+C, means that the joint distribution
of A and B is the same at each level of C. In other words, C is
independent of A and B jointly. In subscript notation, AxB + C
corresponds to

log pi;ji = (aB)ij + k-

Estimability constraints are a convention and not part of the model.
See section 3.5. In the above model it suffices to choose 41 = 0.

Path models (Goodman, 1973) involve two or more interactions.
For instance AxB + B*C means that conditionally on B, A and C
are independent. Note that if B is deleted from the model formula
we are left with A + C implying that A and C are independent
at each level of B. This conditional independence model can be
interpreted in terms of the causal path or chain

A— B—C

in which A influences B and B subsequently influences C' but there
is no direct link between A and C. In the context of time-series,
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this phenomenon is also called the Markov property, meaning that
the future and the past are conditionally independent given the
present. In the present context where there is no fixed temporal
sequence, the conditional independence model is equally consistent
with the ‘time-reversed’ chain

C—B—A

and with the alternative diagram
A—B —C

in which B is depicted as the cause of both A and C. In other
words, the direction of the hypothesized causal chain cannot be
inferred from the model formula alone.

In order to test such a path model it is natural to test whether
A has an effect on C above and beyond that transmitted via B.
Thus we compare the fits of the models

AxB + BxC and AxB + B+xC + C*A.

A significant reduction in deviance is evidence against conditional
independence and hence evidence against the lineal path models
A—B—C,C—B—Aand A— B —C.

In the theory of log-linear models an important distinction is
drawn between models such as AxB + BxC and AxB + BxCxD +
CxE, which are interpretable in terms of conditional independence,
and models such as AxB+ BxC +CxA and AxBxC + BxD+C+*D,
which are not. The former models are said to be decomposable
(Haberman, 1974a) and have closed-form maximum-likelihood es-
timates for the parameters and fitted values. The latter models
are not decomposable and no closed-form estimates exist for the
maximum-likelihood estimates.

The definition and rationale for decomposability is concerned
with the prohibition of cycles of the form

A—B—C— A

without the corresponding full interaction term A.B.C. To make
this notion precise, we say that a model formula M with response
factors A, B, ... is singular if either
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1. there exists a subset of the response variables, A, B,C,D
say, such that all the lower-order interactions are in M but
AxB*C*D is not in M or

2. there exists a closed loop, ADBC A say, such that all adjacent
pairs are in M but none of the possible three-way interactions
is in M.

Such a set of response factors is said to constitute a singularity.
For example,

M = AxB+C + B*CxD + AxCxD

contains the singularities ABD A and ABCD. With the aid of these
definitions, a decomposable model formula may be defined as one
that contains no singularities. Haberman (1974a) gives a recursive
definition that is equivalent to the absence of singularities.

6.5.3 Canonical correlation models

In the log-linear framework there is an unfortunate gap between the
model for independence of two responses, A+ B, and the saturated
model with interaction AxB. The former contains k4 + kg — 1
parameters whereas the latter is saturated with k4kp parameters,
where k 4, kg are the numbers of levels of A and B. It is natural to
explore the intermediate ground where the nature of the interaction
is described by a small number of parameters.

If scores s1,$3,... and tj,1s,... are available for the response
categories of A and B respectively, we may consider the following
models, which are intermediate between A + B and A*B.

Model formula Algebraic expression
A+B +st i + B +7(3it;)
A+ B+ At as + B +7ily

A+B+ At+B.s a; + B; +yit; + 658

There is a close similarity here with the multinomial response
models described in section 5.2.3. For further discussion of the
use and interpretation of scores, see Agresti (1984, Chapter 5) or
Goodman (1981, 1986).
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In the absence of scores, there appears to be no log-linear model
that is intermediate between the two extremes of complete inde-
pendence and arbitrary dependence. However, if we are prepared
to consider models not of the log-linear type, we may entertain the
single-root canonical covariance model

;= log Hij = 04 +,3j + pe,-éj, (6,9)

where € and § are unknown unit vectors satisfying Y e; = >.6; =0
and p > 0 is unknown. Note that the likelihood equation for p

satisfies R i
Y ebiyi =) b
ij ij

The left-hand member of this equation is the sample estimate of
E(A.Bs), where '
A =€ if A=1

and similarly for Bs. The right member is the fitted value of the
same moment. Consequently, since y;, = f;, and y.; = f.;, it
follows that the fitted correlation between A, and Bjs is equal to
the observed sample correlation. Further, this canonical correlation
is independent of the estimability constraints imposed on € and é.

Model (6.9) is not of the generalized linear type and does not
satisfy the usual regularity conditions because the sub-model of
independence (p = 0) is a boundary point of the parameter space.
The likelihood-ratio statistic for testing independence against (6.9)
does not have an asymptotic x? distribution. The correct asymp-
totic distribution is the distribution of the largest root of a certain
Wishart matrix (Haberman, 1981).

Goodman (1986) refers to (6.9) as a log-bilinear model. Evi-
dently, if p is small, we may approximate (6.9) by

pij = aif5{1 + peid;},

showing that, to this order of approximation, the array of fitted val-
ues has rank two. Under independence, the rank is one. The above
approximation to (6.9) is in fact the leading term in the singular-
value decomposition of the array u;;. Correspondence analysis is
the term used to describe a body of multivariate statistical meth-
ods, mainly graphical, based on the first few singular values and
vectors (Hill, 1974). For details, see Fisher (1958, sections 49.2—-
3), Williams (1952), Benzécri (1976), Greenacre (1984), Gilula and
Haberman (1986) and the discussion paper of Goodman (1986).
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6.5.4 Multivariate regression models

In practice, where several responses are of interest, it is good policy
to examine the dependence of each response marginally on the
covariates x. In the pharmaceutical example, for instance, one
would normally examine how the cure rate — the principal response
— is affected by treatment and other incidental variables. Since the
response in this case is polytomous with three ordered categories,
the proportional odds model (5.1) is an obvious place to start.
Subsequently a regression model for the side-effects reveals which
covariates affect the severity of side-effects and in what direction.
To complete the analysis it is necessary to examine interactions
among the responses. These can be of substantial importance.
For instance if the interaction is such that those who are cured of
the disease are largely incapacitated by side-effects, the value of
treatment would be greatly diminished.

More formally, if there are several responses A, B, C, ..., we may
proceed as follows. For any given value of the covariate x, we may
write m;;x(x) for the probability that A =i, B = j, C = k. The
object then is to construct a model for the way in which changes
in x affect a. This must be done bearing in mind that some of
the responses may be nominal, others ordinal and others nested as
discussed in section 5.2. Primary interest usually is focussed on
the marginal dependence of each response on x. Consequently we
first make a non-singular linear transformation from 7;;; to new

probabilities +;x,
4 =Ln (6.10)

where L is a matrix of zeros and ones only. For instance if there
are three response factors, it would often be sensible to choose

Ti,.

. . } univariate marginal probabilities
Tk

7= ™.

ik } bivariate marginal probabilities

Tk

Tijk trivariate marginal probabilities.

Thus in the 2x2x2 case « contains six univariate marginal proba-
bilities, twelve bivariate marginal probabilities and eight trivariate
marginal probabilities. There is substantial redundancy among
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these 26 values: in fact there are only seven linearly independent
probabilities but the redundancy is helpful to maintain symmetry
in the notation.

If A, B and C were each ordinal we would replace y with the
cumulative univariate, bivariate and trivariate marginal probabil-
ities, as well as the reverse-cumulative probabilities obtained by
replacing < by >. Obvious adjustments must be made if the
responses are of mixed types.

The second step in model construction is the formulation of the
logarithmic contrasts of interest, namely

n = Clog~, (6.11)

for an appropriately chosen contrast matrix C. For example, in the
2x2x2 example discussed earlier, we may take 5 to be the vector
of logistic factorial contrasts, namely

Ta i iog .. — iog T2.. univariate
™ = og .1, — logm,a, contrasts
Ne = lOg Tel — ].Og T,.2
M =  logmn, —logma, — logma), +logmoz, bivariate
Nage = log7r1.1 - 10g771.2 - lOgTrZ.l +10g772.2

contrasts
The = log Tl — log m.12 — lOg .21+ IOg .22
Nabe =

log m111 — log w121 — log 211 + log ma21 } trivariate
— log w112 + log 122 + log ma12 — log maa2 contrast

It is important here that the multivariate logit link transformation
from = to n be invertible.

Obvious adjustments are necessary if some of the responses are
polytomous. The nature of the adjustment depends on whether
the response categories are ordinal or nominal.

Having defined these logarithmic or logistic factorial contrasts,
model construction is quite straightforward provided that the
factorial nature of the response contrasts is recognized. Perhaps
the simplest non-trivial model in this class is as follows:

na(x) = Brx,  m(x)=Bix, n(x)=pTx  (6.12)

nab(x) = Tac(x) = Nbe(X) = Nabe(x) = 0. (6.13)

This model asserts that each response has a linear logistic regres-
sion on x and that the three responses are mutually independent.
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Obvious extensions are obtained by retaining the marginal regres-
sion models (6.12) and replacing (6.13) by

nab(x) = Tab nac(x) = Tac nbc(x) = Mbe (6.14)
Nabe(X) = TNabe-
The latter model asserts that the interactions among the responses
are independent of x. One could fit a model in which 7,4, = 0, but
the model formula for the responses is then not decomposable and
there is perhaps something objectionable about this.

One would normally include in the 745 (x) regression model only
those covariates common to the 7,(x) regression model and the
7p(x) regression model. By extension, the 74pc(X) regression model
should include only those covariates common to the 7,p(x), 7ac(X)
and mp(x) models. In (6.12) it appears that the same set of
covariates x has been included in each of the marginal regression
models. This choice may often be reasonable but it is not necessary
and there may well be circumstances in which it is reasonable to
exclude a particular covariate from one marginal regression model
and include it in another.

In the case of a bivariate ordinal response it is most natural to
define the logarithmic contrasts as follows

Tai = logit 7;, = logit pr(4 < 4
m; = logit~y.; = logit pr(B < j)
Tabij = logvij — log(vi. — %;) — log(7.; — i) + log %;
where
Y. = pr(A < i), v = pr(A <i4,B <j),
v.i =pr(B<j),  %j =pr(4>i,B> )
Parallel linear regression models may be used for the marginal logits
along the lines of (5.1). In the case of the interaction logits the
following linear models are among the options available
Nabij =0, Tabij =0, Tabij =0iy Tabi; = 0i + &5,

although dependence on covariates is also possible.

The Pearson-Plackett family of distributions for a single bi-
variate response is a special case of the above corresponding to
Tabij = 7ab, & constant for all ¢ and j. For details see Pearson
(1913), Plackett (1965), Wahrendorf (1980), Anscombe (1981),
Chapter 12 and Dale (1984, 1986).
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6.5.5 Multivariate model formulae

A multivariate regression model cannot ordinarily be specified by
means of a single model formula. In the multivariate linear model,
for example, it is usually necessary to specify a different set of
covariates for each of the responses. Further, if it is required to
model dispersion effects in addition to regression effects, as in (5.4),
two model formulae are required, one for the regression effects and
one for the dispersion effects. In the present context, where there
are 7 response factors having k1, ...,k levels respectively, we have
defined k1 ...k, —1 contrasts grouped into 2" — 1 factorial-contrast
classes. Thus there are k; — 1 main-effect contrasts for factor A,
k; — 1 for factor B, (k;—1)(k3—1) for the interaction of A with
C, and so on. In general, therefore, 2" — 1 model formulae are
required, one for each factorial-contrast class. Of course, many of
these model formulae may be null or empty and these need not be
stated explicitly.

The complete specification of a multivariate regression model
comprises a list of each response contrast followed by the required
model formula. For example model (6.12), (6.13) becomes

A: x; B: x; C:x.
It is possible and sometimes desirable to use abbreviations such as
(4; B; C):x.

By obvious extension, the model (6.12), (6.14) may be abbreviated
to

(4; B;C):x; (A*BxC): 1.
In this context, where AxBxC precedes a colon, the letters repre-
sent response factor contrasts, and the expression is to be expanded
using ; in place of +. Thus (A*BxC):1 is the same as
(4;B;C; A.B;A.C;B.C; A.B.C):1.

It is perfectly possible to have the same letter appear on both
sides of a given colon. For example, if we have a bivariate ordinal

response, the model
Nai = logit v¥i, = 0; + Boz
M = logity.; = ¢; + ;2
Nabij = Tab
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corresponds to the model formulae
A:A+z;, B:B+B.z; AB:l
More generally, we may consider factorial models of the type

A:xpa; B:xpgy, Cixes
AxB:xup; AxC:xac; BxC:xpe; AxBxC:xape,

where x4,...,x4RB, ..., XxApc are ordinary model formulae. Note
that the model formula is unaffected by replacing x4 by

XA +XaB +XAc t+ XABC-

In other words this factorial model formula notation ensures that
covariates that affect interaction contrasts are also included in the
models for marginal responses.

Log-linear models for multivariate discrete responses are excep-
tional in the sense that they can be specified either by means of a
single model formula or via the more cumbersome but more explicit
notation just described. The single model formula is obtained by
replacing all colons by asterisks and all semicolons by ‘+’.

6.5.6 Log-linear regression models

An important special case of the models considered in the previous
section is obtained by taking L = I in (6.10) and (6.11). The
particular choice of contrast matrix C is then not vitally important
because C is non-singular and can be absorbed into the model
formula. The simplest choice, C = I, leads to log-linear models in
which the log probabilities

Nijk(x) = log m;jx(x)

are expressed as linear functions in the covariates x. For instance,
if (A, B) is a bivariate response, the model formula

AxB+ (A+ B)x (6.15)
is equivalent to the algebraic expression

log 7;5(x) = (aB)i; + af x + ﬂfx. (6.16)
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The same model can be specified by taking C to be the usual matrix
of factorial contrasts. Thus in the bivariate binary case, we have

7, = log 711 +log w12 — log ma1 — log oy
7y = log w11 — log w12 + log a1 — log oy
Nap = log w1 — log iz — logma; + log mao

Since the transformation from m;; or logm;; to #* is a transfor-
mation from factor levels to factor contrasts, model formula (6.15)
now implies that

na(x) = a; +a*"x
5 (x) = B + 87 x (6.17)
Nap(x) = ()"

where the starred parameters are the factorial contrasts of the
unmarked parameters in (6.16). For instance,

ay = (af)11 + (aB)12 — (af)21 — (af)22
B* =2B, - 2B, (6.18)
(aB)* = (aB)11 — (af)12 — (aB)21 + (aB)22

It should be emphasized here that (6.16) and (6.17) are entirely
equivalent ways of expressing the same model through the model
formula (6.15). Both expressions produce the same fitted values
and the same deviance. The coeflicients are related through the
factorial contrast matrix C as shown above.

This discussion should be contrasted with the interpretation
of the same model formula in the context of the bivariate logit
transformation following (6.11) for a bivariate binary response. In
that context the interpretation of (6.15) is

= logit 73, (x) = ao +a’x
m = logit 7,1(x) = Gy +ﬁ x (6.19)

117722
Tab = lOg{ }

The key difference here is that (6.12), (6.13) expresses the logis-
tic factorial contrasts of the response probabilities linearly in x,
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whereas (6.16), and more explicitly (6.17), may be viewed as a
linear model for the factorial logarithmic contrasts. In the former
case logistic contrasts are defined in terms of marginal probabilities.
In the latter case factorial contrasts are defined in terms of log
probabilities. The order in which these two operations, namely
marginalization and transformation, is performed is the essence of
the distinction.

Unfortunately the log-linear model (6.16) is incompatible with
the bivariate logit model (6.19) in the sense that (6.16) implies
that logit 71,(x) is non-linear in x. In other words, apart from a
few exceptional cases, the maximum-likelihood fitted values under
(6.16) are different from those under (6.19). In addition, the
regression parameters a, 3 appearing in (6.16) have a different
interpretation from those in (6.19). In the bivariate case, however,
(af) is the same in both models although the estimates may differ:
the final equations in (6.17) and (6.19) are identical.

6.5.7 Likelihood equations

It is instructive at this stage to derive the likelihood equations for
multivariate logit regression models in which the composite link
transformation # in (6.11) is linearly related to known covariates.
To keep matters simple we consider only the bivariate binary case
in which n has components (74, b, 7755) as defined in the equation
following (6.11). Since there are four response probabilities, it is
sometimes convenient to complete the transformation by defining
1o = logm,, as the leading component of 5: this device helps to
maintain symmetry in the notation.

With these conventions, we find that the derivative matrix of 5
with respect to the components of n is

11 T2 21 22

7o 1 1 1 1
61] Ta 7rl_.l 7‘1_.1 _71,2—.1 _772_.1
5; = m ﬂ..—ll _71_‘—21 ﬂ,.—ll _71,.—21
Mab \ 75 —Tm  —Tay T

For our present purposes it is the inverse matrix, 9= /0y, that
is most directly useful. Fortunately the inverse can be obtained
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without much difficulty, particularly if a suitable computerized
algebra system is readily available. In this instance we find after
some simplification that the inverse matrix is

No Na Yt Nab
/ T11721 m1712 \
T | T Vab
m1A 7. A
- - T12722 11712
12 12 - —Vab
on m,2A ™LA @
on - - m11721 T21M22
21 21 — —Vab
7T.1A 7T2.A
T12T22 T21722
22 Kﬂzz - - Vab
D TAN w3, A

In the above matrix we have used the following quantities for future
convenience:

Vo = m.ma,, Vo =mam.a,
1 1 1 1,1
Vap = (—+——-+—+——-)
T11 T2 21 22

A = w1 Tas [ (VaVoVas)

and —1/(V,V,Vy) is the determinant of dn/d=. Note that V, is
the ‘harmonic total’ of the marginal row probabilities in the sense

that ) 1 \-1
V= ()7
. T2,
Similarly for Vj and V,p, justifying the notation.
Under independence, but not otherwise, we have

‘/ab = %% =M , T2, W1T,2 and A=1.

In general, 0 < V,,V, <1/4;0 < Vg < 1/186, although it is possible
for V,p to exceed V,V,. Further, for all #, A < 1, with equality
only under independence.

The contribution to the log-likelihood function from a single
bivariate response is

=73 yijlogm;
(&)
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where 3, ., denotes summation over the four response categories.
The contribution to the log-likelihood derivative is

ol Yij — M7 671',-]- ONrs
- = . 6.20
oB (r8) (i5) iy onrs OB ( )

The indices r, s refer to contrasts rather than factor levels. Thus r
and s take the values 0, a and 0, b respectively and 7, is understood
to be the same as 7,.

For instance, if we take the particular model (6.12), (6.14) and
focus on the parameter 8, for the marginal regression of A on x,,
the contribution to the log-likelihood derivative is

v Y =My omij

G ™ O

a

21 m22 11 12 Xa
=|—¢€11 + —€13— ——€31 — —€x|—
.1 2 .1 .2 A
11 12 Xa
=(el, - (— — —J€,1 ) — (6.21)
T T A

where €;; = y;; — mm;;. The second line above comes from the
second column of the matrix da /9. The interesting point here is
that the derivatives with respect to 8, and 8, depend only on the
marginal totals, y;, and y.;, and not on the joint composition of the
two responses. Thus if the odds ratios for each response are given
constants, the marginal totals are sufficient for (8,, 8;). Note that
although ¢,. =0, €;. and €,; are not necessarily zero.

In the case of the parameter 7,4 in (6.14), the contribution to
the log-likelihood derivative is

Yij — mmi; Omij
(i5) 5 ONap

€11 €12 €21 €22
= V(-2 AL, ) (6:22)
11 712 T21 22

The overall likelihood equations are obtained by summing contri-
butions such as (6.20)-(6.22) over all responses and equating the
sum to zero.

Note that the likelihood equation for the marginal regression
coefficient B,, based on the marginal variable A alone, is not the
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same as (6.21), which is based on the bivariate response (4, B).
Straightforward linear logistic regression based on the marginal
variable (Y),,Y2.), where Y), ~ B(m,m,) gives the following
contribution to the log-likelihood derivative in place of (6.21):

(y1. — M71,)Xa = €1.Xq- (6.23)

Under independence of A and B, this is the same as (6.21), but
otherwise the two contributions are not the same and the estimated

coefficients are different.

Reverting now to the bivariate logit regression model, the Fisher
information for (19,74, 7s,7sb), 8gain based on a single bivariate
response, 1s

w\T "

iy = m(%'—l) diag(l/w)(g—a)
1 0 0 0
m 0 V,/A A;/A 0
h 0 A/A W/A 0
0 0 0 Vab

The determinant A, = mi2me; — m117T22 is a measure of departure
from independence for the particular bivariate response under
consideration. When several bivariate responses are involved, as
in a regression context, the quantities V,, V4, Vop, A and A,
are functions of the fitted response probabilities and normally
vary from one response to the next. Thus the complete Fisher
information matrix for the regression coefficients (8,, By, Bqp) in
the model

na(x) = Brx,  m(x)=Byx,  Nap(x) = Brpx

is as follows

X’D,;X X'D;X 0
Iy ={ XTD;;X XTD,X 0 (6.24)
0 0 XTD;X

where Dy,... are diagonal matrices given by D, = diag{mV,/A},
D, = diag{mV,/A}, Dy = diag{mA,/A} and D3 = diag{mV,s}.
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Note that 8, is orthogonal to the marginal regression parameters
and ﬂab has asymptotic covariance matrix (XTD3X) ! indepen-
dently of (ﬂa,ﬂb) This conclusion is correct even if the covariates
included in the 744(x) regression model are different from those in
the marginal regression models.

Unfortunately it is not possible to invert the Fisher information
matrix I algebraically to obtain the asymptotic covariance matrix
of (B,, Bs) explicitly. However, it is clear from other considerations
that the covariance matrix of 3, is smaller in the usual matrix sense
than the covariance matrix

(XTWX)~!, where W = diag{mm m.},

derived from the marginal likelihood (6.23) of the response A alone.
In the example analysed in the following section, the apparent gain
in efficiency is about 3-4%. For longitudinal data in which the
same response is observed at different points in time, is may be
appropriate to take @ = B in (6.9). The gain in efficiency from
using the full likelihood might then be substantial.

6.6 Example

6.6.1 Respiratory ailments of coalminers

In 1970 Ashford and Sowden published the data shown in Table 6.6,
which concerns two respiratory ailments of working coalminers
who were smokers without radiological evidence of pneumoconiosis,
aged between 20 and 64 at the time of examination. On the
basis of a short questionnaire, each respondent was classified as
suffering from breathlessness (A), and wheeze (B). In this instance
each response factor has two levels and all four combinations
are possible. Omne aim of the nvestigation was to study how
breathlessness and wheeze and their interaction are related to age.

Before proceeding to fit models to these data, it is essential to
clarify a number of points concerning the study design and the
selection of respondents. First, the study involves only smokers.
Second, the study is restricted to those smokers without radio-
logical evidence of pneumoconiosis. Third, the study is restricted
to working miners at a ‘representative sample’ of UK collieries.
Miners who had retired for health or other reasons are entirely
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excluded: miners who were on sick leave at the time of the study are
also apparently excluded. Any conclusions drawn from these data
must necessarily apply only to that population of coalminers from
which this particular group of miners could be considered a random
sample. The selection pressures in this example are very strong
and are likely to have a substantial effect on the apparent rate at
which miners contract these respiratory ailments. For instance,
miners who are incapacitated by shortness of breath are excluded
if they are no longer active workers. It is difficult to see what useful
epidemiological conclusions could be drawn from data such as these
where selection pressures inevitably have an appreciable effect on
the regression coefficients. These and related points are discussed
by Mantel and Brown (1973).

Despite these very important reservations, we shall use the data
to illustrate the techniques described in the previous section.

Table 6.6 Coalminers who are smokers without radiological pneumoco-
niosis, classified by age, breathlessness and wheeze

Age-group Breathlessness No breathlessness Total
in years Wheeze No wheeze Wheeze No wheeze
20-24 9 7 95 1841 1952
25-29 23 9 105 1654 1791
30-34 54 19 177 1863 2113
35-39 121 48 257 2357 2783
4044 169 54 273 1778 2274
45-49 269 88 324 1712 2393
50-54 404 117 245 1324 2090
55-59 406 152 225 967 1750
6064 372 106 132 526 1136

An initial plot of the empirical logistic transformation,

Zo = log{(y1. + 3)/(v2. + 1)},

for breathlessness against age shows a strong monotone increasing
relationship with the suggestion of a slight quadratic component.
The corresponding plot for wheeze is very similar, and again there
is a suggestion of a small quadratic component. Similarly, a plot
of the empirical odds-ratio

(y1 + 3)(y2 + %)}

Zap = lo
i g{(ylz +)(ya +3)
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Table 6.8 Fitted values for the bivariate logistic model AxB: T

Breathlessness No breathlessness
Age-group
in years Wheeze  No wheeze Wheeze  No wheeze
20-24 16.559 9.049 96.446 1829.946
25-29 26.467 12.493 113.972 1638.068
30-34 53.602 22.179 169.100 1868.118
35-39 119.021 44.010 271.298 2348.671
40-44 160.134 54.257 258.869 1800.740
45-49 268.822 86.072 301.303 1736.803
50-54 359.096 112.363 272.491 1346.050
55-59 436.191 137.156 219.814 956.839
60-64 386.823 123.321 128.511 497.345

against age is approximately linear, but decreasing. For these
reasons, we focus our attention primarily on the bivariate logistic
models in which the transformed parameters satisfy

Ta (a) +;3(a)$+ﬁ(a)
m = (b) +,H(b) ,H(b) (6.25)
b
Mab = ﬁé“”’ + 8" + 4,
where © = (age — 42)/5 and z = z2. The graphical evidence
suggests that all three linear coefficients should be large and
statistically highly significant. In what follows, this aspect is

taken for granted and we focus on testing whether the quadratic
coefficients are significant.

Table 6.7 Parameter estimates and standard errors for the bivariate
logistic model AxB: o, using marginal likelihoods and the joint likelihood

Marginal likelihood Joint likelihood

Parameter Estimate SE Estimate SE
A:l —2.2597 0.0301 —2.2625 0.0299
A:x 0.5125 0.0123 0.5145 0.0121
B:1 —1.4875 0.0206 —1.4878 0.0206
B:z 0.3259 0.0089 0.3254 0.0089
A.B:1 3.0230 0.0715 3.0219 0.0697
AB:x -0.1306 0.0295 -0.1314 0.0284

tr= (age — 42)/5.
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Parameter estimates and fitted values for the bivariate logistic
model AxB:z, in which quadratic terms are omitted, are shown
in Tables 6.7 and 6.8 respectively. The model formula notation
used in Table 6.7 is such that A.B:z is the same as the coefficient
,Hfab) in (6.25). By way of comparison, the estimates and standard
errors obtained from the marginal logistic regressions for A and B
separately are also shown in Table 6.7. The ‘marginal-likelihood’
estimates for A.B:1 and A.B:z were obtained using an uncondi-
tional version of the iterative procedure described in section 7.4,
but taking the fitted margins from the marginal logistic regressions
of Aonz and B on z.

The estimates obtained from the joint likelihood are slightly
different and apparently slightly more efficient than the estimates
obtained from the separate marginal regressions. The increase in
efficiency ranges from 0% to 7.5% and averages out to about 3%.
If, however, the efficiency calculations are made using the fitted
values from the joint likelihood, the maximum gain in efficiency is
3.6%, a truly worthless gain in view of the effort expended!

Table 6.9 Restdual deviances for selected models fitted to the breathless-
ness/wheeze data in Table 6.6.

Link function

Model formula Bivariate logit () Log-linear (*) d.f.
AxB:x 30.39 41.46 21
AxB:z; (A+ B): 2t 17.12 18.04 19
AxB:z+ 2 16.96 17.66 18
AxB:z; (A+ B): R} 6.80 6.80 7

te= (age — 42)/5; z= 2%
YR, (= row), treats age as a 9-level factor.

Table 6.9 shows the deviance for the linear model A*B: z and for
selected quadratic models. Both quadratic coefficients éa) and ,Héb)
are significant as can be seen by examining the coeflicients and their
standard errors in the model AxB: z+(A+ B): z. Inclusion of both
quadratic terms has the effect of reducing the residual deviance
from 30.41 on 21 degrees of freedom to 17.12 on 19. Despite the
overwhelming statistical significance, the quadratic coefficients are
numerically very small and would normally have very little effect
on the conclusions to be drawn. There is no evidence of a quadratic
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effect for the log odds-ratio.

By way of contrast, Table 6.9 also gives the deviances for the
corresponding log-linear models. Evidently the choice of link does
affect the fitted values for the first three model formulae considered.
In fact, the fitted values for the log-linear model A*Bxz, given by
Mantel and Brown (1973), Table 3b, are quite different from those
in Table 6.8. In neither case, however, is there any suggestion that
the log odds-ratio is non-linear in age. The fitted values for the
final model, in which age is treated as a 9-level qualitative factor,
are the same for the two links considered. Note as usual that the
residual degrees of freedom are related to the rank of the model
formula and are independent of the choice of link function.

These data have been analysed by Ashford and Sowden (1970)
who fitted a bivariate probit model with constant correlation and
used linear regressions for the marginal probits. Subsequently
Mantel and Brown (1973) fitted a variety of log-linear models and
log-quadratic models, including the first and third in Table 6.9
under the ‘Log-linear’ column. Similar models were fitted by
Grizzle (1971) using a non-iterative method. Mantel and Brown
also discuss ways in which various selection pressures could lead to
a declining odds-ratio.

6.6.2 Parameter interpretation

It is instructive at this stage to contrast the interpretation of the
parameters A:x and B:z in the bivariate logistic model AxB:zx
with those in the corresponding log-linear model. Under the
bivariate logit model the fitted marginal logits are

log (#1, /#2,) = —2.261 +0.515z
log(#,1/#.2) = —1.487 +0.326z
and the fitted odds ratio is
log (711722 /(F12721)) = 3.022 — 0.131x.

These coeflicients are given in Table 6.7. Thus, for the population
in question, the estimated odds of contracting breathlessness in-
creases by a factor of exp(0.515) = 1.674 per unit increase in x:
this translates into an annual factor of exp(0.103) = 1.108. Stated
in another way, the odds increases exponentially at an annual rate
of just under 11%. The corresponding estimated annual rate of
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increase for the odds of contracting wheeze is 6.7%. The observed
decline in odds-ratio with increasing age is a curious feature of
these data that may be attributable to censoring. For a discussion
of this point, see Mantel and Brown (1973), p. 653.

Consider now the corresponding log-linear model in the form

log 7Tij(.’l,‘) = +,3ij.’l,‘.
The conditional logits for A given B = 1,2 are

log{m11/m21} = an — a21 + (B — Par)z (6.26)
log{ma/ma2} = @12 — a2z + (P12 — PBa2)z.

These are linear in z, though not parallel. The corresponding logits
for B given A = 1,2 are

log{m11/m12} = a1 — a1z + (B11 — Pi2)z (6.27)
log{ma1/m22} = @21 — a2z + (B21 — B22)z.

In both cases the difference between conditional logits is
(11 — a1z — g1 + @) + (B11 — P12 — Py + Pe2)z.  (6.28)

The maximum-likelihood fitted values for equations (6.26)-(6.28)
are

logit pr(A = 1| B=1,z) = —0.418 + 0.349z
logitpr(B =1| A=1,z) = 1.051 +0.034z
log odds-ratio = 3.059 — 0.166z.

Evidently, the fitted odds-ratios in the log-linear model are different
from those in the bivariate logit model. The difference between
the regression coefficients, 0.166 — 0.131, corresponds to about 1.25
standard errors.

Note also that the fitted logistic regression coefficient of B on
z in the log-linear model is 0.034 for A = 1 and 0.201 for A = 2.
The marginal regression coefficient, at 0.326, is considerably larger
than both conditional coefficients. The same effect occurs for A on
z, though the difference is less striking.
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On balance, where two responses are observed more-or-less
simultaneously, it is hard to see why one would be interested in
the conditional distributions of each given the values of the other
or how these conditional distributions are affected by covariates.
On the other hand, the marginal distributions are of interest
however many responses are observed and the mere recording of
an additional, and possibly irrelevant, response should not deflect
the focus of investigation. In the present example, if an additional
response, say frequency or severity of stomach problems, C, is
observed, the parameters appearing in the trivariate log-linear
model bear no simple relation to those in the bivariate model
just fitted. In fact, the log-linear models A*Bxz and AxBxCxzx
are mutually contradictory except in degenerate cases. On the
other hand, the trivariate logistic model AxBx(C:z implies the
bivariate logit model AxB:z and the univariate logit model A:zx.
For this reason alone the multivariate logit models seem preferable
to log-linear models for multiple responses that are to be treated
symmetrically. This argument, if accepted, would seem to outweigh
all considerations of goodness-of-fit as a basis for model choice.

6.7 Bibliographic notes

For the most part, the books listed at the end of Chapters 4
and 5 deal also with log-linear models. The books by Agresti
(1984) Bishop, Fienberg and Holland (1975), Bock (1975), Fienberg
(1980), Goodman (1978), Haberman (1974a), Plackett (1981), and
Upton (1978) are especially relevant. Haberman gives a thorough
mathematical treatment of log-linear models and also introduces
the notion of decomposability as the condition for the existence
of closed-form maximum likelihood estimates. Plackett’s book
contains a very extensive bibliography and a large number of
numerical examples. For additional bibliographic material, the
reader is referred to Killion and Zahn (1976).

The connection between decomposable models and the larger
class of graphical models is discussed by Darroch, Lauritzen and
Speed (1980).

Chapter 12 of Anscombe (1981) is refreshingly nonconformist in
its treatment of models for contingency tables.

There is now an extensive but fragmented literature on multi-
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plicative interaction models, not just for contingency tables, but
for factorial designs in general. Mandel (1959, 1971) has consid-
ered the uses of multiplicative interaction models for Latin square
and other designs. Correspondence analysis (Greenacre, 1984;
Benzécri, 1976), uses similar techniques based on the singular-value
decomposition for the analysis of contingency tables. For further
discussion of this topic see Gilula and Haberman (1986).

Canonical correlation models of the type discussed in section
6.5.3 have been considered previously by Goodman (1979, 1981)
and by Haberman (1981).

Cox (1972b) notes the drawback of log-linear models for multi-
variate binary responses, that the marginal logits are not simply
related to the log-linear parameters. He proposes a list of alterna-
tives to the log-linear model which, however, does not include the
multivariate logit transformation in section 6.5.

The application of the multivariate logit link function to bivari-
ate and multivariate responses has been studied by Dale (1986).

6.8 Further results and exercises 6

6.1 By writing Y = u(1 + ¢€) and expanding in a Taylor series as
far as the fourth degree, show that

1 7 _
B = {1 SM e Ol 3}

var(Y'¥?) o~ 4{1 g oW )}
I€3(Y1/2) ~ —/fl/z/lﬁ {1+ 0(#_1)}

where Y ~ P(u). Show also that

1 1 _
E(Y??) ’2#2/3{1 “on et O(p 3)}

4p' 1
var(Y#3) ~ /:) {1+ a+0( )}

ka(Y?) = —68/(729u) + O(u~?)

Comment briefly on the possible applications of these transforma-
tions.
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6.2 By expanding in a Taylor series for small € = (y — pu)/u, show
that
Yiog(Y/p) — (Y — p) =~ p{e?/2 — €%/6 + €*/12 — €/20+ ... }
whereas
ng/‘o’(ul/‘o’ —Y¥?)? ~ u{e?/2 — %6 + 2¢427 — /274 ... }.

Hence, using the result given in Appendix C, show that for large

K,
3Y1/6(Y1/3 - /1,1/3) + /1,_1/2/6 ~ N(0,1) + Op(/‘_l)’

at least as far as moments are concerned.

6.3 Suppose conditionally on Z = z, that Y ~ P(2) and that Z
has the density function

(¢2)?* exp(—¢2)
I'(¢n)

Show that the marginal distribution of Y is

. _ T(y+ ¢u)e™ 3
pr(Y—y,u,qS)—ylr(¢“)(1+¢)y+¢u y=0,1,2,....

Find the unconditional mean and variance of Y.

fz(z0,¢)dz = dlog 2.

6.4 Fit the model
site + class + volume + tuberculin

to the data in Table 6.1b, treating site and class as four-level
factors and tuberculin as a two-level factor. Treat volume as
a quantitative variable taking values —1,0,1 for half, single and
double respectively. Estimate the relative potency of the two
preparations.

Now treat volume as a two-level factor with levels denoting low
dose and high dose respectively. Leave the remaining factors as
they stand. Show that the fitted values are identical to those
produced by the previous analysis, but that the tuberculin contrast
is now nearly zero. Explain why the tuberculin contrast is affected
by the parameterization chosen for volume.
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6.5 For the data in Table 6.1b, test the hypothesis that the effect
on the response of doubling the volume administered is the same
for each tuberculin. Use the method described towards the end of
section 6.3.1. Compute an approximate p-value.

6.6 Show that for any 2x2 table of probabilities, the quantity A
defined in section 6.5.6 satisfies

A = S3/(83 + AZ),

where S3 is a particular symmetric function of the four probabili-
ties. Find expressions for S3 and A, and deduce that 0 < A <1,
with equality only under independence.

6.7 Let (A, B) be a bivariate binary response and let 74,75, Tap
be defined as in sections 6.5.4 and 6.5.6. Consider the multivariate

regression model
ﬂa(x) = ﬂzxa, ﬂb(x) = ﬂ{xb’ ﬂab(x) = TNab,

in which the model matrices X,, X; each have rank n equal to
the number of bivariate responses observed. By considering the
log-likelihood derivative (6.21), show that the likelihood equations
reduce to

Yi. = MT,, y.j = m7.j, for each bivariate response,
n

Z(yu —miy) = 0.

1

The final sum extends over the (1, 1)-components of all n responses.

6.8 Show that the inverse of the multivariate logit transformation
n — =, following (6.11) can be broken down into the following
sequence of steps:

1. exponentiation;

2. iterative proportional scaling;

3. linear transformation, (L™?).
Show how Yates’s algorithm (McCullagh, 1987, p. 15) can be used
in step 3. to exploit the direct product nature of L.
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Table 6.10 Distribution of four binary responses tn two gTOupsT

Low LQ. group  High LQ. group

@
-
N~
Iy}
F~4
X3
4
N

1 1 1 1 62 122
1 1 1 0 70 68
1 1 0 1 31 33
1 1 0 0 41 25
1 0 1 1 283 329
1 0 1 0 253 247
1 0 0 1 200 172
1 0 0 0 305 217
0 1 1 1 14 20
0 1 1 0 11 10
0 1 0 1 11 11
0 1 0 0 14 9
0 0 1 0 31 56
0 0 1 0 46 55
0 0 0 1 37 64
0 0 0 0 82 53

fSource: Solomon (1961).

6.9 The data in Table 6.10, taken from Solomon (1961), lists the
responses, (agree/disagree), given by 2982 New Jersey high-school
seniors in a 1957 attitude survey, in response to the following four
propositions:
1. The development of new ideas is the scientist’s greatest source
of satisfaction.
2. Scientists and engineers should be eliminated from the military
draft.
3. The scientist will make his maximum contribution to society
when he has freedom to work on problems that interest him.
4. The monetary compensation of a Nobel Prize-winner in physics
should be at least equal to that given to popular entertainers.

Examine how each response marginally depends on the 1.Q.
group.

Examine the six bivariate distributions to see whether the odds-
ratios are different in the two groups.

Give a brief summary of your conclusions in non-technical
language.
6.10 Show that the redundancy in the transformation following
(6.10) can be avoided by eliminating all components having an
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index whose value is 1.

6.11 Show that for a bivariate response (A4, B), in which 4 is a
nominal response with three levels and B is ordinal with four levels,
the natural analogue of the bivariate logit transformation is

Nai = log(7i. /73.) 1=1,2
mi =log{r.;/(1 -7} =123
Yij 735
o= log(—2E—) — log( 22—
Tabis g(%-. - 7ij> g(’m. - 73]'>
= logit(’y,-j/'yi,) — logit(73j/73,).

In these expressions +;; is defined as

Y. = pr(4 = i)
7.5 = pr(B < J).

6.12 The data listed in Table 6.11, taken from Diaconis (1988),
give partial results for the 1980 American Psychological Association
presidential election in which there were five candidates, here
labelled A,B,C,D and E. For each of the 120 complete rankings
of the five candidates, Table 6.11 gives the number of voters who
cast their ballots in that way. Thus of the 5738 voters who cast
complete ballots, the modal group of 186 voters cast their ballots as
‘23154’ in which candidate A was placed second, candidate B third,
candidate C first and so on. Incomplete ballots are not included
here.

1. Create five factors, A4, B,C, D, E, each with five levels, such
that A at level 4 means that candidate A was ranked in fourth
position, and so on for the remaining factors. Fit the log-linear
models 1 and A+ B+ C+ D + E. What is the rank of the
latter model matrix. Explain why E can be dropped without
affecting the fit.

2. Create linear and quadratic contrasts for each of the five
factors such that By, takes values —2,—1,0,1,2 and Bg takes
values 2,—1,-2,—1,2 for the five levels of B. Compute the
sum of the model vectors Ay + By + Cr + D + Er. Fit the

model
AL+ B, +CrL+Dr+ Ey.



6.8 EXERCISES 6

Table 6.11 Number of voters in the 1980 APA presidential election
ranking five candidates in the specified order!

241

Candidates’ ranks and number of votes cast

Candidates Candidates Candidates Candidates

ABCDENo. ABCDENo. ABCDENo. ABCDE No.
54321 29 54312 67 54231 37T 54213 24
54132 43 54123 28 53421 57 53412 49
53241 22 53214 22 53142 34 53124 26
52431 54 52413 44 52341 26 52314 24
52143 35 52134 50 51432 50 51423 46
51342 25 51324 19 51243 11 51234 29
45321 31 45312 54 45231 34 45213 24
45132 38 45123 30 43521 91 43512 84
43251 30 43215 35 43152 383 43125 35
42531 58 42513 66 42351 24 42315 51
42153 52 42135 40 41532 50 41523 45
41352 31 41325 23 41253 22 41235 16
35421 71 35412 61 35241 41 35214 27
35142 45 35124 36 34521107 34512133
34251 62 34215 28 34152 8 34125 35
32541 41 32514 64 32451 34 32415 75
32154 82 32145 74 31542 30 31524 34
31452 40 31425 42 31254 30 31245 34
25431 35 25413 34 25341 40 25314 21
2514 3106 25134 79 24531 63 24513 53
24351 44 24315 28 24153162 24135 96
23541 45 23514 52 23451 53 23415 52
23154186 23145172 21543 36 21534 42
21453 24 21435 26 21354 30 21345 40
15432 40 15423 35 15342 36 15324 17
15243 70 15234 50 14532 52 14523 48
14352 51 14325 24 14253 70 14235 45
13542 35 13524 28 13452 37 13425 35
13254 95 13245102 12543 34 12534 35
12453 29 12435 27 12354 28 12345 30

tSource: Diaconis (1988).

Which candidate has the smallest coefficient? Interpret the
sizes of these coefficients.
3. Add the terms

Ag+ Bg +Co+ Do+ Eq

to the previous model. Which candidate has the largest quad-
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ratic coefficient? Interpret the sizes of the quadratic coeffi-
cients in terms of heterogeneity among voters and negative
voting. Examine the two-way table of total votes indexed by
candidate and position. Compute the fitted values for this
table under the quadratic model just fitted.

Show that Ej and Eg can be dropped from the model
without affecting the fit.

4. Create all 10 linear xlinear interaction contrasts of the type
ApBr = Ap x Br,. Add these to the previous model. Show
that the fit is substantially improved, even though the resid-
ual deviance is still considerably larger than the degrees of
freedom. Interpret the coeflicients obtained.

5. What additional systematic effects might be present here?
State these effects qualitatively. How would you incorporate
these into your model?

6. Which candidate has the most first-place votes? Which candi-
date is least disliked? Which candidate ought to be declared
the winner?

7. What modifications of this procedure would you use to analyse
the incomplete ballots in which three or fewer candidates are
ranked by some voters?

8. Negative voting can be accomplished effectively only with
a complete ballot. What implications does this have for
comparisons of complete ballots with incomplete ballots?

6.13 Let AB be a two-level factor taking the level 1 if A precedes
B in the permutation, and level 2 otherwise. Nine other factors
AC,...,DE are defined likewise. Thus the model matrix X
‘corresponding to the model formula

1+ AB+ AC+AD+AE+BC+BD+BE+CD+CE+ DE

is the incidence matrix for the set of inversions required to trans-
form » to standard order. What is the rank of X? Fit this model
to the data in Table 6.11.

By extension, let ABC be a six-level factor, one level for each
of the possible orders of A4, B,C in the permutation «. Nine other
factors ABD,...,CDE are defined in like manner. Show that AB,
AC and BC are marginal to ABC. What is the rank of the model
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matrix Z corresponding to the model formula

1+ ABC+ ABD + ABE + ACD + ACE
+ ADE+ BCD + BCE+ BDE +CDE?

Show that the column space of X is included in the column space

of Z and that A .
rank(Z) =1 + (2> + 2(3),

where & is the number of candidates.

Fit the model Z to the data in Table 6.11. Give a substantive
explanation for the improvement in fit. Show that these models
are unaffected by re-labelling candidates. [Babington-Smith, 1950;
Mallows, 1957].

6.14 Use the data in Table 4.10 to test the hypothesis that mating
occurs at random, at least as regards eye-colour. Take ¥ to be the
6 x 1 vector of counts for the various eye-colour combinations of
the parents. Formulate the hypothesis of random mating as a log-
linear model for Y as response. State what assumptions you have
made and indicate whether these assumptions are reasonable in this
context. Fit the model and use it to estimate the proportions of
light-eyed, hazel-eyed and dark-eyed individuals in the population.

6.15 The butler effect: 1t can safely be assumed in Table 4.10 that
a small proportion € of the children are not the biological children
of the putative fathers. Consider how you might estimate ¢ under
the following assumptions:

1. If both biological parents are light-eyed the children are in-
variably light-eyed.

2. The distribution of eye-colour is the same for both sexes.

3. The population of butlers is comparable, at least as regards
eye-colour, to the population of putative fathers.

4. There are no recording errors in the data.

Other assumptions that might be reasonable include the fol-
lowing: (a) If both biological parents are dark-eyed, the children
are light-eyed with probability 1/4. (b) If one parent is light-eyed
and one dark-eyed the children are light-eyed with probability 1/2.
Consider how these additional assumptions might be used to im-
prove the estimate of .
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6.16 In his 1898 monograph L. von Bortkewitsch gives the now
famous record of deaths by horse-kicks of soldiers in the Prussian
army from 1875 to 1894. The data for ¢ = 14 army corps over
r = 20 years are given by Andrews and Herzberg (1985, pp.17-18).
Fit the log-linear model corps + year. Is the fit adequate? The
data are sparse, which suggests that the usual x? approximation
may not be accurate.

The Haldane-Dawson formulae (Haldane, 1939; Dawson, 1954)
for the exact mean and variance of X? for the model of indepen-
dence in a two-way table are

E(X?) = (r—1)(c - )N/(N — 1),
var(X%) = 2N(v — o)(u — 7)/(N = 3) + N?o7/(N - 1),

where

v=(N-r)(r-1)/(N-1), o=N{¥Ts'-r*/N}/(N-2),

p=(N-c)c-1)/(N-1), 7=N{¢t;j!-¢*/N}/(N-2),
J

The row and column totals are s;,t;, and N = 3" s; = > t;.

Use these formulae for the horse-kick data to show that the mean
and variance of X? are 248.27 and 419.81 respectively. What is the
variance of the usual x? approximation?

Is there any evidence of variation in the accident rate over years
or between corps? For further details see Quine and Seneta (1987)
or Preece, Ross and Kirby (1988).



CHAPTER 7

Conditional likelihoods’

7.1 Introduction

In many applications the likelihood function involves several par-
ameters, only a few of which are of interest to the investigator.
The remaining parameters, often pejoratively called incidental or
nuisance parameters, are necessary in order that the model make
sense physically, but their values are largely irrelevant to the exper-
iment and to the conclusions that are to be drawn. To take a simple
example, consider a comparative experiment with two treatment
groups in which the response is ordinal with & categories. The
proportional-odds model,

lOg{7ij/(1 _7ij)} = 0]' _ﬁxi: j= la"'ak_ 1; i=1,2,

in which z; is an indicator variable for treatment group, involves
one parameter of interest, §, and k& — 1 nuisance parameters,
01,...,0x_1. There are applications in which both components
@ and 3 are of equal interest to the investigator, but usually, in
comparative experiments, the focus is on change or rate of change
of the response as the stimulus is increased. Thus, when we use
the terms ‘nuisance parameter’ or ‘incidental parameter’ it is with
certain common applications in mind. The status of a parameter
depends on the context.

Two difficulties arise in dealing with likelihood functions that
depend on a large number of incidental parameters in addition to
the effects of interest. First, from a purely mathematical point of
view, there is no guarantee of consistency or optimality in the limit
as the number of parameters increases in proportion to the data

*This chapter contains more mathematical material and may be omit-
ted on first reading.

245
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accumulated. Whether this large-sample mathematical difficulty
has any relevance in the finite samples actually observed is another
matter, and will not be discussed here. The second difficulty is the
purely numerical one of maximizing a function of many variables
and of obtaining the inverse matrix of second derivatives, but this is
a subsidiary consideration in view of the first difficulty. For these
reasons, we seek a modified likelihood function that depends on
as few of the incidental parameters as possible while, at the same
time, sacrificing as little information as possible. Inferences are
then based on this modified likelihood function, particularly on its
shape in the vicinity of its maximum.

7.2 Marginal and conditional likelihoods

7.2.1 Marginal likelihood

One way of eliminating unwanted nuisance parameters is to work
with the marginal likelihood for a suitably chosen subset of the
complete data vector. This method does not always work satisfac-
torily, but when it does, it is clearly desirable to choose as large a
subset of the original data as possible so that the information loss
is minimized.

In the context of the bivariate logistic model (6.25), if B is the
parameter of interest and (ﬂ(b), B are nuisance parameters, we
may eliminate the nuisance parameters by working with the log
likelihood for the marginal variable A alone, i.e. with the marginal
totals (Y3.,Y2,). Evidently, from the analysis in section 6.6.1, some
small loss of information is thereby incurred, but this loss might
well be judged acceptable in view of the simplicity achieved. In this
example, the loss of efficiency is balanced by a gain in robustness,
because the marginal likelihood estimates are consistent whether or
not the assumed models for 7, and 7,3 in (6.19) are correct, whereas
the estimates derived from the full likelihood are not protected
against such mis-specifications.

To take an unrelated example, suppose Y1,...,Y, are observa-
tions taken at spatial locations 8;,...,$n, and that the n-vector Y
has the multivariate Normal distribution with cumulants

E(Y)=Xg  cov(Y) = £(6),



7.2 MARGINAL AND CONDITIONAL LIKELIHOODS 247

where X£(f) is a known covariance function parameterized by 6.
For example, we might have

0:5(0) = 62 exp{—|s; — s;|/62},

where 0, has the physical dimension of length and #; has the same
physical dimension as y. If @ is the parameter of interest and 8
is regarded as a nuisance parameter, we may eliminate 8 from the
likelihood by working with the set of contrasts,

R=(I-Px)Y = (I-XX"X)"IXxT)Y,

whose mean is zero and whose distribution does not depend on
B. Any complete set of n — p linearly independent contrasts with
zero mean is a linear transformation of R, so that the choice of
projection matrix, Py, is immaterial. In other words, we could
replace Px by X(XTWX)_IXTW, for any positive definite matrix
W, without affecting the likelihood. See Exercises 7.10-7.13. In
this example there appears to be no loss of information on 6 by
using R in place of Y, though it is difficult to give a totally
satisfactory justification of this claim.

Although R has a rank-deficient covariance matrix whose de-
terminant is zero, it is still possible to write down explicitly the
log likelihood for @ based on R. The usual method (Kitanidis,
1987), which is to choose an arbitrary full-rank sub-vector, intro-
duces unnecessary and undesirable asymmetry into the formulae.
Assuming that ¥ has rank n and that X has rank p, the marginal
log likelihood for @ based on R is

I(6R) = —1logdet T — Llogdet(XTE7'X) — 1Q2(R),
where
Q2(R) =RT(Z7! -2 IXXT2'X)'XTE )R,

the weighted residual sum of squares for R, is unaffected by
the choice of projection matrix. An equivalent expression in
terms of the eigenvalues of the matrix (I — Px)X(I — Px) is
given by Patterson and Thompson (1971). Yet another equivalent
expression is given by Harville (1974, 1977).
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Note that in the important special case where £ = 21, this
marginal log likelihood becomes

—-;—(n —p)loga? — %(RSS)/O’Z

where RSS is the residual sum of squares. This is just the marginal
log likelihood derived from RSS ~ o?x2_,.

For a derivation of the marginal log likelihood, also sometimes
called the restricted log likelihood (Corbeil and Searle, 1976), see
Exercises 7.8-7.13.

7.2.2 Conditional likelihood

Suppose that the parameter vector @ can be partitioned into
components § = (#,A), in which ¢ is the parameter vector of
interest and A is a vector of nuisance parameters. Suppose in
addition that for each fixed value %, of ¥, the statistic Sx(#,) is
sufficient for A and complete. For definitions of completeness and
sufficiency, see Cox and Hinkley (1974), section 2.2 or Lehmann
(1986), sections 1.9 and 4.3. It is essential to distinguish two
cases, (i) where S)(¢,) depends on %, and (ii) where S\(#,) is
independent of ¢, so that the sufficient statistic for A is the same
for all ¢,. In (i) the conditional distribution of Y given Sx(#,) is
independent of A only under ¢ = t,. Thus we write

Fyisawo) @ | Sx(¥0); 9, A)

for the conditional distribution.
In (ii), where S)(¥,) = S\, we write the conditional density in

the form
fris, (W 1 Sx;9)

emphasizing that the conditional distribution is independent of A.
Here there is no conceptual difficulty in using

() = log fys,(y]| Sx; ) = log fy (y; ¥, A) — log fs, (sx; %, ) )
(7.1

as the conditional log likelihood for 4. The maximizing value
%., and the Fisher information iys, based on the conditional log
likelihood (7.1) are, in general, different from those derived from
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the full likelihood. For a simple but important example of this
conditioning argument, see sections 7.2.1 and 7.2.2.

When S)(¥,) depends on %, however, it is most important
in writing the conditional density to distinguish between the two
values of ¢. Thus

Le(%, A;0) = 108 fy|s,(wo) (¥ | SA(%0); ¥, A),

considered as a function of 4 and A for fixed #,, is a log-likelihood
function. For instance, under the usual regularity conditions, the
conditional score statistic

6lc('/’7 A; '/’0)
oY

has zero expectation given S)(#,) and conditional covariance
matrix equal to
0% (¢, A;
_E( C('ﬁ . '/’0) >.
oY
It follows that the score statistic is uncorrelated with Sx(#,) for

all parameter values.
By contrast, the reduced function

(¥) = l(¥, A )

is not the logarithm of a density with respect to any fixed measure,
and hence does not ordinarily have the properties of a log-likelihood
function. The reason for this is that the transformation from
the original variables Y to the pair (Sx(#,),S), where S is a
complementary statistic, involves a Jacobian that depends on #,.
So long as 4, is regarded as fixed, the Jacobian has no effect
on the log likelihood and can be ignored. But if the Jacobian
depends on ¢ an extra term must be included in the log likelihood.
Ordinarily, therefore, when computing likelihood functions it does
not make sense to condition on parameter-dependent statistics. See
Exercises 7.1-7.6 for several examples in which these differences are
important.

Ideally we would like to choose a value 4, for the conditioning
statistic that is as near as possible to the conditional maximum-
likelihood estimate, 12:0. For purposes of estimation, this effect is
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achieved by solving the conditional likelihood equation Uy = 0,

where Bl(%, A y)
U, = G\ A %o/ 7.9
v oY Yo=1v¢ ( )
evaluated at ;\(1/;) This is not the same as finding the roots of
Ol*(v)/8% = 0 because the log likelihood is differentiated only with
respect to the first argument. Another way of deriving (7.2) is to
bias-correct the unconditional log-likelihood derivatives as follows:

o
UGN (A6 g,

oY

This bias-corrected derivative is identical to (7.2) with A replaced
by A(%). This interpretation via estimating functions has been
emphasized by Godambe (1976) and by Lindsay (1982).

The asymptotic variance of . is the inverse of

_E(azlc(g"}’2§ '/’0) )

Yo =1

evaluated at A(¢).
The conditional score function as defined above is unaffected by

the parameterization chosen for the nuisance parameters because

6lc('/” A; '/’)

0
OA

for all parameter values. Consequently there is no ambiguity
regarding the meaning of (7.2).

This line of argument produces a usable score statistic having
zero mean at the true parameter point, a ‘conditional likelihood’
estimator and an approximate standard error, but it does not
produce a likelihood function for % directly. For this purpose the
modified profile likelihood of Barndorfi-Nielsen (1985, 1986) may
be used. For a related derivation via orthogonal parameters, see
Cox and Reid (1987).

The following example illustrates several aspects of the condi-
tioning argument. Suppose that

Y] ~ N(/Ll, 1) and Yz ~ N(/Lz, 1)
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are independent and that the ratio ¢ = po/p; is the parameter of
interest. To complete the parameterization, we may take A; = pi,
A2 = pp or any other suitable complementary parameter such as
A3 = g1+ pe or the orthogonal parameter (i3 + u$)¥2. A sufficient
statistic for the nuisance parameter given ¥ = v is

Sx(tho) = Y1+ thYa.
Other equivalent forms of the sufficient statistic are

fa(vo) = A1 = (Y1 + $oY2) /(1 + ¥5),
fi2(%0) = A2 = Yo(Y1 + %oY2) /(1 + ¥2),
and A3 = (1+ o) (Yr + ¥oY2)/(1+ ¥3).
The conditional log likelihood given S (1) is

(y2 — Yoy1 — (¥ — o) p1)?
1+ 92

L(¥,p15%) = — 3 — 3log(1+ ¥3).

Differentiation with respect to 1 followed by setting ¢y = ¢ gives

Ol (2, pr;
g = 2elbss o)

Note that the Jacobian term vanishes on differentiation. Further,

Y

v _ #1(?:—1/)1/2)111). (7.3)

E(U,p) =0,
var(Uy) = u3 /(1 +9%),
1., pz; o) B
B35 ) |y = Th

so that the usual likelihood properties are satisfied. Also e =
y2/y1 with ‘asymptotic’ variance (1+2)/u?, the usual approxima-
tion for the variance of a ratio estimator. In all of these expressions
1 is to be replaced by fi1(¢).

Normal approximation for the distribution of the ratio is unsat-
isfactory unless p; is large compared to the standard deviation of
Y1. Fieller confidence intervals generated via the score statistic Uy,
by

{v: Ui/ var(Uy) < ki/z}
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are exact and are preferred over Normal approximations.
By contrast, differentiation of the reduced function I*(-) gives

Ole(,m13¥) _ i(yz —¥w) | ¥z —¥w)® ¢
o 1 4 42

(14 92)? 1+ 4%
The latter derivative has mean —¢ /(1 + ¥?). For further discussion
of this point see Exercise 7.19.

7.2.3 Exponential-family models

Suppose that the log likelihood for 8 = (#, A) can be written in
the exponential-family form

1(6;y) = 0Ts — b(6)
and admits a decomposition of the form
1(8;y) = 781+ ATsy — b(9, ), (7.4)

where s = (81(y),82(y)) are functions of the data. Likelihood
functions of this type occur most commonly when the observations
are independent and the model considered is linear in the canonical
parameter. Then the sufficient statistic is a linear function of the
data, namely s = X%y. A decomposition of the form (7.4) can be
achieved only if the parameter of interest, ¢, is a linear function
of 8. The choice of nuisance parameter, A, is to a large extent
arbitrary and the inferences regarding % should be unaffected by
the parameterization chosen for A.

It may be helpful at this stage to consider a simple example.
Suppose that Y7, Y, are independent Poisson random variables with
means pi,p2 and that we are interested in the ratio ¥’ = py/ps.
Here 6; = log p; are the canonical parameters, and the parameter
of interest ¢ = log 4’ = #; — 62 is a linear contrast of the canonical
parameters. For the nuisance parameter, we may choose any one
of a variety of complementary parameters such as

M=, Ag=p2, ANy=p+p2 or Ny=pmps.
The log likelihood expressed initially in terms of @ is
1(0;y) = y161 + Y202 — exp(6:1) — exp(62)
= (y1 + ¥2)A1 — 2% — exp(A)(1 +e7¥)
(y1 +y2) A2 + y1% — exp(A2)(1+ e¥)
21+ y2)Aa + (1 — y2)¥ — 2exp(Aa/2) cosh(39),
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where ) = log ¢’ and A; = log A}.

It follows from (7.4) that for any given value of ¥, sz is
sufficient for the nuisance parameter and that s; is the same
whatever parameterization is chosen for the nuisance parameter.
In the above example, s = Y, for each of the parameterizations
considered. The conditional distribution of the data Y given s;
does not depend on A and hence the conditional log likelihood

l(t|s2) = 751 — b (5 82) (7.5)

may be used for inferences regarding #. Given the sufficient
statistic sy, the value of the nuisance parameter is irrelevant in
subsequent calculations.

Note that the conditional log likelihood retains the exponential-
family form in which s; is conditionally sufficient for ¢ given the
value of s;. In the Poisson example, the required conditional
distribution is that of the pair (Y1, Y2) given that ¥, = m, and this
is well known to yield the binomial distribution. It is immaterial
here whether we work with the conditional distribution of Y3 |Y,
Y, |Y, or Y3 — Y2 |Y, because these conditional distributions differ
by a fixed linear transformation.

For a second example, suppose that ¥; ~ B(1,7;) and Y2 ~
B(1,72) are independent and that the odds ratio

’r_ ™ T2
1/) 1-7!'1/1—71'2

is the parameter of interest. The log-likelihood function is

1
log (=) + va o
y1log T + y2 log 1

2
— T2

) + log(1 — m1) + log(1 — m2)

) + log(1 — my) + log(1 — m2)

T2
—

=Y+ (11 + y2) 108(1

where 9 = logvy’. By the argument just given, we are led to
consider the conditional distribution of (Y7,Y2) given that Y, = y,.
If y. = 0 or y, = 2 the conditional distribution is degenerate.

Otherwise if y, = 1, we have
pr(Y; =0]Y,
pI‘(Yl =1 I K

1) =1/(1+9)

1) =4//(1+4)

This is a particular instance of the hypergeometric distribution
studied in section 7.3.
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7.2.4 Profile likelihood

In those instances where they exist, marginal and conditional
likelihoods work well, often with little sacrifice of information.
However, marginal and conditional likelihoods are available only
in very special problems. The profile log likelihood, while less
satisfactory from several points of view, does have the important
virtue that it can be used in all circumstances.

Let A, be the maximum-likelihood estimate of A for fixed #.
This maximum is assumed here to be unique, as it is for most
generalized linear models. The partially maximized log-likelihood
function,

Hy) = L, Aysy) = s1;pl(¢,,\; ¥)

is called the profile log likelihood for #. Under certain conditions
the profile log likelihood may be used just like any other log
likelihood. In particular, the maximum of It(¢;y) coincides with
the overall maximum-likelihood estimate. Further, approximate
confidence sets for ¥ may be obtained in the usual way, namely

{20 why) — 201 9) < x31-a)

where p = dim(¢). Alternatively, though usually less accurately,
intervals may be based on % together with the second derivatives
of IT(;y) at the maximum. Such confidence intervals are often
satisfactory if dim(A) is small in relation to the total Fisher
information, but are liable to be misleading otherwise.

Unfortunately If(¢;y) is not a log likelihood function in the
usual sense. Most obviously, its derivative does not have zero mean,
a property that is essential for estimating equations. In fact the
derivative of [T may be written in terms of the partial derivatives
of [ as follows:

ot _
ol b6 o A a3l
_%+5¢—6X(,\¢—,\)+26¢6’\2(,\¢—,\) + ...
al 89U ¢ L 0% ¢ ) Ay
6—x+5-'\—2(,\¢—,\)+gm(z\¢— Y+ ... W

The expression in parentheses is just dl(t, A)/OX evaluated at X,p,
and hence is identically zero. Under the usual regularity conditions
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for large n, the remaining three terms are Op(n¥2), Op(n*2) and
Op(1) respectively. The first term has zero mean but the remaining
two have mean O(1) if Ay is a consistent estimate of A. Their
expectations may be inflated if A is not consistent.

A simple expression for the approximate mean of 81t/94 in terms
of cumulants of the derivatives of [ is given by McCullagh and
Tibshirani (1988).

In general, if the dimension of A is a substantial fraction of n,
the mean of 8It/0% is not negligible and the profile log likelihood
can be misleading if interpreted as an ordinary log likelihood.

It is interesting to compare the profile log likelihood with the
marginal log likelihood in a model for which both can be calculated
explicitly. The covariance-estimation model, considered briefly at
the end of section 7.2.1, is such an example. The profile log
likelihood for the covariance parameters # in that problem is

16;y) = —3log det T — %QZ(R),

which differs from the marginal log likelihood given at the end of
section 7.2.1 by the term 1 log det(X"E£7'X). Both the marginal
and profile log likelihoods depend on the data only through the
contrasts or residuals, R. The marginal log likelihood is clearly
preferable to I' in this example, because It is not a log likelihood.
The derivatives of It, unlike those of the marginal log likelihood,
do not have zero mean.

The use of profile likelihoods for the estimation of covariance
functions has been studied by Mardia and Marshall (1984).

7.3 Hypergeometric distributions

7.3.1 Central hypergeometric distribution

Suppose that a simple random sample of size m, is taken from a
population of size m,. The population is known to comprise s;
individuals who have attribute 4 and s; = m. — s; who do not.
In the sample, Y individuals have attribute A and the remainder,
m) — Y, do not. The following table gives the numbers of sampled
and non-sampled subjects who possess the attribute in question.
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Attribute _

A A Total
sampled Y=Y m; —Y =Y, my
non-sampled 51— Y=Yy me —s1+Y =Y ma
Total §1 S2 m, = s,

Under the simple random sampling model, the distribution of ¥
conditionally on the marginal totals m,s is

resmg - bllams) G
(=) ()

The range of possible values for y is the set of integers satisfying

a = max(0,s8; — mz) < y < min(my,s;) = b. (7.7)

There are min(m,,mg, 81,s2) + 1 points in the sample space. If
a = b, the conditional distribution puts all its mass at the single
point a. Degeneracy occurs only if one of the four marginal totals
is zero. )

The central hypergeometric distribution (7.6) is denoted by
Y ~ H(m,s) or by Y ~ H(s, m).

An alternative derivation of the hypergeometric distribution is
as follows. Suppose that Y7 ~ B(my,n) and Y2 ~ B(mg,n)
are independent binomial random variables. Then the conditional
distribution of ¥ = Y7 conditionally on Y; + Y2 = s; is given by
(7.6).

The descending factorial moments of Y are easily obtained from
(7.6) as follows:

up) = E{Y} = m{Ds{/m®,

where Y = Y(Y — 1)...(Y — r + 1), provided that r <
min(m,, s;). From these factorial moments we may compute the
cumulants of Y as follows. First, define the following functions
of the marginal frequencies in terms of the sampling fraction
T = ml/m,.

Ky =s1/m,, A1 =m, 7 =my,
K; = s18,/m?, Ao =m, 7 (1 —71) =mimg/m,,
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K3 = 3182(82 — 31)/m53), /\3 = m,rl(l — T1)(1 — 27‘1)
= mlmz(mz — ml)/m?,

Ky = s182{m.(m, + 1) — 63132}/mf4),
Kzz = s(lz)sgz)/mf‘l), /\4 =m,n1 (1 - T1)(1 - 67’1(1 - Tl)).

The first four cumulants of Y are

E(Y) = K]/\], var(Y) = Kz/\z, 7 8)

I€3(Y) = K3/\3, I‘.‘,4(Y) = K4/\4 — 6K22/\§/(m, - 1). ( '
Note that A, is the rth cumulant of the B(m,,m) distribution
associated with the sampling fraction, whereas Kj,..., Ky, Ko
are the population k-statistics and polykay up to order four.
Details of these symmetric functions are given in McCullagh (1987),
Chapter 4, especially section 4.6. For large m, and for fixed
sampling fraction, the As are O(m.), whereas the Ks are O(1)
for fixed attribute ratio, s;/s>.

Note that the third cumulant of Y is zero if either K3 = 0
or A3 = 0. In fact all odd-order cumulants are zero under these
conditions and the distribution of ¥ is symmetric.

7.3.2 Non-central hypergeometric distribution

The non-central hypergeometric distribution with odds ratio ¢ is
an exponentially weighted version of the central hypergeometric

distribution (7.6). Thus
( 1)( : )1/)-”
Y 51—y (79)

Po(y)

pr(Y =y;¢) =

where Py (%) is the polynomial in ¢,

no- () ()

Jj=a

The range of summation is given by (7.7). This distribution arises
in the exponentially weighted sampling scheme in which each of
the (2 ) possible samples is weighted proportionally to ¢¥¥, where

.
1
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y is a particular function of the sample. Here y is the number of
individuals in the sample who possess attribute A, but in principle
any function of the sample could be chosen.

Alternatively, the non-central hypergeometric distribution may
be derived as follows. Suppose that Y; ~ B(m;,m), Y2 ~
B(mgy, ;) are independent binomial random variables and that
P = 7r1(1—7r2)/{7r2(1 —my)} is the odds ratio. Then the conditional
distribution of Y7 given that Y, = s; is non-central hypergeometric
with parameter 9. For conciseness, we write Y ~ H(m,s;¢) to
denote the conditional distribution (7.9). Note that Py(1) = (77+),
so that H(m, s;1) is identical to H(m,s).

An ‘observation’ from the distribution (7.9) is often presented
as a 2x2 table in which the marginal totals are m and s. The
contribution of such an observation to the conditional log likelihood
is

ylog ¥ — log Py (%),

where the dependence on m and s has been suppressed in the
notation for the polynomial Py(¢). This log likelihood has the
standard exponential-family form with canonical parameter 8 =
log ¥ and cumulant function

K(6) = log Py(ef).
The mean and variance of Y are therefore

K'(8) = Py(¥)/Po(¥)
K"(68) = Po(¥)/Po(¥) — {P1(¥)/ Po(¥)}?,

k1(0) = E(Y';0)
ko(8) = var(Y';0)

where P,(¢) is the polynomial

P(¢) = Eb:j’wf (Z“) (slm_zj). (7.10)

j=a

More generally, the moments about the origin are expressible as
rational functions in %, namely

/‘r("/)) = Pr("/))/PO("/))'
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Unfortunately the functions x;(6) and s3(f) are awkward to
compute particularly if the range of summation in (7.10) is exten-
sive. The following approximations are often useful. First, it is
easily shown that, conditionally on the marginal totals,

E(Y11Y22) = YE(Y12Y21)
and, more generally, that
E(Y{Y) = ' EX YD),
Hence, since E(Y11Y22) = p1ip22 + K2, we have

_ Bupo + K2
M1zl + K2

where 1y = E(Y11;6),... are the conditional means for the four
cells, and ky is the conditional variance of each cell. Consequently
we have the following exact relationship between k3 = p11 and xa:

K,l(mz -8 + K,l) + Ky = 1/){(31 - nl)(ml - K,l) + K,z}. (711)
In addition, the following approximate relationship may be derived

from asymptotic considerations of the type discussed in section
6.5.6:

ry o — (—1—+i+i+—1—> 12
m,—1\pn  pi2 pn po2

In addition to being asymptotically correct for large b — a, this

expression is exact for m, = 2, the smallest non-degenerate value,

and also for 9 = 1, whatever the marginal configuration.

The simultaneous solution to (7.11) and (7.12) gives a very
accurate approximation to the conditional mean and variance
provided that either || < 2 or the marginal totals are large: see
Breslow and Cologne (1986). An equally accurate but slightly more
complicated approximation is given by Barndorff-Nielsen and Cox
(1979).
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7.3.3 Multivariate hypergeometric distribution

Suppose that Y, ~ M(m;,n) and Y, ~ M(mg, ) are independent
multinomial vectors, each on k categories. Then the conditional
distribution of the vector Y = Y; given that Y; + Y2 = s is as

follows.

V)6 G6)- ()

y/\s—y/ _ \m Yk (7.13)

m, S,
(o) ()

where s, = m,_ and y, = m;. From a statistical perspective, one
important aspect of this conditional distribution is that it does not
depend on the multinomial probability vector =.

An alternative derivation of (7.13) based on simple random
sampling from a finite population of size m_ is as follows. Suppose
that attribute G has k levels and that the k levels of G are mutually
exclusive and exhaustive. For instance G might denote a particular
genetic marker such as blood group with levels O, A, B, AB. In a
different context, G might denote the species of salmon in Lake
Michigan, with levels whose labels are coho, chinook,.... Under
simple random sampling, the distribution of species in a sample of
size m, is given by (7.13), where s1, s2,. .. are the numbers of coho,
chinook,. .. in the lake.

If the sampled and non-sampled individuals are arranged in a
two-way table, the entries appear as follows.

mW=Hﬂ=(

Attribute level

G1 G2 . Gk Total
Sampled Y11 Y12 . Y1k mi
Not sampled Y. Yoo . Yor mo
Total s1 S92 . Sk m, = s,

Evidently, in this table we may reverse the roles played by the
rows and the columns, Thus, suppose that ¥ ~ B(s,7),...,Yx ~
B(sk,7) are independent binomial random variables. Then the
joint conditional distribution of Y = (¥3,...,Y%), conditional on
the event Y, = m,, is again given by (7.13). Note that in the first
derivation, conditioning reduces the dimension of the sample space
from 2(k—1) to k—1, in the process eliminating k —1 parameters .
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In the latter derivation, conditioning reduces the dimension from
k to k — 1, in the process eliminating the single parameter 7.

The joint conditional mean vector and covariance matrix of Y
are given by

E(Y;) = 7tymy
var(Y;) = (1 — ;)mymg/(m, — 1)
cov(Y;, Y;) = —mi@ymymy/(m, — 1),

where @; = s;/s, is the proportion in the population who have
attribute 7.

7.3.4 Multivariate non-central hypergeometric distribution

Suppose that Y; ~ M(mq,7;) and Y ~ M(my, 73) are indepen-
dent multinomial random variables on k categories each. Then the
conditional distribution of Y = Y, given that Y; + Y, = s is as

follows:
() o
pr(Y =y|s,9) = —Y Y . (7.14)

(7))ot

J

The sum in the denominator runs over the entire conditional sample
space, which comprises all non-negative integer-valued vectors y
satisfying the positivity conditions

0<y; <s Zy]:ml.

The odds-ratio parameters 1; are defined as contrasts relative to

category k by
_ M T2k
vy = L
M2k

so that ¢ = 1.

The exact non-central moments and cumulants are complicated
functions of 4 and the marginal frequencies s. Direct computation
is awkward because of the nature of the sample space and because

of the large number of points it contains. The following equation,
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however, gives a simple exact relationship between the conditional
mean vector g, of ¥ and the conditional covariance matrix X.

E(Y1;Yax) _ Kbk — Ok (7.15)

E(Y2;Y1k) 7 paipak — ok

Note that
o5k = cov(Y1;, Y1x) = — cov(¥1y, Yak)

is negative for j < k.

The covariance matrix ¥ of Y7,,...,Y1x may be approximated
quite accurately as follows. Define the vector { with components
¢; given by

1 1 1
- = 4 —
G Ky pej
The approximate covariance matrix ¥ is then given in terms of ¢

by
m,

=

: T
ey {ding(€) - ¢¢/c.). (7.16)
This matrix has rank ¥ —1. The simultaneous solution of equations
(7.15) and (7.16) gives the approximate mean and covariance
matrix of Y as a function of .

7.4 Some applications involving binary data

7.4.1 Comparison of two binomial probabilities

Suppose that a clinical trial is undertaken to compare the effect
of a new drug or other therapy with the current standard drug or
therapy. Ignoring side-effects and other complications, the response
for each patient is assumed to be simply ‘success’ or ‘failure’.
In order to highlight the differences between the conditional log
likelihood and the unconditional log likelihood, it is assumed that
the observed data are as shown in Table 7.1. For a single stand-
alone experiment, the numbers in this Table are unrealistically
small, except perhaps as the information available at an early
stage in the experiment when few patients have been recruited.
In the context of a large-scale multi-centre clinical trial, however,
Table 7.1 might represent the contribution of one of the smaller
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Table 7.1 Hypothetical responses in one segment of a clinical trial

Response
Success Failure Total
Treatment Y1=2 1 m; =3
Control Yo=1 3 me =4
Total Y.=3 4 m, =17

centres to the study. It is in the latter context that the methods
described here have greatest impact.

We begin with the usual assumption that responses are indepen-
dent and homogeneous within each of the two groups. Allowance
can be made for the differential effect of covariates measured on
individuals, but to introduce such effects at this stage would only
complicate the argument. Strict adherence to protocol, together
with randomization and concealment, are essential to ensure com-
parability, internal homogeneity and independence. With these
assumptions, the numbers of successes in each treatment group
may be regarded as independent binomial variables Y; ~ B(m;, m;),
where

log'lt T =A+A (7.17)

logit o = A.
For a single experiment or 2x2 table, (7.17) is simply a re-paramet-
erization from the original probability scale to the more convenient
logistic scale. Implicit in the re-parameterization, however, is the
assumption that the logistic difference, A is a good and useful
measure of the treatment effect. In particular, when it is required to
pool information gathered at several participating sites or hospitals,
it is often assumed that A may vary from site to site but that A
remains constant over all sites regardless of the success rate for the
controls.

In order to set approximate confidence limits for A, there are
two principal ways in which we may proceed. The simplest way is
to fit the linear logistic model (7.17) using the methods described
in Chapter 4. Approximate confidence limits may be based on A
and its large-sample standard error. For the present example this
gives

A =log (%z—?) =1.792, s.e(A)~1.683.
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Note that the large-sample variance of A is
varA=1/2+1/1+1/1+1/3 =17/6.

More accurate intervals are obtained by working with the profile

deviance, R R
D(y; &) = 2l(A, X)) — 2l(A, Aa)

where A is the maximum-likelihood estimate of A for given A,
This statistic is easy to compute using standard computer packages.
For the data in Table 7.1, the profile deviance is plotted in Fig. 7.1.
The nominal 90% large-sample confidence interval, determined
graphically, is

{A: D(y; A) — D(y; A) < 2.71} = (—0.80, 4.95).

deviance conditional
deviance
- rd
éc = 1.493
Ay =1.792 ,
’
______________________________ mprofile
2 . /’, deviance
A
. .
v :
N :
N .
N .
N .
> .
= Y _ —~ . A
r T T T T T r -

Fig. 7.1 Graphical comparison of hypergeometric and binomial deviance
functions for the data in Table 7.1. Nominal 90% intervals for the log
odds ratio, A, are indicated.

The alternative approach advocated here is to eliminate A by
using the conditional likelihood given Y,. The hypergeometric log

likelihood is
Ic(A) = y,A — log Py(e?),
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where, for Table 7.1, Py(¢) is equal to the cubic polynomial
Po(v) = 4 + 18% + 1292 + 9>,

The hypergeometric likelihood has its maximum at a point A,
different from the unconditional maximum A. In general [A.| <
fAl, with equality only at the origin. More precisely A, satisfies
the standard exponential-family condition

y = e /Po(e =EM|Y;A,).
In the example under discussion we find
A, =1.493,  se(Ac)~1.492
where the standard error is computed in the usual way, namely
var(A.) ~ 1/ var(Y; A.) = 1/0.4495.
The conditional deviance function
20c(Ac) = 2e(B)

is plotted as the solid line in Fig 7.1 and departs markedly from
the profile deviance for large values of A,

7.4.2 Combination of information from several 2x2 tables

Suppose that data in the form of Table 7.1 are available from several
sources, centres or strata, all cooperating in the same investigation.
In the context of a multi-centre clinical trial, the strata are the
medical centres participating in the trial. In some trials there may
be many such centres, each contributing only a small proportion of
the total patients enrolled. At each centre, one would expect that
the pool of patients suitable for inclusion in the trial would differ
in important respects that are difficult to measure. For instance,
pollution levels, water hardness, rainfall, noise levels and other less
tangible variables might have an effect on the response. In addition,
nursing care and staff morale could have an appreciable effect on
patients who are required to remain in hospital. Consequently, one
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would expect the success rate for any medical treatment to vary
appreciably from centre to centre.
Consequently, if we write

m1; = pr(success | treatment)

mo; = pr(success | control)

for the success probabilities at centre i, we may consider the linear
logistic model R
¢ Foetii o C-l

logitmy; = A + A

7.18
logit wa; = Ay, i=1,...,n. ( )

The idea behind this parameterization is that A > 0 implies that
treatment is uniformly beneficial at all centres regardless of the
control success rate: A < 0 implies that the new treatment is
uniformly poorer than the standard procedure. There is, of course,
the possibility that A varies from centre to centre, even to the
extent that A > 0 for some centres and A < 0 for others. Such
interactions require careful investigation and detailed plausible
explanation,

One obvious difficulty with the linear logistic model (7.18) is
that it contains n+1 parameters to be estimated on the basis of 2n
observed binomial proportions. In such circumstances, maximum
likelihood need not be consistent or efficient for large n. However,
following the general argument outlined in section 7.2.2, if we
condition on the observed success totals, Y,;, at each of the centres,

we have

Y1 | Y ~ H(my, y.4559). (7.19)
The hypergeometric log likelihood is thus the sum of n conditionally
independent terms and depends on only one parameter, namely
¥ = e®. Provided that the total conditional Fisher information is
sufficiently large, standard large-sample likelihood theory applies
to the conditional likelihood.

The conditional log likelihood for A is

l(A) = Z {y1:2 — log Py(e®;myi, mai,y.i) }s
where additional arguments have been appended to the polynomial

Py(-) to emphasize its dependence on the marginal totals for
stratum 1.
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The score statistic for no treatment effect is

U= 610/6A|A=0 = Z{Yli - E(Yy)} = Z{Yli — My, /ma}

The exact null variance of U is the sum of hypergeometric variances,
namely

var(U) = ZmlimZiy-i(m.i —y.:)/{m%(m.; — 1)}.

The approximate one-sided significance level for the hypothesis of
no treatment effect is 1 — ®(z~), where

- = (U—%)/O’U

is the continuity-corrected value. This test, first proposed by
Mantel and Haenszel (1959), is known as the Mantel-Haenszel
test. The Mantel-Haenszel estimator, which is different from the
conditional likelihood estimator, is derived in Exercise 9.10.

7.4.3 Ezample: Ille-et- Vilatne study of oesophageal cancer

The data shown in Table 7.2 is a summary of the Ille-et-Vilaine
retrospective study of the effect of alcohol consumption on the
incidence of oesophageal cancer. A more complete list of the
data, including information on tobacco consumption, is given in
Appendix 1 of Breslow and Day (1980). In a retrospective study
the numbers of cases (subjects with cancer) and the number of
controls is to be regarded as fixed by the study design. The alcohol
consumption rate (high/low) is the effective response. However, for
the reasons given in section 4.4.3, the roles of these two variables
can be reversed. We may, therefore, regard alcohol consumption
rate as the explanatory covariate and outcome (cancer/no cancer)
as the response even though such a view is not in accord with the
sampling scheme. Since the analysis that follows is conditional
on both sets of marginal totals, this role-reversal presents no
conceptual difficulty.

It is common to find that the incidence of cancer increases with
age. The cases in this study are older on average than the controls.
If age were ignored in the analysis, the apparent effect of alcohol
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Table 7.2 Ille-et- Vilaine retrospective study of the relationship between
alcohol consumption and the incidence of oesophageal cancer

Cancer No cancer
Alcohol consumption Fitted values
80+ 80— 80+ 80— under model (i)
Age y1 Y12 Y21 Y22 Pe fi1 Residual
25-34 1 0 9 106 00 0.33 1.42
35-44 4 b} 26 164 4.98 4.11 -0.07
45-54 25 21 29 138 5.61 24.49 0.18
o55-64 42 34 27 139 6.30 40.09 0.59
65-74 19 36 18 88 2.56 23.74 —1.89
75+ b) 8 0 31 00 3.24 1.75
Total 96 104 109 666 96.01 X?=9.04

consumption would be inflated. For that reason it is advisable
to stratify the data by age. In other words, cases are matched
with controls of a similar age. The treatment effect is therefore a
comparison of cancer incidence rates between subjects of similar
age.

Three models are considered.

1. amodel in which the log odds-ratio is zero, meaning that alco-
hol consumption has no effect on the incidence of oesophageal
cancer.

2. a model in which the log odds-ratio is constant, meaning
that increased alcohol consumption increases the odds for
oesophageal cancer by the factor e¥ uniformly over all age
groups.,

3. a model in which the log odds-ratio increases or decreases
linearly with increasing age.

Algebraically, these models may be written in the form

(i) logs; =0,
(i) log; = fo, (7.20)
(iii) logy; = Bo + Bi(é —3.5),

where £ = 1,...,6 indexes the age strata. The residual deviances
for these three models are 89.83, 10.73 and 10.29 on 6, 5 and 4
degrees of freedom respectively.



7.4 APPLICATIONS INVOLVING BINARY DATA 269

17 1 deviance
16

15

14 A

13 1

12

11 A

Bo
1.2 1.3 1.4 1.5 1.6 1 1.7 1.8 1.9 2.0 2.1

Pig. 7.2 Hypergeometric deviance for model (7.20). Nominal 90% and
95% intervals for the log odds ratio, Bo, are indicated.

The model formula for (i) is unusual in that it is entirely empty,
excluding even the intercept.

The estimate of Gy for the model of constant odds-ratio is 1.658
with standard error 0.189. Fitted values and residuals under this
model are shown in the final two columns of Table 7.2. The
residuals, calculated by the formula

(yu — fnn) /v V (i),

exhibit no patterns that would suggest systematic deviation from
constancy of the odds-ratio. The fact that we have chosen the
(1,1) cell is immaterial because the residuals are equal in magnitude
for the four cells of the response.

For the third model, the estimates are

Bo= 17026  s.e.(Bo) = 0.2000
B =—0.1255  s.e.(3) ~0.1879

confirming that there is no evidence of a linear trend in the log
odds-ratios.

Both Pearson’s statistic and the residual deviance statistic are a
little on the large side, though of borderline statistical significance
when compared to the nominal x2 distribution. This inflation may
be due to factors that have been igrniored in the present analysis.
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The unconditional analysis for these data, in which each row of
Table 7.2 is treated as a pair of independent binomial variables,
gives very similar, though not identical, answers in this example.
The unconditional residual deviances for the three models (7.20)
are 90.56, 11.04 and 10.61. The unconditional maximum-likelihood
estimate of [y in the second model is 1.670 with asymptotic
standard error 0.190. As usual, the unconditional estimate is larger
in magnitude than the conditional estimate. The unconditional
estimate is biased away from the origin, though in this example
the bias is small because the counts are, for the most part,
moderately large. There are similar slight differences between
the unconditional and conditional estimates for the third model.
None of these differences is of sufficient magnitude to affect the
conclusions reached.

Thus it appears that the habitual tippler will find no comfort
in these data. The odds for oesophageal cancer are higher by
an estimated factor of 5.251 = exp(1.6584) in the high alcohol-
consumption group than in the low alcohol group. This odds
factor applies to all age groups even though the incidence of cancer
increases with age. Approximate 95% confidence limits for the
odds-ratio are

exp(1.658 + 1.96x0.189) = exp(1.288, 2.028) = (3.624, 7.602),

which is almost identical to the interval (3.636,7.622) obtained
from the deviance plot in Fig. 7.2. Normal approximations tend
to be more accurate when used on the log-scale rather than the
1-scale.

7.5 Some applications involving polytomous data

7.5.1 Maitched pairs: nominal response

Suppose that subjects in a study are matched in pairs and that a
single polytomous response is observed for each subject. Following
the usual procedure for matched pairs, we shall suppose that the
logarithmic response probabilities for the control member of the
ith pair are

Ai = (/\ila e 7/\ik)7
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which are free to vary in any haphazard or other way from pair
to pair. We shall suppose in addition that the treatment effect as
measured on the logarithmic scale is the same for all pairs. The
logarithmic response probabilities for the treated member of the
ith pair are therefore

A+ A =(/\,’1 +A1,...,/\ik+Ak).

The probability of observing response category j for control
subject 1 is

exp(/\,-]-)/ Z exp(Air),
while the probabilities for the treated subject are

exp(A;; + A]-)/ Z exp(Air + Aj).

Each response can be represented either as an integer R in the
range (1,k), or as an indicator vector Z having k components.
The components of Z are

1 fR=j
Z; =
J { 0 otherwise.

Consider now a given pair having logarithmic response probabilities
A and A + A, for which the observed categories are r; and ry
respectively. For any given value of A, the sufficient statistic for
A is the vector sum, Z, = Z; + Z,, of the observed responses. If
Z, =(0,...,2,...,0), both R; and R, are determined by Z, and
the conditional distribution given Z, is degenerate. However, if

Z, =(0,...,1,...,1,...,0),
with non-zero values in positions ¢ and j, we must have
(RI’RZ) = (laj) or (Jvz)

For 7 # j, the required conditional distribution is

oA el +A,

pr(Ry =i|Z,) = P VP VR SR W Y.

= eAJ/(eA’ + eAJ), (7.21)
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which is independent of A as required. Every ordered pair of re-
sponses (%,7) with ¢ # j contributes a factor (7.21) to the condi-
tional likelihood. Identical pairs, for which the control response is
the same as the treatment response, contribute a factor of unity
and can be ignored in the conditional likelihood. Thus, if ¥j; is
the number of ordered pairs responding (%, j), the symmetric total
m;; = Y; +Yj; is just the number of vector sums Z, that have
values in positions ¢ and j. Hence, conditionally

' Yij ~ B(my;,mi5) 1<j (7.22)
logit(mij) = A; — A;.

The conditional log likelihood is therefore the product of k(k—1)/2

independent binomial factors satisfying the model shown above. As

usual, the levels of the treatment factor A can be chosen to satisfy

A, =0o0r Ay =0o0r Y A; =0. Evidently, from (7.22) only the

differences are relevant.

Model (7.22), known as the model of quasi-symmetry, was first
suggested by Caussinus (1965), though no derivation was given.
The same model occurs in studies of population migrations where
the term gravity model is used. In that context the k categories
are k geographical locations and Y;; is the number of families or
individuals who migrate from area ¢ to area j in the time period
under study. For further details see Scholten and van Wissen (1985)
or Upton (1985).

Model (7.22) is formally identical to the Bradley-Terry (1952)
model used for ranking individuals in a paired competition. If the
probability ;; that subject 7 beats subject j satisfies (7.22), then
the As give a linear ranking of subjects.

A curious and unusual feature of the linear logistic model (7.22)
is that the model matrix X corresponding to the formula A; — A;
does not include the intercept nor does the constant vector lie in
the column space of X. For instance if £ = 3 the model formula
may be stated explicitly using matrix notation as

logit 715 1 -1 0 A
lOglt ™13 = 1 0 -1 Ag
logit a3 0 1 -1 Aj

In this example X is 3x3 with rank 2 and the sum of the three
columns is 0.
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The adequacy of the linear logistic model (7.22) can be tested
by using the residual deviance or Pearson’s statistic, each of which
has (k—1)(k—2)/2 degrees of freedom.

7.5.2 Ordinal responses

Consider the application of the proportional-odds model (5.1)
for the comparison of two multinomial responses in which the
categories are ordered. The observations comprise two independent
multinomial vectors

Y1~B(m1,1rl), YZ""B(m277rZ)=

in which the cumulative probabilities v,;, v2; satisfy

log{m;/(1—m;)} =65

j=1,...k—1.  (7.23)
log{v2; /(1 —72;)} = 6; — A;

In this model there is a single parameter of interest, A measur-
ing the effect of treatment, and & — 1 base-line parameters that
determine the response probabilities for the control. Since the
categories are ordered it is helpful to form cumulative totals not
just for the probabilities but for the responses themselves. Thus
we write s; = y1; + ya; for the response category totals and

Z]j:Y11+..-+Y1]'
sz =Y21+..-+Y2j
S]’ =31+-..+S]'=Z.]'

for the cumulative responses in each group and the cumulative
totals respectively. With this notation we have Z;; ~ B(m;,~ij;)
with ~;; satisfying the linear logistic model (7.23). The nuisance
parameters may be eliminated by conditioning on S;. The resulting
hypergeometric distribution is

pr(zy, = 2515 = (7)) (572, )v" /Z( )5

(7.24)
where ¢ = e?.
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Thus, for each j = 1,...,k — 1, we have the conditional

distribution
Z1;|S; ~ H(m, 55;9)

independently of the nuisance parameters. The aini in the dis-
cussion that follows is to construct an efficient estimate of ¢ on
the basis of these k¥ — 1 conditional distributions. Unfortunately
there is no joint conditional distribution of {Z);} that depends
only on ¢ because the conditional distribution of Z,;, given the
vector § = (5i,...,Sk), depends on both @ and .

The following method of estimation seems to work well and has
much in common with quasi-likelihood as discussed in Chapter 9.
The argument runs as follows. Let X;;(¢) be the conditional mean
of Zy; given §; as derived from the hypergeometric distribution
(7.24). For each j = 1,..., k-1, the difference

Zy; — X15(¥)

has zero mean conditionally on S;, and hence unconditionally. Note
that X1;(¢) depends also on §;. For all generalized linear models
the likelihood equations take the form U(#;y) = 0 where U(t;y)
is a linear function of the data. By analogy, therefore, we seek to
construct a function

U; 2) =y w;{Z1; — Xa;(¥)}, (7.25)

where wi = wj(¢,S;), such that U(4;Z) behaves ‘like’ a log-
likelihood derivative. By construction, U(t; Z) has zero mean
whatever the choice of weights. The weights are chosen so that
the mean of —AU/JA is equal to the variance of U.

The choice of weights is normally not critically important. At
worst, a poor choice of weights may lead to a small loss of efficiency.
With this in mind, we may choose w} =1 or w; = §;(m, — §j).
These are safe choices that lead to consistent estimates of ¢, but the
variance of the resulting estimate is not simply related to U/OA.

More formally, however, standard theory for linear estimating
equations shows that the optimal weights are given in vector form
by

w*=V~ld,
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where V is the covariance matrix of Z11,...,Z14-1 and d; =
X 1;(9¥) / OA. By a common property of exponential-family models,

d; = var(Zy; | S5;9),

which is easily computed either exactly using (7.24) or approxi-
mately using (7.12). However, it is unclear what is meant by the
covariance matrix V because the random variables Z,;,. .., Z; j_1,
whose probability distributions are given by (7.24), are defined on
different sample spaces. To use the unconditional covariance matrix
would be to violate the spirit of the exercise. Yet it does not make
sense to talk of the covariance of two random variables unless they
can be defined on a common sample space.

A pragmatic solution that has the merit of simplicity is to use
the approximate hypergeometric covariance matrix ¥ as defined in
(7.16). Since Z is the vector of cumulative totals, we have

V =L3LT,

where L is the lower triangular matrix forming cumulative totals.
The matrix V thus constructed is a Green’s matrix similar to the
cumulative multinomial covariance matrix (5.13). With this choice
for V, we find

U(y; Z) =d"DTE D(Z - X)
=d"DTE(Y; — uy)

where D = L™%, puy; = X1; — X1;-1 and Y| = (Yi1,..., Yii). We
are free to choose the simplest generalized inverse of ¥, namely

)y L diag{¢™} = dlag{u“ + 3t}
Thus
m, —1¢ 1 1
U;Z) = — ;(dj - dj‘l)(;TU + E) (y15 — p15)
k—1
~ (—Cf +C<f+‘> (Z1; — X35).- (7.26)
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The latter approximation comes from replacing d by the diagonal
elements of V. Note that the weights in the first expression above
are not all positive.

The ‘conditional likelihood’ estimate, A, defined as the solution
to the equation U(¢; Z) = 0, has asymptotic variance

var(A {IE_:IC]+C]+1 }_l
SRl IN S A I

m.,

which is essentially the same as the variance of the unconditional
maximum-likelihood estimate. See Exercise 5.3.

7.5.3 Ezample

It is only for very sparse tables that there is any appreciable
difference between the ‘conditional’ likelihood estimator described
in the previous section, and the unconditional maximum likelihood
estimate as described in Chapter 5. By way of example, we consider
here the first two rows of Table 5.1, involving the comparison of two
cheese additives, A and B, ignoring C and D. The unconditional
maximum-likelihood estimate of A in the proportional odds model
(7.23) is —3.028 with asymptotic standard error 0.455. Table 7.3
shows the steps involved in one cycle of the iteration, beginning
from Ay = —3.028.

Table 7.3 Steps required in one cycle of the iteration to compute A,

s Z d X B ¢ w*
6 0 0.2842 0.3021 0.3021 0.2869 0.0615
15 0 0.8220 0.8997 0.5976 0.5579 0.1307
28 1 1.8891 2.2860 1.3863 1.2385 0.3288
46 8 3.6281 6.5994 4.3134 3.2798 0.5105
61 16 3.4019 14.5594 7.9600 3.7359 0.4485

75 24 1.9867 25.4325 10.8731 2.4285 0.3050

95 43 0.4461 43.4791 18.0466 1.7626 0.1580
103 51 0.0440 51.0462 7.5671 0.4095 0.0330
104 52 — 52.0 0.9538 0.0441 —

52.0 13.7437
4
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The first column gives the cumulative category totals, S;. and
the second column gives the cumulative observations Z,; for the
first group. The third and fourth columns give the variances and

means
d]‘ = var(Zj ,S]) and X]j = E(le ,SJ)

both computed from the hypergeometric distribution with odds

ratio ¥y = exp(—3.028). The fifth column gives the cell means for
the first group, p1; = X1; — X1-1. Finally, the last two columns

give
1 141
e
K H2j

where pa; = 8; — py; are the cell means for the second group, and
wy = ((j + (j+1)/C. are the required weights.

The score statistic U = ) w}(Z1; —Xy;) is equal to 0.2881, while
2_wjd; = 4.8016. Thus the updated estimate of A is

A. = —3.028 + 0.2881/4.8016 = —2.9680.

One further cycle gives A, = —2.9743 with asymptotic variance
(T wid;) ™" = (4.9047)~1 = 0.2039

and standard error 0.4515.

The difference between the conditional and unconditional es-
timates is only 12% of a standard error and is unlikely to have
much effect on the conclusions reached. As usual, the conditional
estimate is smaller in magnitude than the unconditional estimate.

7.6 Bibliographic notes

Conditional and marginal likelihoods for the elimination of nui-
sance parameters have been in use since the early part of this
century. It can be argued that Student’s usage of degrees of freedom
rather than sample size as divisor in the estimation of o2 is an ap-
plication of marginal likelihood, as shown in section 7.2.1. Bartlett
(1936, 1937) made further important contributions, particularly
to the problem of estimating a common mean when the sample
variances are unequal and unknown.
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Neyman and Scott (1948), in an important and influential paper,
pointed out that when the number of nuisance parameters grows
in proportion to n, maximum-likelihood estimates need not be
consistent, Even if they are consistent, they need not be efficient.

The use of marginal likelihoods based on error contrasts, for
the estimation of variance components, has been recommended by
Patterson and Thompson (1971) and further studied by Harville
(1974, 1977), Fraser (1968, 1979) and Corbeil and Searle (1976).
The method is known as restricted maximum likelihood (REML).
The application of the same technique to spatial covariance esti-
mation is due to Kitanidis (1983, 1987), who points out that the
marginal likelihood is superior in this context to full, or profile,
likelihood.

The matched pairs design is an extreme case where the number
of parameters grows in proportion to n, and consequently this
design is used as a testing ground for procedures that purport
to handle large numbers of nuisance parameters. For binary
responses, Cox (1958b) showed that the conditional likelihood
ignores all pairs for which the responses are equal. The test for
no treatment effect is a simple comparison of the number of pairs
responding (0,1) with those responding (1,0). This test had been
proposed earlier by McNemar (1947). For further details, see
Andersen (1973).

Kalbfleisch and Sprott (1970) give an excellent review of various
modifications to the likellhood when there is a large number
of nuisance parameters. In particular, they discuss the thorny
problem of conditioning, when the conditioning statistic for the
removal of A, §3(¢), depends on 4. See also Godambe (1976) and
Lindsay (1982) for a discussion of the same topic from the vantage
of optimal estimating equations.

Regression models for the log odds-ratio, based on the non-
central hypergeometric distribution, are now widely used in ret-
rospective studies of disease. This line of work can be traced
back to Mantel and Haenszel (1959). For more recent work, see
Breslow (1976, 1981) and Breslow and Day (1980). There are close
connections here with Cox’s (1972a, 1975) partial likelihood, which
is also designed for the removal of nuisance parameters.

The formulae in section 7.3.2 for non-central hypergeometric
moments were given by Harkness (1965). They were subsequently
discussed by Mantel and Hankey (1975) and used by Mantel (1977)
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for approximating the non-central hypergeometric mean.
Saddlepoint methods for approximating conditional likelihoods
for generalized linear models with canonical links are discussed by

Davison (1988).
Section 7.5 is based on McCullagh (1982, 1984c).

7.7 Further results and exercises 7

7.1 Suppose that Yi,...,Y, are i.id. N(u,0?). Show that if
4 = g is given, then

So = S(no) = Y _(¥; — mo)?

is a complete sufficient statistic for 2.

7.2 Show that the log likelihood for (u,02) in the previous
exercise is

n
l(p,0%) = —20—25( u) — Elogaz.

Show also that the statistic S(uo) has the non-central y? distribu-
tion on n degrees of freedom given by

eXplo (8 + )/} S/ ) S Ay 1y

202 1127 (251) £\202) 1l 2

where A = n(u — po)2. Hence show that the conditional log
likelihood given Sy is

le(p, 0% po) = — —{ po)} — (g - 1) log S(po)

_»-log2(2 2) = (R;I’T*_%)’

whereas the reduced function I* (g, 0?) is

(1, 0%) = le(p, 0% 1) = —3(n — 2)log S(u).



280 CONDITIONAL LIKELIHOODS

7.3 For the function [* defined in the previous exercise, show that

(=), n(n—2)F—p)
U =3 = s 200 T G D anG - P

whereas the derivative of I.(u,02; uo) with respect to p, evaluated
ol

at po=pis
1
M =;Z(y—u),

which is monotonely increasing in §. Comment briefly on the
differences between the two derivatives for n = 1,2,

Ho=p

7.4 For the problem discussed in the previous three exercises,
show that Y; and Y; are conditionally uncorrelated with variance
S(p)/n and that

var (¥ S(u)) = S(u) /.

Hence deduce that the conditional moments of the derivatives of [*
are

E(U* 1SW) =0
var(U™ | S(n)) = (n —2)*/S(n)
~E{8*1"/0u* | S(1)} = (n - 2)%/S(n)

[Bartlett, 1936].

7.5 Suppose that Y;,...,Y, are observations taken at spatial lo-
cations si,...,s, and that the vector Y may be taken as multi-
variate Normal with mean and variance given by

E(Y)=XB, cov(Y)=ZX(;s),

where X is given and 8 is a nuisance parameter. The parameters
@ appearing in the covariance function, ¥(#;s), are the focus of
investigation. Show that for any given value of 8, say 8 = 8, the
statistic

So = XTW,Y, where W;' = X(f;s),
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is sufficient for . Show that the conditional log likelihood,
ly[so(ﬂ,G;GO), for (ﬂ, 0) given So is

—HY - XB)T {27! - WoX(XTWEWX) ' X"W, (Y — XB)
— Llogdet T + 3 log det(XT WoEWX),

and hence that the reduced function [*(8) = ly|s(B,8;8) satisfies

(B,0) = - iYTE1(I- XX"27'X)7'XTs Y
— %log det X + % log det(XTE1X),

which is independent of 8. By considering the special case X =1
or otherwise, show that [*(8,8) is not a log-likelihood function.
7.6 Suppose that Y7,Y, are independent, Normally distributed
with means p1, up and unit variances. Let ¢ = pp/p;. Find the
conditional distributions of Y7, Y2 and ¢Y; — Y, given Y7 + ¢Y2 =
C. Show that these conditional distributions lead to different
‘likelihoods’.

7.7 Find the conditional maximum-likelihood equations for @ in
the previous exercise using equation (7.2). Compare this with the
marginal maximum-likelihood estimate based on the residuals as
described in section 7.2.1.

7.8 Let H = [H;: Hy] be an orthogonal matrix partitioned into
H; of order n xn—p and Hj of order n x p. Let £q be an arbitrary
symmetric matrix of rank n. Show that

det £o = det(H] £oH; )/ det(H] £ 'Hy).

provided that det(Hj £5H;) # 0.

7.9 Let Px = X(XTX) !XT be a projection matrix of order
n and rank p. By writing I — Px = HI[,,_p]HT, where H is
orthogonal, show that the matrix

" =(I-Px)E(I-Pyx)
satisfies

log DET(Z*) = log det £ + log det(X” 251 X) — 2log DET(X),
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where DET(A) is defined as the product of the singular values of A.
DET(A) = [ M(A).

A#0

It is assumed here that X is nxp with rank p and that ¥ is positive
definite and symmetric. Thus det(Xy) = DET(X,).

7.10 Suppose that €,..., €, are independent and identically dis-
tributed with density % f (5), depending on the unknown param-
eter g. Suppose also that the observed values yy, .. .,y, satisfy

Y=XB+2Zv+¢€

for fixed known matrices X, Z and unknown parameters 8, 4. Show
that the distribution of R = (I — Px)Y does not depend on 8.
Px = X(XTX)"'XT)

Show also that if the es are Normally distributed, the marginal
likelihood based on R is identical to the conditional likelihood given

PxY.
7.11 Define the projection matrices P and Py by

P=XXTX)"'XT and Py = X(XTWX)'XTW
where W = £71. The corresponding residual vectors are
R=(I-P)Y and Rw =(I-Py)Y.
Assuming that cov(Y) = X, show that
cov(Rw) = (I-Pw)E (= Zw),

and that
Ty =27 I -Py)

is the Moore-Penrose inverse of ¥y. Hence deduce that
2 =(I-P)TY(I-Pw) and I

are both generalized inverses of (I — P)X(I — P).



7.7 EXERCISES 7 283

7.12 Show, using the results of the previous exercise, that

RTE;R =R}, 5, Ry = YWY - YTE Py Y.

7.13 Show that Ry = (I — Pw)R. Hence deduce that the log
likelihood based on R is identical to that based on Ry for fixed

Ww.

7.14 Show that the simultaneous solution to equations (7.11)
and (7.12) can be obtained by iteration using the following steps,
beginning with initial estimates /t,(]l-) for the conditional means.

-1
. ) _ m, 1 1 1 1
(i) K _—(—+—+—+—
mo= I\ ) ul  uly)
(ii) o™ = Wy + g
(r),,(r) (r)’
By a3y + Kg

i) Y =uD + 8 x {logy —logy}.

Hint: for part (iii) use the property of exponential families that
Op/08 = k. If the initial estimates are poorly chosen, care must
be taken in step (ii1) to ensure that 1, does not get out of range.
Otherwise the algorithm seems to converge rapidly. [Liao, 1988].

7.15 Show that the two asymptotic variance formulae (7.27) are
not identical but are numerically very similar. Compute both
expressions for the data in Table 7.3 and show that the difference
is approximately one half of 1%.

7.16 Show that if a particular response category is not used, that
category may be deleted without affecting (7.26).

7.17 The estimating equation (7.26) does not have the form
specified in (7.25) because the weight (¢; + (j+1)/¢. depends on
the whole vector § and not just on S;. Discuss the possible
implications of this.

7.18 Fit a model to the data in Table 7.2 in which the odds
ratio is constant up to age 75, but different in the 75+ age-group,
Show that this model fits better than the linear regression model
in (7.20). Give an approximate significance level for the observed
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difference, making due allowance for selection effects. Use the
deviance reduction rather than the parameter estimate as your test
statistic.

7.19 For the Fieller-Creasy problem discussed at the end of
section 7.2.2, in which the parameter of interest is the ratio of
Normal means, show that the bias-corrected derivative of {*(v) is

Al* () ol* () y2 — Yy sa(¥)
5 —E( 5 ISA(¢)»¢>W1+W-

Discuss briefly the use of this unbiased estimating equation as an
alternative to (7.3). Under what circumstances do the two methods
produce identical estimating equations?




CHAPTER 8

Models for data with constant
coefficient of variation

8.1 Introduction

The classical linear models introduced in Chapter 3 assume that
the variance of the response is constant over the entire range of
parameter values. This property is required to ensure that the
regression parameters are estimated with maximum precision by
ordinary least squares and that consistent estimates are obtained
for the variance of ﬂ It is common, however, to find data in the
form of continuous measurements where the variance increases with
the mean. In Chapter 6 we studied models for common types of
data in which var(Y’) oc E(Y), including continuous measurements
as well as discrete data. Here we assume that the coefficient of
variation is constant, i.e. that

var(Y) = o?{E(Y)}? = o%p?.

Note that ¢ is now the coeflicient of variation of Y and not the
standard deviation.

For small o, the variance-stabilizing transformation, log(Y"), has
approximate motnents

E(log(Y)) = log(p) —0%2  and var(log(Y)) ~ o2.

Further, if the systematic part of the model is multiplicative on the
original scale, and hence additive on the log scale, then

n = log{E(Y;)} = x] B.

Then, with the exception of the intercept or constant term in the
linear model, consistent estimates of the parameters and of their

285
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precision may be obtained by transforming to the log scale and
applying ordinary least squares. The intercept is then biased by
approximately —o?/2. .

For a number of reasons, and particularly if it is required to
present conclusions on the original scale of measurement, it is
preferable to retain that scale and not to transform the response.
Then we have

i = E(Y) = exp(x" )

referring directly to the original scale of measurement. The log
link function achieves linearity without abandoning the preferred
scale, and a quadratic variance function describes the relationship
between var(Y') and E(Y). With this combination of link and
variance function, iteratively weighted non-linear least squares may
be used to obtain estimates for 8 using the algorithm described in
Chapter 1. This method of estimation is equivalent to assuming
that ¥ has the gamma distribution with constant index v = 1/g2
independent of the mean in the same sense that ordinary least
squares arises as maximum likelihood for the Normal distribution.

In comparing the two methods of estimation described above,
we assume that the precise distribution of Y is not specified,
for if it is the comparison can be uniquely resolved by standard
efficiency calculations and by considerations such as sufficiency. For
example, if Y has the log-normal distribution the first method is
preferred, while if it has the gamma distribution the second method
is preferred. More generally, however, if ¥ is a variable with a
physical dimension or if it is an extensive variable (Cox and Snell,
1981, p. 14) such that a sum of ¥'s has some well-defined physical
meaning, the method of analysis based on transforming to logY
is unsatisfactory on scientific grounds and the second method of
analysis would be preferred. However, if the analysis is exploratory
or if only graphical presentation is required, transformation of the
data is convenient and indeed desirable.

Firth (1988) gives a comparison of the efficiencies of the gamma
model when the errors are in fact log-Normal with the log-Normal
model when the errors have a gamma distribution. He concludes
that the gamma model performs slightly better under reciprocal
misspecification.
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8.2 The gamma distribution

For our present purposes it is most convenient to write the gamma
density in the form

1 Vy)” ( Vy)
—— | —= | exp{——]d(logy); >20,v>0,u>0.
F(V)(u Pl=7 (logy) Yy 7

For brevity we write Y ~ G(u,v). From its cumulant generating
function, —vlog(1 —ut/v), the first four cumulants are easily found
as

Ky = E(Y) = p,

Ky = var(Y) = p¥/v,

K3 = B(Y —p)® = 24%0%,

ke = 6?03

More generally &, = (r — 1)1 u"/v"~1. The value of v determines
the shape of the distribution. If 0 < » < 1 the density has a
pole at the origin and decreases monotonically as y — co. The
special case v = 1 corresponds to the exponential distribution. If
v > 1 the density is zero at the origin and has a single mode at
y = p ~ pu/v; however, the density with respect to the differential
element d(logy) has a maximum at y = p for all v. Fig. 8.1 shows
the form of the distribution for » = 0.5,1.0,2.0 and 5.0 with u =1
held constant. It can be seen from the graphs that the densities
are all positively skewed. The standardized skewness coefficient is
ns/ng/z = 20712 and a Normal limit is attained as v — o0o.

In this chapter we are concerned mostly with models for which
the index or precision parameter v = o~ 2 is assumed constant
for all observations, so that the densities all have the same shape.
However, by analogy with weighted linear least squares, where the
variances are proportional to known constants, we may, in the
context of the gamma distribution, allow v to vary in a similar
manner from one observation to another. In other words we may
have v; = constant x w;, where w; are known weights and v; is
the index or precision parameter of Y;. Problems of this form
occur in estimating variance components where the observations
are sums of squares of Normal variables, the weights are one half
of their degrees of freedom and the proportionality constant is 1.
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v=10

1.0 r

051

1 1 1 J

0 1 2 3 4 0 1 2 3 4

Fig. 8.1. The gamma distribution for v = 0.5, 1.0, 2.0 and 5.0, p= 1.

The densities then have different shapes. For further details see
section 8.3.5.

The gamma family, and indeed all distributions of the type
discussed in section 2.2, are closed under convolutions. Thus
if Y1,...,Y, are independent and identically distributed in the
gamma distribution with index v, then the arithmetic mean Y
is distributed in the same family with index nv. Thus the gamma
distribution with integer index, sometimes also called the Erlangian
distribution (Cox, 1962), arises in a fairly natural way as the time
to the vth event in a Poisson process.

The log-likelihood function corresponding to a single observation
is shown in Fig. 8.2 where we plot the log likelihood against u, log u,
p~¥3 and p~!. It can be seen that the log-likelihood function is
nearly quadratic on the inverse cube-root scale; the log likelihood
at u differs from the value at the maximum by an amount closely
approximated by , . .

9y (y~7 — pu~3)Y2
Now it is known that the square root of twice the log-likelihood-
ratio statistic is approximately Normally distributed. Thus an



8.3 MODELS WITH GAMMA-DISTRIBUTED OBSERVATIONS 289
-1.0

~

—logp —y/u

-14H
—-1.8H

-2.2

—-2.6

§ W SO NN [ VY N R IO (N TN I S I |

0 2 4 6 8 10 12 14 -1 0 1 2 3
—~10 -

—14F

—~1.8}+

—-2.2+

—-26 u—l/.'}

1 1

0.8 1.0 12

04 0.6 1.4 1.60 1 2 3 4

Fig. 8.2. The gamma log likelihood for y = 1, plotted against p, logu,
p~? and 1/p.

accurate Normalizing transformation for Y is
1
3{(Y/w) —1}.

The cube-root transform was originally derived in this context by
Wilson and Hilferty (1931) (see also Hougaard, 1982).

8.3 Models with gamma-distributed observations

8.3.1 The variance function

We have already noted that, with the parameterization of the
gamma distribution used here, the variance function is quadratic.
This result can be obtained directly by writing the log likelihood
as a function of both v and g in the standard form

v(—y/p—logp)+ viegy + viegry — log'(v).
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It follows in terms of the parameterization used in Chapter 2 that
6 = —1/p is the canonical parameter, and b(f) = — log(—0) is the
cumulant function. From these the mean ¥(6) = p and variance
function ¥’(6) = u? may be derived.

8.3.2 The deviance

Taking v to be a known constant, the log likelihood may be written
as
> v(—yi/ i —log i)
i
for independent observations. If the index is not constant but is
proportional to known weights, v; = vw;, the log likelihood is equal
to

vy wi(~yi/pi = log ).

The maximum attainable log likelihood occurs at g = y, and
the value attained is —v ) w;(1 + logy;), which is finite unless
y; = 0 for some 3. The deviance, which is proportional to twice the
difference between the log likelihood achieved under the model and
the maximum attainable value, is

D(y;s) = =2y wiflog(ys/ i) — (yi — fs)/ i}

This statistic is defined only if all the observations are strictly
positive. More generally, if some components of y are zero we
may replace D(y; u) by

D+(y; i[) = 20()’) + 22 W; logﬂ,- + 2 Zw,-y,-/ﬂ,-,

where C(y) is an arbitrary bounded function of y. The only
advantage of D(y; s) over D*(y; js) is that the former function is
always positive and behaves like a residual sum of squares. Note,
however, that the maximum-likelihood estimate of v is a function
of D(y; s) and not of D*(y;fs). Furthermore, if any component
of y is zero then # = 0. This is clearly not a desirable feature
of the maximum-likelihood estimator in most applications if only
because rounding errors may produce spurious zeros. Alternative
estimators are given in section 8.3.6.
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The final term in the expression for D(y; i) is identically zero
provided that the model formula contains an intercept term. In
such cases the final term can be ignored (Nelder and Wedderburn,
1972). Under the same conditions, the final term in D™ (y;j) is
equal to > w; and can be absorbed into C(y).

8.3.3 The canonical link

The canonical link function yields sufficient statistics which are
linear functions of the data and it is given by

n=u

Unlike the canonical links for the Poisson and binomial distribu-
tions, the reciprocal transformation, which is often interpretable as
the rate of a process, does not map the range of i onto the whole
real line. Thus the requirement that n > 0 implies restrictions on
the GOs in any linear model. Suitable precautions must be taken in
computing ﬁ so that negative values of i are avoided.

1.0 H 0.5
08l 04r
0.6 (a)  03f (b)
- -
04} 02f
0.2 0.1f
| SN UV TN WO N T WSS W S | l:L‘l i J 1 L 1 -} 1 :L‘I 1
0 5 10 15 1 2 3 4 5 6 7

Fig. 8.3. Inverse polynomials: (a) the inverse linear, p~* = 1+ z71;
(b) the inverse quadratic, p™' =z — 2+ 4/z.

An example of the canonical link is given by the inverse poly-
nomial response surfaces discussed by Nelder (1966). The simplest
case, that of the inverse linear response, is given by

n:ﬂ0+ﬂ1/x With z>0.

In plant density experiments it is commonly observed that the yield
per plant varies inversely with plant density z, so that the mean
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yield per plant has the form 1/(8; + Byz). The yield per unit area

is then given by
-1 T

=u=——'——’
7 Box + B1

giving a hyperbolic form for  against z, with a slope at the origin
of 1/3, and an asymptote at u = 1/G;. Inclusion of a linear term
in z, gives

n=p/z+ fo+mnz,

which is called the inverse quadratic. Both curves have a slope
at the origin of 1/8;. The inverse quadratic response reaches a
maximum of 4 = Gy + 2/(i11) at £ = /(B /7) corresponding
to the optimum plant density. At higher plant densities u tends to
zero like 1/(y,z) as shown in Fig. 8.3.

The surfaces can be extended to include more than one covariate
and by the inclusion of cross-terms in 1/(z1z3),z;/z2, and so on.
For positive values of the parameters the surfaces have the desirable
property that the ordinate 7 is everywhere positive and bounded;
this is in contrast to ordinary polynomials where the ordinate is
unbounded at the extremes and often takes negative values.

In practice we often require to fit origins for the covariates, i.e. to
make z enter the inverse polynomial in the form zy + z, where z,
has to be estimated. The baseline value z¢ is non-linear in a general
sense and its estimation requires special treatment—see Chapter 11
for details.

Two other link functions are important for generalized linear
models with gamma errors, the log and the identity, and we now
consider their uses.

8.3.4 Multiplicative models: log link

By combining the log link with terms linear in z and 1/z a
large variety of qualitatively distinct response functions can be
generated. Four of these are shown in Fig. 8.4, where we have
shown 7 = logp = 1+ z+ 1/z for £ > 0. These curves
are sometimes useful for describing response functions that have
horizontal or vertical asymptotes, or functions that have turning
points but are noticeably asymmetric about that point.

We noted in section 8.1 the close connection between linear
models with constant variance for log Y and multiplicative models
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Fig. 8.4. Plots of various logarithmic functions having asymptotes:
(a) log(p) =1+ 2z + 1/, (b) log(p)=1—2z—~1/z,
(c) log(p) =1+ 2z - 1/, (d) log(p) =1-z+1/z.

with constant coefficient of variation for Y. Suppose that o2 is
sufficiently small so that var(logY) = 02 = var(Y)/u?. In a linear
model for log Y the covariance matrix of the parameter estimates
is UZ(XTX)‘l, where X is the model matrix. For the correspond-
ing multiplicative model the quadratic weight function is exactly
unity, giving cov(8) ~ ¢2(XTX)~! as before. In particular, if
X is the incidence matrix corresponding to an orthogonal design,
so that parameter estimates in the Normal-theory linear model
are independent, then the corresponding parameter estimates in
the gamma-theory multiplicative model are independent asymp-
totically. This property of approximate independence holds for all
generalized linear models whenever the link function is the same
as the variance-stabilizing transform.

The preceding analysis and the discussion in section 8.1 indi-
cate that for small o2 it is likely to be difficult to discriminate
between Normal-theory linear models for log Y and gamma-theory
multiplicative models for Y. Atkinson’s (1982) work confirms this
assertion even for o2 as large as 0.6.



294 DATA WITH CONSTANT COEFFICIENT OF VARIATION

8.3.5 Linear models: identity link

Sums of squares of independent Normal random variables have the
chi-squared or, equivalently, the gamma distribution with known
index w = (degrees of freedom)/2. One method of estimating
variance components is to equate the observed mean squares y;
to their expectations which are linear functions of the unknown
variance components. Thus

i =E(Y;) = injﬁj,

where z;; are known coefficients and g; are the variance compo-
nents. Furthermore if the original data were Normally distributed,

var(¥;) = p Jws,

where w; are known weights equal to one-half the degrees of
freedom of Y¥;. The preceding analysis can equally well be based
on sums of squares rather than on mean squares; the coefficients
z;; would then be replaced by 2w;z;; and weights would be w;
because the coefficient of variation is unaffected by multiplication
of the data by a constant.

If the number of variance components is the same as the number
of mean squares, which is commonly the case, the estimating equa-
tions may be solved directly by inverting the set of linear equations.
The method described above, based on the gamma likelihood, is
required only when the number of independent mean squares ex-
ceeds the number of variance components. A further advantage of
this procedure is that approximate asymptotic variances can be ob-
tained for the estimated variance components. Unfortunately, the
sizes of some of these variances often shows that the corresponding
estimates are almost worthless. Normal-theory approximations for
the distribution of 3s are usually very poor.

The analysis given above is based on the assumption that the
mean-square variables are independent and that the original data
were Normally distributed. Furthermore, negative estimates of
variance components are not explicitly ruled out; these may, how-
ever, sometimes be interpretable (Nelder, 1977). In this respect
weighted least squares is technically different from maximum like-
lihood, which does not permit negative variance components. If
the weighted least-squares estimates turn out to be negative the
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likelihood function attains its maximum on the boundary of the
parameter space corresponding to a zero variance component. The
two methods coincide only if the weighted least-squares estimates
are non-negative.

8.3.6 Estimation of the dispersion parameter

The approximate covariance matrix of the parameter estimates is
cov(B) ~ o*(XTWX)~!, where

W = diag{(du:/dn:)*/V ()}

is the nxn diagonal matrix of weights, X is the nxp model matrix
and o is the coefficient of variation. If a2 is known, the covariance
matrix of 8 may be computed directly; usually, however, it must
be estimated from the residuals. Under the gamma model the
maximum-likelihood estimate of v = o~2 is given by

2n{log ¥ —¢(9)} = D(y; ), (8.1)

where ¥(v) = I"(v)/T(v). A suggested improvement to take
account of the fact that p parameters have been estimated is to
replace the Lh.s. of the above equation by

2n{log & — ¢(9)} —pi~, (8.2)

the correction being the O(1) term in an asymptotic expansion for

E(D(Y; f1)). There is a clear analogue here with the Normal-theory

estimates of variance, 62 and s2. If v is sufficiently large, implying

o? sufficiently small, we may expand (8.1) and (8.2) ignoring terms

of order »~2 or smaller. The maximum-likelihood estimate is then

approximately

D(6+ D)

6 +2D

where D = D(y;f1)/n. A similar approximation can be made

for the bias-corrected estimate: see Exercises 8.11 and 8.12. For

further approximations, see the paper by Greenwood and Durand

(1960) and a series of papers by Bain and Engelhardt (1975, 1977).
The principal problem with the maximum-likelihood estimator,

and in fact with any estimator based on D(y;p), is that it is

1N
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extremely sensitive to rounding errors in very small observations
and in fact D(y; ) is infinite if any component of y is zero. Equally
important is the fact that if the gamma assumption is false, 7!
does not consistently estimate the coefficient of variation. For these
reasons we prefer the moment estimator

o* =Y {w-W/AYn-p) = XY -p), (83

which is consistent for o2, provided of course that B has been
consistently estimated. This estimator for 02 may be used in the
formula o2(XTWX)~! to obtain an estimate of cov(8). Note that,
unlike the usual Normal-theory estimator of variance s2, the bias
of 6% is O(n™!) even if the data are distributed according to the
gamma distribution. The divisor n —p is preferable to n but is not
sufficient to remove the O(n~!) bias. For a single gamma sample
the expected value of 52 is

o1 —a¥n + O(n~2)).

The negative bias is a consequence of the fact that V''(u) > 0.

8.4 Examples

8.4.1 Car insurance claims

The data given in Table 8.1, taken from Baxter et al. (1980, Table
1), give the average claims for damage to the owner’s car for
privately owned and comprehensively insured vehicles. Averages
are given in pounds sterling adjusted for inflation. The number of
claims on which each average is based is given in parallel. Three
factors thought likely to affect the average claim are:

1. policyholder’s age (PA), with eight levels, 17-20, 21-24, 25-29,

30-34, 35-39, 40-49, 50-59, 60+;
2. car group (CG), with four levels, A, B, C and D;
3. vehicle age (VA), with four levels, 0-3, 4-7, 8-9, 10+.

The numbers of claims m;;x on which each average is based vary
widely from zero to a maximum of 434. Since the precision of each
average Yj;i, whether measured by the variance or by the squared
coeflicient of variation, is proportional to the corresponding m;y,
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these numbers appear as weights in the analysis. This means that
the five accidentally empty cells, (1,3,4), (1,4,3), (1,4,4), (2,4,4)
and (5,4,4) for which m = 0, are effectively left out of the analysis.
For computational purposes, however, it is usually more convenient
to retain these cells as observations with zero weight, so that they
make no contribution to the likelihood. The structure of the factors
is then formally that of a complete crossed design.

Baxter et al. analyse the data using a weighted Normal-theory
linear model with weights m;;; and the three main effects PA +
CG + VA. Here we reanalyse the data, making the assumption
that the coefficient of variation rather than the variance is con-
stant across cells. In addition, we make the assumption that the
systematic effects are linear on the reciprocal scale rather than on
the untransformed scale. Justification for these choices is given in
Chapters 10 and 11. The model containing main effects only may
be written

ik = E(Yije) = (po + i + B + ) Y,

var(Yijx) = o ply, /mijk,

where a;, f; and -, are the parameters corresponding to the three
classifying factors PA, CG and VA. One way of interpreting the
reciprocal transform is to think of 7, = 1/p;;x as the rate at
which instalments of £1 must be paid to service an average claim
over a fixed period of one time unit. In other words, 7;; is the
time interval between instalments or the time purchased by an
instalment of £1 in servicing an average claim in cell (i, j, k).

One sequence of models yielded the goodness-of-fit statistics
shown in Table 8.2. Using the result that first differences of the
deviance have, under the appropriate hypothesis, an approximate
scaled chi-squared distribution, it is clear that the model with
main effects only provides a reasonable fit and that the addition of
two-factor interactions yields no further explanatory power. The
estimate of 52 based on the residuals from the main-effects model

is
= 0s. =S in(y — @2/ = L.21,

so that the estimated coefficient of variation of the 1nd1vidual claims
is & = 1.1. Estimates based on the deviance give very similar
values. An examination of approximately standardized residuals

PR
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Table 8.1 Average cost of clatms for own damage (adjusted for inflation)
Jor privately owned, comprehensively insured cars in 1975

Vehicle age

Policy- 0-3 4-7 89 10+
holder’s  Car
age group £  No. £ No. £ No. £ No.

17-20 A 289 8 282 8 133 4 160 1
B 372 10 249 28 288 1 11
C 189 9 288 13 179 1 — 0
D 763 3 80 2 — 0 — 0
21-24 A 302 18 194 31 135 10 166 4
B 420 59 243 96 196 13 135 3
C 268 44 343 39 293 7 104 2
D 407 24 320 18 205 2 — 0
25-290 A 268 56 285 55 181 17 110 12
B 275 125 243 172 179 36 264 10
C 334 163 274 129 208 18 150 8
D 383 72 305 50 116 6 636 1
30-3¢ A 236 43 270 53 160 15 110 12
B 259 179 226 211 161 39 107 19
C 340 197 260 125 189 30 104 9
D 400 104 349 55 147 8 65 2
35-39 A 207 43 129 73 157 21 113 14
B 208 191 214 219 149 46 137 23
C 251 210 232 131 204 32 141 8
D 233 119 325 43 207 4 — 0
40-49 A 254 90 213 98 149 35 98 22
B 218 380 209 434 172 97 110 59
C 239 401 250 253 174 50 129 15
D 387 199 299 88 325 8 137 9
50-59 A 251 69 227 120 172 42 98 35
B 196 366 229 353 164 95 132 45
C 268 310 250 148 175 33 152 13
D 391 105 228 46 346 10 167 1
60+ A 264 64 198 100 167 43 114 53
B 224 228 193 233 178 73 101 44
C 269 183 258 103 227 20 119 6
D 385 62 324 22 192 6 123 6
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Table 8.2 Goodness-of-fit statistics for a sequence of models fitted to the
car insurance data (error gamma; link reciprocal)

First Mean
Model Deviance difference  d.f. deviance
1 649.9
82.2 7 11.7
PA 567.7
228.3 3 76.1
PA + CG 339.4
214.7 3 71.6
PA + CG + VA 124.8
34.0 21 1.62
+ PA . CG 90.7
19.7 21 0.94
+ PA - VA 71.0
5.4 9 0.60
+ CG - VA 65.6 65.6 53 113
Complete 0.0

using the formula /m(y — 4)/(Jft) shows the six most extreme
residuals as corresponding to observations (2,2,1), (3,2,4), (3,4,4),
(5,1,2), (5,4,1) and (7,2,1) with values 3.4, 3.2, 2.8, —2.6, —2.2
and —2.5. The corresponding standardized deviance residuals are
3.0, 24, 1.8, -3.0, —2.3 and —2.7. The positions of these cells
do not show any obvious pattern, and the magnitudes of the most
extreme residuals are only moderately large in view of the sample
size, which is effectively 109. With a Normal sample of this size
one expects the most extreme standardized residuals to be about

+2.5.

Table 8.3 Parameter estimates and standard errors (x10%) on reciprocal
scale for main effects in car insurance example

Age group Car group Vehicle age
Level (PA) (CG) (VA)

1 0 () 0 () 0 (—)
2 101 (436) 38 (169) 336 (101)
3 350 (412) -614 (170) 1651 (227)
4 462 (410) ~1421 (181) 4154 (442)
5 1370 (419)
6 970 (405)
7 916 (408)
8 920 (416)

Parameter estimates for the main-effects model are given in
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Table 8.3. Standard errors are based on the estimate & = 1.1.
The estimate for the intercept corresponding to all factors at
their lowest level is 3410 x 1075. Bearing in mind that the
analysis is performed here on the reciprocal scale and that a large
positive parameter corresponds to a small claim, we may deduce the
following. The largest average claims are made by policyholders in
the youngest four age groups, i.e. up to age 34, the smallest average
claims by those aged 35-39, and intermediate claims by those aged
40 and over. These effects are in addition to effects due to type of
vehicle and vehicle age. The value of claims decreases with car age,
although not linearly. There are also marked differences between
the four car groups, group D being the most expensive and group
C intermediate. No significant difference is discernible between car
groups A and B.

It should be pointed out that the parameter estimates given here
are contrasts with level 1. In a balanced design the three sets of
estimates corresponding to the three factors would be uncorrelated
while the correlations within a factor would be 0.5. Even where, as
here, there is considerable lack of balance, the correlations do not
deviate markedly from these values.

It is possible to test and quantify the assertions made above by
fusing levels 1-4, levels 6-8 of PA and levels 1 and 2 of CG. The
deviance then increases to 129.8 on 116 d.f., which is a statistically
insignificant increase.

The preceding analysis is not the only one possible for these
data. In fact a multiplicative model corresponding to a logarithmic
link function would lead to similar qualitative conclusions. As is
shown in Chapter 10, the data themselves support the reciprocal
model better but only marginally so, and it might be argued
that quantitative conclusions for these data would be more readily
stated and understood for a multiplicative model.

8.4.2 Clotting times of blood

Hurn et al. (1945) published data on the clotting time of blood,
giving clotting times in seconds (y) for normal plasma diluted
to nine different percentage concentrations with prothrombin-free
plasma (u); clotting was induced by two lots of thromboplastin.
The data are shown in Table 8.4. A hyperbolic model for lot 1 was
fitted by Bliss (1970), using an inverse transformation of the data,
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and for both lots 1 and 2 using untransformed data. We analyse
both lots using the inverse link and gamma errors.

Initial plots suggest that a log scale for u is needed to produce
inverse linearity, and that both intercepts and slopes are different
for the two lots. This claim is confirmed by fitting the following
model sequence:

Model Deviance d.f.
1 7.709 17
X 1.018 16
L+X 0.300 15
L+ LX 0.0294 14

Here £ = logu and L is the factor defining the lots. Clearly
all the terms are necessary and the final model produces a mean
deviance whose square root is 0.0458, implying approximately a
4.6% standard error on the y-scale. The two fitted lines, with
standard errors for the parameters shown in parentheses, are

lot 1:  4~!=—0.01655(£0.00086) + 0.01534(0.00143)z
lot 2: A~ = —0.02391(£0.00038) + 0.02360(-0.00062)x

The plot of the Pearson residuals (y — fi)/j against the linear
predictor % is satisfactory, and certainly better than either (i) the
use of constant variance for Y where the residual range decreases
with # or (ii) the use of constant variance for 1/Y where the
analogous plot against £ shows the range increasing with . Note
that constant variance for 1/Y implies (to the first order) var(Y) x
pt. Thus the assumption of gamma errors (with var(Y) o p?)
is ‘half-way’ between assuming var(Y) constant and var(1/Y)
constant.

The estimates suggest that the parameters for lot 2 are a
constant multiple (about 1.6) of those for lot 1. If true this
would mean that pm, = ku,, where the suffix denotes the lot.
This model, though not a generalized linear model, has simple
maximum-likelihood equations for estimating «, 3 and k where

u=1/ny, 7, = a+ fx,
By =kpy.
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Table 8.4 Mean clotting times in seconds (y) of
blood for nine percentage concentrations of normal
plasma (u) and two lots of clotting agent

Clotting time

u Lot 1 Lot 2
5 118 69
10 58 35
15 42 26
20 35 21
30 27 18
40 25 16
60 21 13
80 19 12
100 18 12

These are equivalent to fitting a and 8 to data y; and y,/k,
combined with the equation > (y2/p1 — &) = 0. The resulting
fit gives & = 0.625 with deviance = 0.0332 and having 15 d.f.
Comparing this with the fit of separate lines gives a difference
of deviance of 0.0038 on one degree of freedom against a mean
deviance of 0.0021 for the more complex model. The simpler model
of proportionality is not discounted, with lot 2 giving times about
five-eighths those of lot 1.

8.4.3 Modelling rainfall data using two generalized linear models

Histograms of daily rainfall data are usually skewed to the right
with a ‘spike’ at the origin. This form of distribution suggests
that such data might be modelled in two stages, one stage being
concerned with the pattern of occurrence of wet and dry days,
and the other with the amount of rain falling on wet days. The
first stage involves discrete data and can often be modelled by
a stochastic process in which the probability of rain on day ¢
depends on the history of the process up to day ¢t — 1. Often,
first-order dependence corresponding to a Markov chain provides
a satisfactory model. In the second stage we require a family of
densities on the positive line for the quantity of rainfall. To be
realistic, this family of densities should be positively skewed and
should have variance increasing with gz. The gamma distribution
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has been found appropriate in this context, although the log-
Normal distribution is also widely used.

(a) Modelling the frequency of wet days. Coe and Stern (1982,
1984) describe the application of generalized linear models and give
references to earlier work. The data for n years form an n x 365
table of rainfall amounts. (We ignore the complications introduced
by leap years.) Considering the years as replicates, each of the n
observations of day ¢ is classified by the double dichotomy dry/wet
and previous day dry/previous day wet. Combining over replicates
we obtain, for each of the 365 days, a 2 x 2 table of frequencies
having the form of Table 8.5.

Table 8.5 The 2 x 2 table of frequencies for rainfall data on day t

Today
Wet Dry Total
Yesterda Wet bo o ~ Yo "o
y Dry Y1 niy— Y ni
Total Y. n.—y. n.=n

Let mo(t) be the probability that day ¢ is wet given that day
t — 1 was wet: m(t) is the corresponding probability given that
day t — 1 was dry. Ignoring end effects, the likelihood for the first-
order Markov model is the product over ¢ of terms having the form

mo(t)¥°[1 — mo()]"0T¥omy (¥ [1 — m ()™ 7.

In other words each 2 x 2 table corresponds to two independent
binomial observations in which the row totals are regarded as fixed.

Note that in the above 2x2 table for day ¢, ng is the number
of occasions on which rain fell on day ¢t — 1 in the years 1,...,n,
whereas y. is the number of occasions on which rain fell on day
t. Evidently therefore, in an obvious extension of the notation,
no(t+1) = y.(2).

If the target parameter were the difference between my(t) and

7T1(t), say

¥(t) = mo()[L — my ()]/{m1(t)(1 — mo(t))},
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it would often be preferable to construct a likelihood function
depending on (t) alone. The hypergeometric likelihood described
in section 7.4 can then be used. In this application, however, we
would usually be interested in models for 7(t) and 7 (¢) themselves
and not just in the difference between them.

Coe and Stern use linear logistic models with various explana-
tory terms. Obvious choices for cyclical terms are the harmonics
sin(27t/365), cos(27t/365), sin(4nt/365), cos(4nt/365), and so on.
The simplest model corresponding to the first harmonic would be

logit(mo(t)) = o + a1 sin(27t/365) + Fo1 cos(2mt/365),
logit(m1(t)) = a1 + @11 sin(27t/365) + 51 cos(2wt/365),

which involves six parameters. Note that if the coefficients of the
harmonic terms are equal (ag; = @11, 801 = Bi1), the odds ratio 1n
favour of wet days is constant over t.

If there is a well defined dry season, a different scale correspond-
ing to some fraction of the year might be more appropriate.

Various extensions of these models are possible: a second-order
model would take account of the state of the two previous days,
producing four probabilities to be modelled. If it is suspected that
secular trends over the years are present it is important not to
regard the years as replicates. Instead, we would regard the data
as 356n Bernoulli observations indexed by day, year and previous
day wet/dry. The computational burden is increased but no new
theoretical problems are involved.

(b) Modelling the rainfall on wet days. Coe and Stern use
a multiplicative model with gamma-distributed observations to
model the rainfall on wet days. The idea is to express log[u(t)]
as a linear function involving harmonic components. Here u(t) is
the mean rainfall on day ¢ conditional on day ¢ being wet. If it is
assumed that no secular trends are involved, the analysis requires
only the means for each day of the period with the sample sizes
entering the analysis as weights. The introduction of secular trends
involves the use of individual daily values in the analysis. The
assumption of constant coefficient of variation requires checking.
The simplest way is to group the data into intervals based on
the value of i and to estimate the coefficient of variation in each
interval. Plots against i should reveal any systematic departure
from constancy.
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(c) Some results. Coe and Stern present the results of fitting
the models described above to data from Zinder in Niger spanning
30 years. The rainy season lasts about four months so that data
are restricted to 120 days of the year. Table 8.6 shows the results
of fitting separate Fourier series to mo(t) and m1(t) in a first-order
Markov chain. Each new term adds four parameters to the model,
a sine and cosine term for each 7.

Table 8.6 Analysis of deviance for a first-order Markov chain. Rainy
days in reinfall data from Niger

First Mean
Model Deviance difference d.f. deviance
Intercept 483.1 — 238
+1st harmonic 260.9 222.2 4 55.6
+2nd harmonic 235.6 25.3 4 6.3
+3rd harmonic 2314 4.2 4 1.05
+4th harmonic 227.7 3.7 4 0.9

By including a sufficient number of harmonic terms in the model,
the mean deviance is reduced to a value close to unity, indicating a
satisfactory fit. The reductions for the third and fourth harmonic
are clearly insignificant. Thus a first-order non-stationary Markov
chain, with two harmonic terms for the time-dependence of the
transition probabilities, is adequate for these data. This model
contains a total of 10 parameters for the transition probabilities.

Table 8.7 Analysis of deviance of rainfall amounts. Data from Niger

Mean
Model Deviance d.f. deviance
Constant 224.6 119
+1st harmonic 154.5 117
+2nd harmonic 147.0 115 1.28
Within days 1205.0 946 1.27

The results of fitting models with gamma errors and log link for
the rainfall amounts are shown in Table 8.7. Again two harmonics
suffice in the sense that their inclusion reduces the between-day
deviance to that within days. The mean deviance within days over
years constitutes a baseline for the analysis between days, and its
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size (little more than 1) indicates a distribution of rainfall amounts
on wet days that is close to exponential.

This analysis is based on the simplifying assumption that the
probability of rain occurring on day t depends only on whether
rain fell on day ¢t — 1, but not otherwise on the amount of rain.
The decomposition into two independent generalized linear models
depends heavily on this assumption. It is at least plausible,
however, that the occurrence of rain on day ¢ depends on whether
or not it rained heavily on the previous day. Dependence of this
nature can be checked by including in the logistic model for my(%)
the amount of rainfall (log units) on the previous day.

8.4.4 Developmental rate of Drosophila melanogaster

The data shown in Table 8.8 were collected by Powsner (1935)
as part of an experiment to determine accurately the effect of
temperature on the duration of the developmental stages of the
fruit fly Drosophila melanogaster. Powsner studied four stages in
its development, namely the embryonic, egg-larval, larval and pupal
stages: only the first of these is considered here.

In all cases the eggs were laid at approximately 25°C and
remained at that temperature for 20-30 minutes as indicated in
the final column. Subsequently the eggs were brought to the
experimental temperature, which was kept constant over the period
of the experiment. Column 3 gives the average duration of the
embryonic period measured from the time at which the eggs were
laid. The number of eggs in each batch, together with the sample
standard deviation of each batch, are shown in columns 4 and 5.

Figure 8.5 shows the batch standard deviations plotted against
the batch means. Evidently, with the exception of the point
at 32°C, the standard deviations are roughly proportional to the
mean. A more formal weighted log-linear regression of the sample
variances on the log of the sample means, with weights equal to
the degrees of freedom, gives the fitted equation

log(sample variance) ~ —9.29 + 2.58 log(sample mean),
suggesting a power relationship for the variance function with index

in the range 2-3. In what follows, we assume that V(u) = pZ,
implying that the coefficient of variation is constant. In other
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Table 8.8 Mean duration of embryonic period in the development of
Drosophila melanogaster

Eggs laid at

Temp. Exp. Duration Batch Std. Temp Duration
C No. (hours) size  dev. C (hours)
14.95 25 67.5 +£0.33 54 2.41 25.1 0.33

16.16 44  57.1 +0.12 182 2.28 25.0 0.50
16.19 26 56.0 +0.12 153 1.46  25.1 0.33
17.15 28 484 +0.12 129 1.40 25.1 0.50
18.20 25 41.2 £0.16 64 1.30 25.1 0.33
19.08 33  37.80£0.059 94 0.57 25.1 0.50
20.07 28  33.33 £ 0.080 82 0.73 25.1 0.33
22.14 25 26.50 £+ 0.083 57 0.63 25.1 0.33
23.27 28 24.24 £0.038 135 0.44 25.1 0.50
24.09 33 22.44 +£0.029 188 0.40 25.1 0.50
24.81 42 21.13 £ 0.017 217 0.36 25.0 0.50
24.84 40 21.05 £ 0.027 141 0.46 25.0 0.50
25.06 27 20.39 £ 0.064 37 038 251 0.50
25.06 27 20.41+£0.037 84 0.34 25.1 0.50
25.80 26 19.45 £ 0.026 196 0.36 25.1 0.33
26.92 33 18.77 £ 0.029 104 0.30 25.1 0.50
27.68 26 17.79 £ 0.041 148 0.49 25.1 0.33
28.89 29 17.38 £ 0.043 83 0.39 25.1 0.25
28.96 40 17.26 £ 0.031 95 0.43 25.0 0.50
29.00 44 17.18 + 0.023 232 0.50 25.0 0.50
30.05 26 16.81 £ 0.032 148 039 25.1 0.33
30.80 26 16.97 £ 0.028 195 0.39 25.1 0.33
32.00 33 18.20 £ 0.290 58 2,23  25.1 0.50

Source: Powsner (1935).

words, the squared coefficient of variation of the batch means is
assumed to be inversely proportional to the batch size. A similar
analysis gives 0.0267 as a combined estimate of the coeflicient of
variation of the individual egg durations, ignoring the batch at
32°C.

The greatly increased variance for the batch of eggs maintained
at 32°C suggests either that the tight experimental control was
relaxed for this batch or, more plausibly, that the biochemistry of
development at such an elevated temperature differs in important
ways from the biochemistry at lower temperatures. One possibility
is that the smaller eggs may suffer stress from dehydration at such
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Fig. 8.5. Plot of standard deviations against sample means for 23 batches
of eggs. The outlying point corresponds to the highest temperature.
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Fig. 8.6. Observed average duration of embryonic period plotted against
temperature (circles). The curve was fitted using gamma errors, log link
and weighted by sample size.

temperatures.

Figure 8.6 shows the observed mean durations plotted against
temperature. Evidently the observed points lie very close to a
smooth curve, which may have a minimum at around 29-31°C. To a
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large extent the evidence for a minimum rather than an asymptote
rests on the observation at 32°C. However, it seems clear on general
grounds that if the temperature is sufficiently high the eggs must
begin to suffer, so that an eventual increase in duration is to be
expected.

One of Powsner’s objectives was to test whether the rates of
complex biochemical reactions obey the laws that are known to
govern simple chemical reactions. Arrhenius’s law for the rate of
simple chemical reactions is

lograte = —u/(RT),

where p is the ‘critical chemical increment’ for the reaction, R is the
gas constant, and T is the absolute temperature. Since the reaction
rate is inversely proportional to its duration, the Arrhenius model
predicts a linear relationship in the graph of log(duration) against
the reciprocal of absolute temperature. The observed graph for
these data, however, is manifestly non-linear even when the point
at 32°C is excluded. Consequently the simple Arrhenius model is
unsatisfactory, even over small temperature ranges, as a description
of the rate of development of Drosophila melanogaster.

Since the Arrhenius model is not even a close approximation
to what is observed experimentally, it is necessary to proceed
empirically without the support of tested theories. In what follows
we treat the observed duration as the response having a squared
coeflicient of variation inversely proportional to the batch size. In
all regression equations, therefore, each batch mean is weighted
according to the batch size. This choice of response is not the
only possibility: we could, for example, work with the observed
duration minus the duration of the egg-laying period. The latter
adjustment is rather small and is likely to have a very minor effect
on the conclusions.

It is possible to obtain a reasonably good fit to the observed data
by using cubic or quartic polynomials for the logarithmic reaction
rate, i.e. using gamma errors with log link. However it seems
worthwhile in this example to consider functions of temperature
that have asymptotes. It is known for example that no devel-
opment takes place below a certain critical temperature. There
is undoubtedly a corresponding upper limit. Thus we are led to
consider rational functions of temperature, the simplest of which is

Bo+ BT + B-1/(T - 6). (8.4)
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This can be expressed as a rational function in 7' whose denomi-
nator is linear and numerator quadratic. It is immaterial in (8.4)
whether T is measured in °C, F or K.

So far we have not stated whether (8.4) is to be considered as a
model for the rate, the log rate, or the duration of the embryonic
period. These choices amount to different choices of link functions,
namely the reciprocal, logarithm and identity respectively. The
model is linear in B for each fixed 6. For a simple comparison
among the three link functions, therefore, we take § = 0. The
deviances are 5.97 for the reciprocal, 2.77 for the logarithm and
0.473 for the identity. Among these three choices, the identity link
is strongly preferred and the fit is surprisingly good. It is visually
indistinguishable from the curve plotted in Fig. 8.6.

Choosing § = 0 amounts to stating a preference for the Celsius
scale over the Kelvin and Fahrenheit scales. Treating 6 as a free
parameter leaves the choice of scale in the hands of the data. The
best-fitting linear model has 6 ~ 0.6°C. The best-fitting log-linear
model has é ~ 58.6°C, as can be seen from Fig. 8.8a, while the
best-fitting inverse-linear model has 6 ~ 33.5°C. The corresponding
deviances are 0.47, 0.32 and 1.41 respectively. The log-rational
fitted curve is shown in Fig. 8.6. Parameter estimates and nominal
standard errors are shown in the table below.

Parameter estimates in the log-rational model (8.4)

Parameter  Estimate s.e.
Bo 3.201 1.594
b1 —0.265 0.0355
B-1 ~217.08 125.21
é 58.644 6.48

The estimated minimum duration or maximum rate of embryonic
development occurs at

T=6- (6.1/B1)" = 30.01°C.
The residual coefficient of variation is estimated as
& = (0.32/19)2 = (0.0168)2 = 0.13,

or 13%. This is the estimated coeflicient of variation for the
duration of the embryonic period of individual eggs. The estimated
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coefficient of variation of the batch means is then 0.13/,/m;, where
m; is the batch size. Despite the exceptionally good fit obtained
using this class of functions, the between-batch residual variation,
as measured by the coefficient of variation, is substantially larger
than the within-batches coefficient of variation. From columns 3
and 5 in Table 8.8, the within-batches coefficient of variation of
the individual egg durations is estimated as approximately 2.7%.
Thus the ratio of the between- to within-batch squared coefficient
of variations is about 23:1. If a reasonable allowance were made
for model selection, this ratio would be even larger.

It would appear, therefore, that apart from the temperature
differences there must have been other unrecorded differences in ex-
perimental conditions from batch to batch, for example differences
in humidity, lighting conditions, temperature ranges, ventilation
and so on.

2[-Residual
- °° o
[+]
1..
[+]
[+]
i [+]
PR °
0 : : 5
L ° o
[+]
[+]
_1_ [+] ° [+]
[+]
2 L 1 1 1 i N | 1 i 1 Iol 1 L 1 1
728 3.0 3.2 3.4 3.6 3.8 4.0 4.2

Fitted duration (log hrs)

Fig. 8.7. Plot of deviance residuals for model (8.4) against log fitted
values for 23 batches of eggs.

So far as the gamma assumption is concerned it is the constancy
of the between-batches coefficient of variation and not the within-
batch coefficient of variation that is relevant for model-fitting
purposes. From that point of view, the diagram in Fig. 8.5 is
irrelevant in deciding whether the variance function is quadratic.
In order to test whether the between-batches coefficient of variation
is constant, we examine the plot of the standardized deviance
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residuals plotted against fitted values (Fig. 8.7). These deviance
residuals, including the weights, are given by

& [2u, {log(ys/ ) — (vs — )/ )] "/,

where ¢ = 0.13 is the estimated between-batches coefficient of
variation.

If the between-batches variance function is indeed quadratic, this
residual plot should look like an ordinary Normal-theory residual
plot. In fact all five residuals corresponding to fitted values in
the range 25-50 are small but negative, so there is evidence of
a small but systematic departure from the fitted model. However
there is no evidence that the dispersion of the residuals increases or
decreases systematically with the fitted values. Thus the between-
batches coefficient of variation appears to be constant or nearly
$0.

0.5 4{Deviance e
4 A
0.4 .
0.3 ) 1/(6-T)
. 60 80 100 120 140 0.01 0.02 0.03 0.04 0.05

Fig. 8.8. The deviance function for model (8.4) plotted against 6 and
against 1/(6 — T).

An awkward aspect of intrinsically non-linear models such as
(8.4) is that Normal-theory approximations for the distribution
of maximum-likelihood estimators may not be very accurate un-
less care is taken to make an appropriate transformation of the
parameter. In particular, the distribution of § in (8.4) is notice-
ably non-Normal and accurate confidence intervals based on the
deviance function are noticeably asymmetric. Figure 8.8a shows
the residual deviance plotted against ¢ for values of § in the range
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45-150. Figure 8.8b shows the residual deviance plotted against
¢ = 1/(6—T) over the equivalent range. Evidently, likelihood-based
confidence limits for ¢ are nearly symmetrically located about f , 80
that Normal-theory approximations for { are more accurate than
Normal-theory approximations for §. Note that the transforma-
tion § — ( takes § = *oo to ( = 0. The likelihood function is
continuous in ¢ at this point.

For more complicated non-linear models such simplifying param-
eter transformations may not be easy to construct. In such cases it
is necessary to plot the deviance function or log-likelihood function
in order to obtain reasonably accurate confidence intervals.

The foregoing discussion presupposes the correctness of the
assumed model. In this example, however an equally good fit to the
observed points can be obtained using a polynomial model of degree
four in place of (8.2), retaining the log link and the assumption of
constant coefficient of variation. These two models are equally
effective over the range of temperatures observed but they exhibit
rather different behaviour on extrapolation. Since the coefficient
of variation for these data is so small, an equally effective analysis
could be based on the logarithmic transformation of the observed
durations.

From the point of view of gaining insight into the biochemistry,
neither model (8.4) nor the polynomial model is very helpful. The
biochemical mechanism of egg development appears to be rather
complicated: a sequence or network of dependent biochemical
reactions is likely to be involved. Furthermore, this experiment
gives no information on the likely duration of development if the
temperature were changed after, say, 5 hours. Powsner (p. 506)
discusses the effects of such changes, which are quite complicated.

For a more recent review of the role of Drosophila melanogaster
as an experimental organism, see the review article by Rubin (1988).

8.5 Bibliographic notes

There is an extensive literature on models for exponentially dis-
tributed observations. Such models are widely used for the distri-
bution of lifetimes in industrial reliability experiments. See, for
example, the books by Barlow and Proschan (1965, 1975) and
Nelson (1982).
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Similar models are used for survival analysis: details and further
references are provided in Chapter 13.

The family of inverse linear models was introduced by Nelder
(1966).

The gamma family, as parameterized here, has many properties
in common with the Normal family. In particular, for a single
sample, it is possible to construct exact similar regions for compos-
ite hypotheses specifying u. Exact confidence intervals for u can
thereby be constructed, at least in principle. In practice the exact
computations are excessively complicated for samples larger than
about 3 or 4. For further details and references see Exercise 8.16.

8.6 Further results and exercises 8

8.1 Show that the standard deviation of log(Y") is approximately
equal to the coefficient of variation of Y. Check numerically the
adequacy of the approximation in the two cases

Y ~G(p,v) and log(Y)~ N(p,o?)

for v =1,2,... and for various values of o2.

8.2 Show that the gamma distribution has cumulant generating

function
K(t) = —vlog(1 — ut/v).

Hence deduce that for large v, the standardized random variable
vY2(Y — p)/p is approximately distributed as N(0,1).

8.3 Assuming that Y has the gamma distribution, calculate the
exact mean and variance of log(Y’). Use the Tables in Abramowitz
and Stegun (1970) to compare numerically these exact calculations
with the approximate formulae in section 8.1.

8.4 Suppose that Y7,...,Y,, are independent and identically dis-
tributed with the gamma density G(u,v). Show that Y =Y, /n is
independent of T = (Y1/Y.,...,Y,/Y.), and that the latter statistic
has the symmetric Dirichlet distribution with index v.

8.5 Show that for a simple random sample from the gamma
distribution, the maximum-likelihood estimates of u and v are
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independent. Derive the conditional maximum-likelihood estimate
of v given Y, = y.. Compare this estimate with (8.2).

8.6 Fit the log-linear model
PA +CG+ VA

to the insurance-claims data in Table 8.1. Use gamma errors and
weight the averages according to the sample sizes. Examine the
parameter estimates and state the conclusions to be drawn from
your analysis as concisely as you can. Compare and contrast your
conclusions with those presented in section 8.4.1.

8.7 For the data in Table 8.7 plot the log duration against the
reciprocal of absolute temperature. Hence verify that the simple
Arrhenius model does not fit these data.

8.8 Re-analyse the data in Table 8.7 using polynomials in place
of (8.4). Try a number of link functions. Plot the residuals against
temperature as a check on your model. Estimate the temperature
at which the rate of development is a maximum.

8.9 Check whether the model described in section 8.4.4 might
be improved by taking the response to be the time spent at the
experimental temperature as opposed to the total duration of the
embryonic period.

8.10 The data shown in Tables 8.9 and 8.10 were collected by
Powsner (1935) in his study of the effect of temperature on the
duration of the developmental stages of the fruit fly Drosophila
melanogaster. In the light of the analyses suggested in section
8.4.4 for the embryonic period, examine carefully how the rates of
development for the egg-larval, larval and pupal periods depend
on temperature. What evidence is there of a maximum rate of
development? Do the maximum developmental rates occur at the
same temperature for each developmental stage? Check carefully
whether there is any difference between the developmental rates for
males and females, and if so, whether the difference is temperature-
dependent.

8.11 By using the asymptotic expansion for 1(v), show that the
maximum-likelihood estimate ¥ in (8.1) is given approximately by

D(6 + D)
6 + 2D

~o

1
1
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Table 8.10 Mean duration of pupal period in the development of the
fruit-fly Drosophila melanogaster

Male Female Diff.

Temp.
°C Hours + s.e. No. o Hours £ s.e. No. o M.-F.

15.24 3205 +045 228 6.72 309.5 +0.42 227 6.30 +11.0
16.17  266.7 +0.30 76 2.62 2590 +0.24 186 3.16 +7.7
18.01 204.4 +0.28 97 2.78 1953 +0.26 76 2.26 +9.1
1805 2044 +0.15 178 2.06 197.0 +0.14 174 1.81 +7.4
18.21 199.2 +0.22 83 2.01 1922 +0.29 84 2.67 +7.0
19.32 1706 +0.17 120 1.87 164.7 +0.10 126 1.12 +5.9
1997 160.1 +£0.21 125 240 152.2 +0.33 138 3.86 +7.9
22.00 1265 +£0.13 195 179 1214 +0.14 182 191 +5.1
22.21 124.04£0.089 138 1.05 120.70+0.082 152 1.01 +3.34
22.99 115.62+0.089 153 1.09 113.08+0.074 215 110 +2.58
24.17 1024 +0.14 140 1.64 98.65 +£ 0.074 185 1.02 +3.75
24.57 100.51+0.080 238 1.25 96.78 £0.065 229 1.00 +3.73
25.14 96.51 + 0.044 967 1.37 93.55 + 0.042 1018 1.35 +2.96
25.29 96.40+0.096 99 0.96 92.23 £0.15 118 1.59 +4.17
25.99 92.24 + 0.060 342 1.12 90.20 £ 0.058 298 1.01 +2.04
26.89 87.23 £0.075 185 1.02 82.56 +0.069 203 0.99 +4.67
27.77 80.0 +0.11 120 1.21

28.07 83.2 *0.16 72 1.38 78.6 +0.13 64 1.07 +4.6
28.99 80.9 *0.11 85 0.99 76.2 £0.12 82 1.08 +4.7
29.47 80.6 +0.12 77 1.05 75.8 +£0.11 70 0.92 +4.8
29.98 81.3 +0.11 233 1.68 77.1 +0.10 246 1.60 +4.2
30.24 82.0 £0.13 141 150 78.5 £0.12 161 1.50 +3.5
31.04 82.7 +0.17 73 14 79.3 22 +3.4

Source: Powsner (1935).

where D = D(y; j1)/n. Find the expected value of D for an i.i.d.
sample from the exponential distribution. Solve the above equation
to find the approximate expected value of 7 when v = 1.

8.12 Show that the corresponding approximation for the bias-
corrected estimate is

N Dﬁ(n — p) + nD)

"~ 6(n—p)+2nD

T =

where D = D(y; x)/(n — p).

8.13 The data in Table 8.11 were obtained by Drs Streibig and
Vleeshouwers in an experiment designed to study how the yields
of various crops are affected by competition with weeds and by
plant density. Taking the fresh weights as response, examine the
relationship between the monoculture yields and seed density. (In
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Table 8.11

DATA WITH CONSTANT COEFFICIENT OF VARIATION

Yields of barley and the weed Sinapis alba grown in a
competition experiment

Seeds sown

Plants harvested Fresh weight

Pot Barley Sinapis Block Barley Sinapis Barley Sinapis Barley Sinapis

1 3

2 5

3 7

4 10

5 15

6 23

7 34

8 51

9 77
10 115
11 0
12 3
13 7
14 15
15 34
16 77
17 0
18 0
19 3
20 7
21 15
22 34
23 77
24 0
25 0
26 3
27 7
28 15
29 34
30 77
31 0
32 0
33 3
34 7
35 15
36 34
37 77
38 0
39 0
40 3
41 7
42 15
43 34
44 77
45 0

0
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33.7
120.5
187.3
110.1
122.7
214.9
198.6
263.6
254.1
230.4

0.0

14.8

38.1

93.1
120.8
214.5

0.0
0.0

15.2

37.6

93.3

98.6
203.9

0.0
0.0
7.5

18.8

64.7

84.3
125.8

0.0
0.0
3.3
215
26.4

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
254.0
167.6
240.5
132.6
166.9
53.2
228.3
209.8
220.1
203.0
130.5
178.5
81.5
214.4
269.3
272.2
220.1
175.8
240.3
135.5
267.4
244.6
332.0
264.9
221.5
230.1
184.0
291.9
300.3
284.9
243.7
287.9
233.0
189.2
326.4

Dry weight
2.07 0.00
10.57 0.00
20.87 0.00
6.59 0.00
8.08 0.00
16.70 0.00
21.22 0.00
26.57 0.00
23.71 0.00
20.46 0.00
0.00 34.85
1.49  29.49
2.26 19.75
11.08 23.09
12.85  25.83
24.94 8.76
0.00 38.98
0.00 28.14
1.63 3543
2.80 29.05
6.29 17.36
7.81  23.30
19.51 12.45
0.00 36.02
0.00 47.24
1.06 49.14
1.83 3585
9.35 30.05
9.75  36.46
14.29  19.87
0.00 38.23
0.00 31.75
0.34 35.68
2.11 3795
1.89  25.78
3.97  39.97
7.60 24.42
0.00 45.56
0.00 43.94
0.13  29.39
0.55 33.44
0.95 35.68
2.07 21.53
10.14  24.02
0.00 35.24

(continued)
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Table 8.11 Continued

Seeds sown Plants harvested Fresh weight  Dry weight
Pot Barley Sinapis Block Barley Sinapis Barley Sinapis Barley Sinapis
46 3 0 2 3 0 73.1 0.0 5.32 0.00
47 5 0 2 5 0 152.7 0.0 13.59 0.00
48 7 0 2 7 0 125.4 0.0 9.97 0.00
49 10 0 2 10 0 208.9 0.0 21.40 0.00
50 15 0 2 15 0 171.5 0.0 11.07 0.00
51 23 0 2 19 0 98.7 0.0 6.66 0.00
52 34 0 2 27 0 191.8 0.0 14.25 0.00
53 51 0 2 41 0 238.7 0.0 39.37 0.00
54 77 0 2 49 0 197.2 0.0 21.44 0.00
55 115 0 2 72 0 256.4 0.0 30.92 0.00
56 0 5 2 0 5 0.0 2273 0.00 32.61
57 3 5 2 3 5 28.9 246.3 1.66  34.18
58 7 5 2 8 5 42.3  230.0 3.62 33.63
59 15 5 2 15 5 82.9 156.1 10.41 27.06
60 34 5 2 28 5 116.7 125.9 10.46 19.99
61 77 5 2 57 5 187.7 55.8 23.10 9.01
62 0 7 2 0 7 0.0 231.5 0.00 34.20
63 0 10 2 0 10 0.0 258.8 0.00 44.47
64 3 10 2 3 10 25.8 245.1 2,88 38.13
65 7 10 2 7 11 41.6  185.8 5.32 33.31
66 15 10 2 14 11 67.7 174.3 11.10 32.49
67 34 10 2 33 11 86.0 177.9 9.16  29.20
68 77 10 2 65 10 162.3 75.0 23.18 12.52
69 0 15 2 0 15 0.0 237.6 0.00 40.32
70 0 23 2 0 29 0.0 2259 0.00 37.46
71 3 23 2 3 29 9.8 274.0 0.76  46.68
72 7 23 2 6 27 27.7 2214 196  34.40
73 15 23 2 13 23 30.2  246.0 4.19  45.07
74 34 23 2 24 25 110.0 1479 11.34 22.75
75 77 23 2 56 24 85.7 185.4 10.39 30.38
76 0 34 2 0 34 0.0 281.0 0.00 43.76
7 0 51 2 0 51 0.0 3189 0.00 40.25
78 3 51 2 5 54 6.8  309.5 0.12 45.80
79 7 51 2 7 51 12,1 254.2 026 29.29
80 15 51 2 13 51 28.5  226.8 232 31.28
81 34 51 2 25 52 55.4 1953 5.73 29.61
82 77 51 2 49 50 109.7 179.0 8.61 20.14
83 0 77 2 0 76 0.0 304.7 0.00 38.94
84 0 115 2 0 101 0.0 313.5 0.00 43.36
85 3 115 2 3 99 10.6  249.2 0.97 36.54
86 7 115 2 10 109 7.4 2559 0.01 31.80
87 15 115 2 16 97 17.9 170.9 1.05 24.96
88 34 115 2 22 105 38.1 270.9 3.65 38.52
89 77 115 2 47 97 52.5 266.6 6.40 38.91
90 0 173 2 0 148 0.0 279.2 0.00 39.35

(continued)
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Table 8.11 Continued

DATA WITH CONSTANT COEFFICIENT OF VARIATION

Seeds sown Plants harvested Fresh weight Dry weight
Pot Barley Sinapis Block Barley Sinapis Barley Sinapis Barley Sinapis
91 3 0 3 3 0 42.9 0.0 3.14 0.00
92 5 0 3 5 0 165.9 0.0 14.69 0.00
93 7 0 3 7 0 81.4 0.0 5.45 0.00
94 10 0 3 9 0 223.3 0.0 23.12 0.00
95 15 0 3 17 0 116.3 0.0 8.28 0.00
96 23 0 3 20 0 193.7 0.0 19.48 0.00
97 34 0 3 29 0 237.1 0.0 38.11 0.00
98 51 0 3 42 0 264.0 0.0 25.53 0.00
99 7 0 3 4a7 0 241.0 0.0 19.72 0.00
100 115 0 3 73 0 269.0 0.0 41.02 0.00
101 0 5 3 0 5 0.0 184.2 0.00 36.18
102 3 5 3 3 5 22.9 142.2 1.86  23.39
103 7 5 3 7 5 58.0 166.6 8.37 31.13
104 15 5 3 16 10 77.4 181.6 7.97 29.64
105 34 5 3 32 8 114.8 141.6 14.14  24.57
106 77 5 3 53 8 124.7 86.4 16.37 15.46
107 0 7 3 0 11 0.0 2359 0.00 35.44
108 0 10 3 0 14 0.0 200.8 0.00 33.60
109 3 10 3 3 15 12.6 197.7 1.50 37.66
110 7 10 3 9 14 46.7 231.1 5.61 39.01
111 15 10 3 16 14 44.5 198.2 4.05 29.21
112 34 10 3 27 15 734 122.1 8.33 20.35
113 7 10 3 53 12 132.4 121.9 20.59 23.64
114 0 15 3 0 15 0.0 251.8 0.00 32.16
115 0 23 3 0 26 0.0 229.3 0.00 28.46
116 3 23 3 3 24 9.0 244.8 0.30 33.31
117 7 23 3 7 28 27.1 203.8 3.39 35.58
118 15 23 3 14 24 37.0 218.2 2.31 30.36
119 34 23 3 22 35 71.2 152.3 7.35 21.86
120 7 23 3 57 22 91.9 158.1 13.45 27.69
121 0 34 3 0 42 0.0 250.9 0.00 41.58
122 0 51 3 0 53 0.0 275.6 0.00 46.00
123 3 51 3 3 52 5.1  298.8 041  44.17
124 7 51 3 7 51 154  257.2 145 38.54
125 15 51 3 13 53 32.1 232.0 2.50 31.47
126 34 51 3 27 51 37.1 191.0 2.35 19.96
127 77 51 3 60 51 107.6 179.8 10.04 22.79
128 0 77 3 0 79 0.0 286.6 0.00 44.71
129 0 115 3 0 111 0.0 289.6 0.00 38.34
130 3 115 3 3 103 3.5 236.9 0.06 27.80
131 7 115 3 8 113 13.8  239.0 1.25  34.50
132 15 115 3 14 110 11.6 289.7 0.59 28.42
133 34 115 3 26 90 38.7 246.6 2.80 27.79
134 77 115 3 56 82 78.0 194.6 8.67 26.64
135 0 173 3 0 152 0.0 252.7 0.00 24.41

tData courtesy of Drs J.C. Streibig and L. Vleeshouwers, Dept. of Crop
Science, Royal Veterinary and Agricultural University, Copenhagen.
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a few cases there was some doubt concerning the temperature
of the drying process, so that the fresh weights may be more
reliable than the dry weights.) Show that, for both barley and
Sinapis, the relation between monoculture yield and seed density
is approximately inverse quadratic. The monoculture observations
are that subset of Table 8.11 in which only one variety was planted.

8.14 For those plots in which both varieties were sown, examine
how the barley proportion of the total yield depends on the barley
proportion of the seeds sown, the seed density and the experimental
block. Take the log ratio of fresh weights, log(Ys/Ys), as the
response and consider models of the form

log(Ys/Ys) = aps + Blog(Na/Ns) + vz + block effect,

where Ny, N5 are the numbers of seeds sown, and x is a measure
of seed density, say = = log{ Ns + Ns).
What would be the interpretation of the following parameter
values?
1. 8=1,v=0;
2. 8<1,v=0;
3.8=1,+v>0;
4. <1, v>0.
For further information concerning competition experiments, see
Williams (1962), Breese and Hill (1973), Mead and Curnow (1983)
or Skovgaard (1986).

8.15 Suppose that Y; ~ G(u;,v) independently for each i, with
u; satisfying the log-linear model

log(m:) = e +x] B

and v an unknown constant. Show that the transformed responses
satisfy

E(log(Y:)) = a* + x{ B,

var(log Y;) = ¢'(v).
where a* = a + ¥(v) —log(v) and ¥(v) = I'(v)/T'(v).

Let B be the least squares estimator of B obtained by fitting a

linear regression model to the transformed data. Show that # is

consistent for B and that the asymptotic efficiency of ﬁ relative
to B is 1/{vy'(v)}. [Bartlett and Kendall 1946; Cox and Hinkley

1966].



322 DATA WITH CONSTANT COEFFICIENT OF VARIATION

- 8.16 Suppose that Y;,...,Y, are independent and identically
distributed with the gamma distribution G{y, ), both parameters
being taken as unknown. Let ¥ be the arithmetic mean of the
observations, and Y the geometric mean. Show that under the
composite hull hypothesis Ho: = po, So = log(Y /po) — Y/ o is
a complete sufficient statistic for ». Show, again under Hjy, that
the conditional joint distribution of Z; = log(Y;/uo) given Sy is
uniform over the surface

Z(z,- ~ exp(2;)) = nS,.

Discuss briefly how you might use this result (1) to construct an
exact test of Hy, and (ii) to construct an exact confidence interval

for p.



CHAPTER 9

Quasi-likelihood functions

9.1 Introduction

One of the few points on which theoretical statisticians of all
persuasions are agreed is the importance of the role played by
the likelihood function in statistical inference. This role has
been illustrated, chiefly from the frequentist viewpoint, in the
developments of Chapters 2-8. In order to construct a likelihood
function it is usually necessary to posit a probabilistic mechanism
specifying, for a range of parameter values, the probabilities of all
relevant samples that might possibly have been observed. Such a
specification implies either knowledge of the mechanism by which
the data were generated or substantial experience of similar data
from previous experiments.

Often there is no theory available on the random mechanism
by which the data were generated. We may, however, be able to
specify the range of possible response values (discrete, continuous,
positive, ...), and past experience with similar data is usually
sufficient to specify, in a qualitative fashion, a few additional
characteristic features of the data, such as

1. how the mean or median response is affected by external
stimuli or treatments;
2. how the variability of the response changes with the average
response;
3. whether the observations are statistically independent;
4. whether the response distribution under fixed treatment con-
ditions is skewed positively, negatively or is symmetric.
Often interest attaches to how the mean response or other simple
functional is affected by one or more covariates. Usually there is
substantial prior information on the likely nature of this relation-
ship, but rather little about the pattern of higher-order cumulants

323
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or moments.

The purpose of this chapter is to show how inferences can be
drawn from experiments in which there is insufficient information
to construct a likelihood function. We concentrate mainly on the
case in which the observations are independent and where the
effects of interest can be described by a model for E(Y).

9.2 Independent observations

9.2.1 Covariance functions

Suppose that the components of the response vector Y are inde-
pendent with mean vector g and covariance matrix o2V (u), where
o? may be unknown and V() is a matrix of known functions. It
is assumed throughout this section that the parameters of interest,
B, relate to the dependence of g on covariates £. The nature of
this relationship need not concern us for the moment, so we write
(), thereby absorbing the covariates into the regression function.
An important point is that o2 is assumed constant—in particular
that o2 does not depend on 8.

Since the components of Y are independent by assumption the
matrix V{(u) must be diagonal. Thus we write

V(p) = diag{Vi(n),. .., Va(n)}.

One further assumption is required concerning the functions V;(g),
namely that V;(g) must depend only on the ith component of .
In principle it is possible, even under independence, for Vi(g) to
depend on several components of g. However it is difficult to
imagine a plausible physical mechanism that would produce such
dependence in the variance function, while at the same time keeping
the random variables statistically independent.

The above assumption of functional independence, namely that

V(p) = diag{Vi(p1), -, Va(tn)}s (9-1)

although sensible physically, has been made for technical math-
ematical reasons that will become apparent in section 9.3. It is
no more than a happy accident that such a technical mathemati-
cal requirement should coincide with what is sensible on external
physical or scientific grounds.
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In the majority of applications the functions Vi(-),..., Va(:) may
be taken to be identical, though their arguments, and hence their
values, are different. However, this assumption is not required in
the algebra that follows.

9.2.2 Construction of the quasi-likelihood function

Consider first a single component of the response vector Y, which
we write as Y or y without subscripts. Under the conditions listed
above, the function
Y ~pu
U= 3 Y)= ——
has the following properties in common with a log-likelihood deriva-
tive:

E(U) =0,
var(U) = 1/{0?V ()}, (9.2)
—E(%%) = 1/{c?V()}.

Since most first-order asymptotic theory connected with likelihood
functions is founded on these three properties, it is not surprising
that, to some extent, the integral

B
Qv = [ s 93)

if it exists, should behave like a log-likelihood function for £ under
the very mild assumptions stated in the previous two sections.
Some examples of such quasi-likelihoods for a number of common
variance functions are given in Table 9.1. Many, but not all, of
these quasi-likelihoods correspond to real log likelihoods for known
distributions.

We refer to Q(u; y) as the quasi-likelihood, or more correctly, as
the log quasi-likelihood for u based on data y. Since the compo-
nents of Y are independent by assumption, the quasi-likelihood for
the complete data is the sum of the individual contributions

Qm;y) = ) Qi(mis i),
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By analogy, the quasi-deviance function corresponding to a single
observation is

D(y; );—202Q(- )=2 yy°tdt (9.4)
y? /‘L - /‘L7 y - V(t) El .

v

which is evidently strictly positive except at y = p. The total
deviance D(y;u), obtained by adding over the components, is a
computable function depending on y and p alone: it does not

depend on 2.

9.2.3 Parameter estimation

The quasi-likelihood estimating equations for the regression par-
ameters §, obtained by differentiating Q(s;y), may be written in
the form U(B) = 0, where

U(B) =DTV (Y —p)/0? (9.5)

is called the quasi-score function. In this expression the compo-
nents of D, of order nxp, are D; = Ou;/80,, the derivatives of
#(B) with respect to the parameters.

The covariance matrix of U(#), which is also the negative
expected value of 9U(B)/8, is

is =DTV'D/o?. (9.6)

For quasi-likelihood functions, this matrix plays the same role
as the Fisher information for ordinary likelihood functions. In
particular, under the usual limiting conditions on the eigenvalues
of iz, the asymptotic covariance matrix of ﬁ is

cov(B) = izt = a*(DTVTID) 7Y,
as can be seen from the argument given below. R
Beginning with an arbitrary value By sufficiently close to 8, the

sequence of parameter estimates generated by the Newton-Raphson
method with Fisher scoring is

B1=Bo+ (ﬁoTValﬁo)‘lﬁoTVal(y — fro).
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The quasi-likelihood estimate ﬁ may be obtained by iterating until
convergence occurs. An important property of the sequence so
generated is that it does not depend on the value of o2.

For theoretical calculations it is helpful to imagine the iterations
starting at the true value, 8. Thus we find

B =B+ DTV D) DTV i(y — p), (9.7)

showing that the one-step estimate is a linear function of the data.
Provided that the eigenvalues of ig are sufficiently large, subsequent
iterations produce asymptotically negligible adjustments to Bl.
Thus, for a first-order asymptotic theory, we may take ﬁ = Bl, even
though Bl is not a computable statistic. Approximate unbiasedness
and asymptotic Normality of B follow directly from (9.7) under the
second-moment assumptions made in this chapter.

In all of the above respects the quasi-likelihood behaves just
like an ordinary log likelihood. For the estimation of o2, however,
Q(;y) does not behave like a log likelihood. The conventional
estimate of 0% is a moment estimator based on the residual vector
Y - ji, namely

<2 1

7= n—pz(y"°ﬂ")2/vi(ﬂi) = X?/(n~p),

i

where X? is the generalized Pearson statistic.

9.2.4 FExample: incidence of leaf-blotch on barley

The data in Table 9.2, taken from Wedderburn (1974), concerns
the incidence of Rhynchosporium secalis, or leaf blotch, on 10
varieties of barley grown at nine sites in 1965. The response, which
is the percentage leaf area affected, is a continuous proportion
in the interval [0,1]. For convenience of discussion we take Y
to be a proportion in [0,1] rather than a percentage. Following
the precedent set in section 6.3.1, we might attempt an analysis,
treating the data as pseudo-binomial observations, taking the
variances, at least initially to be o%u(l ~ p). A linear logistic
model with main effects appears to describe adequately the site
and variety effects.

This analysis is certainly reasonable as a first step. The usual
residual plots and additivity tests indicate no significant departures
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from the linear logistic model. The residual deviance is 6.13 on 72
degrees of freedom and Pearson’s statistic is equal to 6.39. Thus
the estimate of 02 is 6% = 6.39/72 = 0.089. Since the data do not
involve counts there is no reason to expect o2 to be near 1.0.

The estimated variety effects together with their standard errors,
are shown below:

Variety
1 2 3 4 5 6 7 8 9 10

0.00 0.15 069 1.05 162 237 257 334 350 4.25
(0.00) (0.72) (0.67) (0.65) (0.63) (0.61) (0.61) (0.60) (0.60) (0.60)

Since these are simple contrasts with variety 1, the correlations
among the estimates are approximately equal to 1/2. The actual
correlations range from 0.68 to 0.83, which are larger than expected
because variety 1 has a larger variance on the logistic scale than
the other varieties. Evidently varieties 1-3 are most resistant to
leaf blotch and varieties 8-10 least resistant.

In fact, however, as is shown in Fig. 9.1, the variance function
#(1 — p) is not a satisfactory description of the variability in these
data for very small or very large proportions. The variability
observed in these plots is smaller at the extreme proportions
than that predicted by the binomial variance function. Following
Wedderburn'’s suggestion, we try an alternative variance function
of the form p?(1 ~ p)? to mimic this effect. The resulting quasi-
likelihood function can be obtained in closed form as

[z y l-y
Qs y) = (2y 1)10g(1 — u> PR
Unfortunately this function is not defined for p = O or g =1. A
deviance function cannot be defined in the usual way for the data
in Table 9.1 because some of the observed proportions are zero.

A linear logistic model with the new variance function gives the

following estimated variety effects and standard errors:

Variety
1 2 3 4 b} 6 7 8 9 10
0.00 -047 0.08 095 135 133 234 326 314 3.89
(0.00) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47)




9.2 INDEPENDENT OBSERVATIONS 331

3rme

2

T

.
0..5___.__:-__.T_,‘_'__-_-,_:____._-__T, _________

-
e

-1t '.

.

—9t

=

1 1 I 1 )

-8 -7 -6 -5 -4 -3 -2 -1 O 1 2 3
Fig. 9.1a. Pearson residuals plotted against the linear predictor f) =
log(#/(1 — #)) for the ‘binomial’ fit to the leaf-blotch data.

3 %TP

-8 -7 —6 -5 -4 -3 -2
Fig. 9.1b. Pearson residuals plotted against the logarithm of the variance
function #(1 - &) for the ‘binomial’ fit to the leaf-blotch data.

The estimated dispersion parameter, obtained from the residual
weighted mean square, is now 62 = 71.2/72 = 0.99, which differs
very slightly from Wedderburn’s value. The correlations among
these estimates are exactly 1/2 because the iterative weights are
exactly unity, and the analysis is effectively orthogonal. All variety
contrasts in this model have equal standard error. Note that the
ordering of varieties in the revised analysis differs slightly from
the previous ordering. The principal difference between the two
analyses, however, is that variety contrasts for which the incidence



332 QUASI-LIKELTHOOD FUNCTIONS

is low are now estimated with greater apparent precision than in
the previous model. Variety contrasts for which the incidence is
high have reduced apparent precision.
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Fig. 9.2. Pearson residuals using the variance function n2(1—m)? plotted
against the linear predictor 7 for the leaf-blotch data.

The residuals are shown in Fig. 9.2 plotted against the linear
predictor. To some extent the characteristic shape of Fig. 9.1a re-
mains, though the effect is substantially diminished. Examination
of individual residuals reveals three that are large and positive.
These correspond, in decreasing order, to variety 4 at site 3 (3.01),
variety 5 at site 7 (2.51), and variety 6 at site 8 (2.24). These
residuals are computed by the formula (y — )/(4(1 ~ i)). There
is no further evidence of systematic departures from the model.

9.3 Dependent observations

9.3.1 Quasi-likelihood estimating equations

Suppose now that cov(Y) = 02V (u) where V(u) is a symmetric
positive-definite nxn matrix of known functions Vi;(u), no longer
diagonal. The score function (9.5), with components U,(8), has
the following properties:

E{U-(B)} =0,
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cov{U(B)} = DTV™'D/o? = i, (9.8)
_E(alg‘ﬂ(ﬂ)> = DTV_ID/O'Z.

Thus, for the reasons given in section 9.2.2, we may treat U(S)
as if it were the derivative with respect to 8 of a log-likelihood
function. Under suitable limiting conditions, the root B of the
estimating equation

UB) =DV (Y -i)=0

is approximately unbiased for 8 and asymptotically Normally
distributed with limiting variance

cov(B) ~ oc*(DTVID)"! = igl.

The exact conditions required for consistency and asymptotic
Normality of ﬁ are rather complicated. Roughly speaking, however,
it is necessary that as n — oo, U(8) should be asymptotically
Normal, and the eigenvalues of ig should tend to infinity for all 8
in an open neighbourhood of the true parameter point.

Block-diagonal covariance matrices arise most commonly in longi-
tudinal studies, in which repeat measurements made on the same
subject are usually positively correlated. Such applications are
discussed by Liang and Zeger (1986) and Zeger and Liang (1986).
These authors exploit the property that the quasi-likelihood esti-
mate B is often consistent even if the covariance matrix is mis-
specified. For a second example in which V is not block-diagonal,
see section 14.5.

9.3.2 Quast-likelihood function

Thus far, there is no essential difference between the discussion
in section 9.2, for independent observations, and the more general
case considered here. There is, however, one curious difference
whose importance for inference is not entirely clear. If the score
vector U(B) is to be the gradient vector of a log likelihood or quasi-
likelihood it is necessary and sufficient that the derivative matrix
of U(B) with respect to f be symmetric. In general, however, for

r#s,
3U,(B) _, 0U.(B)
o8, 7 0B

#
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even though these matrices are equal in expectation to —ig. Conse-
quently, unless some further conditions are imposed on the form of
the matrix V(u), there can be no scalar function whose gradient
vector is equal to U(g).

To state the same conclusion in a slightly more constructive way,
the line integral

t(s)=p

QUi y.t(s)) = 02 / (v - OT{(V(£)} " dt(s)

t(s)=y

along a smooth path #(s) in R™ from #(so) = y to t(s)) = n,
ordinarily depends on the particular path chosen. Evidently, if
the integral is path—mdependent the gradient vector of Q(p;y,- )
w1th respect to g is V™! (y — u)/o?, and the gradient vector with
respect to B is given by (9.5). The derivative matrix of U(B) is
then symmetrical. Conversely it can be shown that if the derivative
matrix of U(B) is symmetrical, the integral is path-independent
for all paths of the form #(s) = p(B(s)). Only if the line integral
is independent of the path of integration does it make sense to
use this function as a quasi-likelihood. Then, and only then, does
quasi-likelihood estimation correspond to the maximization on the
solution locus u(B) of a function defined pointwise for each g € R™.
We now investigate briefly the conditions on the covariance function
that are required to make the integral path-independent.

The integral can be shown to be path-independent if the partial
derivatives of the components of V™!(u) with respect to g form
an array that is symmetrical in all three directions—i.e. under
permutations of the three indices. In other words, if W = V™!,
we require

6Wij/aﬂk = OWir /Ou; = 6ij/6u,~,

A necessary and sufficient condition for this to hold is that V™~ ')
should be the second derivative matrix with respect to p of a
scalar function b*(u), which is necessarily convex. The existence
of a convex function b*(u) implies the existence of a canonical
parameter #(p) and a cumulant function b(#) defined on the dual
space, such that

0=b"(p), p=b(0) and V(p)=b"(9). (9.9
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These conditions exclude from consideration a large class of covari-
ance functions that are physically unappealing for reasons discussed
in section 9.2.1. However, some apparently physically sensible co-
variance functions are also excluded by the criterion.

In general it is not easy to construct covariance functions sat-
isfying the above property even though the property itself is easy
to verify. We now describe ways in which non-diagonal covariance
functions satisfying (9.9) can be constructed. The integral can
be shown to be path-independent if V™! can be written as the
sum of matrices, each having the form ATW(q)A, in which A is
independent of g, ¥ = Ap, and W is diagonal of the form

W = diag{Wi(m1),--., Wa(7)}.

In other words we require a decomposition
k
=D ATW;(A;p)A,; (9.10)

in which each W; is a diagonal matrix of the required form as
a function of its argument 4; = A p. In particular if k& =
the covariance matrix can be diagonalized into the form (9.1).
The latter condition can sometimes be verified directly for certain
covariance functions—e.g. the multinomial covariance matrix.

In order to construct the quasi-likelihood function explicitly we
may consider the straight-line path

ts)=y+(u~y)s

for 0 < s < 1, so that ¢(0) = y and ¢(1) = u. Provided that it
exists, the quasi-likelihood function is given by

Qwy) =~y -m" / s{V(t(s)}” ds}y B). (9.11)

This integral is expressed directly in terms of the mean-value
parameter and is sometimes useful for purposes of approximation.
For example, if V™!(t) is approximately linear in ¢ over the
straight-line path from ¢ = y to t = g, the integral may be

approximated by
Quy) =~ ~ 3y~ TV (w)(y~n/s’

~ Yy -V Iy - m/s (9-12)

D= W=
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The alternative, and more familiar expression,
Qu;y) = o *{y" 6~ b(8) ~ b*(y)}

presupposes the existence of the required functions, and is less use-
ful for computational purposes unless those functions are available
in a computable form.

The integral (9.11) can be evaluated whether or not V(u)
satisfies the conditions in (9.9). However the use of Q(u;y) as a
test statistic or as a quasi-likelihood function is then less compelling
because an additional argument is required to justify the choice of
the path of integration.

9.3.3 Ezample: estimation of probabilities from marginal frequencies

The following rather simplified example concerns the estimation of
voter transition probabilities based only on the vote totals for each
of two parties, C and L, say, in two successive elections. Suppose
for simplicity of exposition that the same electorate votes in two
successive elections and that we observe only the vote totals for C
and L at each election. For each constifuency, the ‘complete data’,
which we do not observe, may be displayed as follows:

Votes cast Election 2
Party C L Total
C X1 my — X1 ma
Election 1
X, ms — X ma
Total Y=X. m -X, m.

Only the row and column totals of the above Table are observed.

Since interest is focused on transition probabilities, we condition
on the observed vote totals at election 1, regarding the entries in
the body of the table as random variables. The simplest binomial
model takes X, ~ B(m;,m;) and Xo ~ B(mg,72) as independent
random variables. Thus 7 is the probability that a voter who
votes for party C in the first election also votes for C in the second
election. Similarly 7o is the probability that a voter who previously
voted L subsequently switches to C.
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Taking ¥ = X, together with m;, my as the observed response

in each constituency, we have that
E(Y) = mymy + moma = , say,
var(Y) = m17r1(1 - 7r1) + m27r2(1 - 7'('2).

Evidently var(Y) is not a function of E(Y’) alone, and hence it is
not possible to construct a quasi-likelihood function along the lines
described in sections 9.2.2 or 9.3.2. Nevertheless, given sufficient
data from several constituencies, we may still use the score function
(9.5) to estimate the parameters, which in this case are m; and 7».

Suppose that data are available from each of n constituencies for
which the transition probabilities may be assumed constant. Thus
we have

E(Y) = M,
cov(Y) = diag{mi1m1 (1 ~ m1) + mioma(1 ~72)} = V(x),

where M is an nx2 matrix giving the total votes cast for each party
in the first election. The quasi-likelihood score function (9.5) is

U(r) = MV~ (x)(Y ~ Mn). (9.13)
The two components of this vector are

Ui(x) = Zmil(yi ~ mi ™ ~ Miama)/Vi(r)
Us() =) maa(ys ~ marmy — magmy) /Vi().

Using these expressions it may be verified that

U, , oU,

67'{'2 671'1 ’
showing that (9.13) cannot be the gradient vector of any scalar
function Q(w). The information matrix i, = MTV~!M has rank
2 provided that the vote ratios ;) /m;; are not all equal.

In order to compare the quasi-likelihood estimates with possible

alternatives, we suppose that the following meagre vote totals are
observed in three constituencies.

Y m; ma

7
5
6

> O D
S B W
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After iteration in the usual way, the quasi-likelihood estimate
obtained is & = (0.3629,0.8371). Thus the fitted values and the
information matrix are

6.000
=Mz =| 5526 and iy = (

41.4096 39.7904)
6.474

39.7904 42.5357

It is readily verified that these values satisfy the vector equation
U(#) = 0. The approximate standard errors of #; and 72 are 0.489
that the sum m; + 7y is tolerably well estimated but there is little
information concerning measures of difference such as 71 ~mg, 71 /72
or Y =m1(l ~mg)/{m2(1 —m1)}

If all values in the above Table were increased by a factor of
100 the same parameter estimate and correlation matrix would be
obtained. Standard errors of # would be reduced by a factor of 10.

The likelihood function in this problem for a single observation

y is

> () ([ )= mm i - s

j J ¥y—J

The log likelihood for the full data, which is the sum of the loga-
rithms of such factors, is numerically and algebraically unpleasant.
It can, however, be maximized using the EM algorithm as described
by Dempster et al. (1977). A simpler direct method is described
in Exercise 9.2. We find #,, = (0.2,1.0), on the boundary of
the parameter space and rather different from the quasi-likelihood
estimate. In both cases, however, 71 + #2 = 1.2, a consequence of
the identity > v = ;.

The Fisher information matrix and its inverse, evaluated at the
maximum quasi-likelihood estimate # = (0.363,0.837), are

L = 62.18 4.57 and I-! = 0.0161 ~0.0007
T\ 457 102.24 " ~-0.0007  0.0098 /-

Evidently in this case the maximum-likelihood estimator is con-
siderably more efficient than the quasi-likelihood estimator, par-
ticularly for the estimation of differences. It is a curious fact that
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the Fisher information matrix has rank 2 even when the matrix M
has rank 1. Thus it.is. possible, in principle at least, for the quasi-
likelihood estimates of certain contrasts to have negligible efficiency
compared with the maximum-likelihood estimate. In both cases the
estimated standard error of #, + 75 is given as 0.1565. For further
details see Exercises 9.2-9.3.

If all of the row totals m;; and m;s are equal across constituen-
cies then Y7,..., Y, are identically distributed and Y’ is essentially
sufficient for m,. It is still possible to estimate the odds ratio ¢
because the variability of ¥; depends on . It is this information,
available in the likelihood function, that_is discarded by the qua31—
likelihood and accounts for the reduction in 1 efficiency.

If all the observed values are increased by a factor of 100 the
maximum-likelihood estimate changes to #y. = (0.467,0.733).
The Fisher information matrix also changes in a moderately com-
plicated way. Evidently the maximum-likelihood estimate is not a
simple linear function of the data. This observation makes sense
in the light of the comments in the previous paragraph.

9.4 Optimal estimating functions

9.4.1 Introduction

The quasi-score function (9.5) is a rather special case of what
is known in Statistics as an estimating function. An estimating
function ¢g(Y;8) is a function of the data Y and parameter @
having zero mean for all parameter values. Higher-order cumulants
of g(-;-) need not be independent of @, so that g(Y;@) need not
be a pivotal statistic. Provided that there are as many equations
as parameters, estimates are obtained as the root of the equation
9(6:;Y)=0

Usually it is fairly straightforward to construct estimating func-
tions. For example, taking 8 to be the parameter of interest in
the context described in sections 9.2 and 9.3, Y — u(8) is a vector-
valued estimating function. The difficult part is to reduce this
n-vector to a p-vector with minimal sacrifice of information. The
theory of optimal estimating equations can be used to demonstrate
that the score function (9.5) is in fact the optimal combination
within the class of linear estimating functions.
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If the observations form a time-ordered sequence Yi,...,Y,, it
may be helpful to consider a corresponding sequence of elemen-
tary estimating functions of the form gt(Y(t);H), where Y, =
(Y1,-..,Y;) is the process up to time . If the conditional expecta-
tion of g;(-;-) given the past history of the process satisfies

E{9:(Y1);0) | Ye-1)} =0,

the cumulative sequence is said to form a martingale. Evidently
9:(-;-) and all linear combinations of the gs are estimating func-
tions. Thus there is a close connection between the theory of
martingales and the theory of estimating functions (Godambe and
Heyde, 1987).

In the linear regression and related contexts we usually require
the elementary estimating functions to have zero mean condition-
ally on the values of the design points or covariates. This is a
stronger condition than simply requiring zero unconditional mean.
To underline the role played by such conditioning variables we write

E{g:(Y;0)| A;} =0,

where 4; = A;(y;0), to cover both regression and time-series
problems. In the regression context A; = A, the set of covariates.
More generally, however, the sequence 4; must be nested in the
sense that 4;_; C A;. Usually it is desirable to choose A4 to have
maximum dimension.

A useful property of estimating functions is that very often they
are rather simple functions of the data. For example (9.5) is linear
in Y. Statistical properties of the estimate, 8, which is a non-linear
function of Y, can frequently be deduced from the properties of
the estimating function. We now give a very brief outline of the
theory of non-linear estimating functions, concentrating on ways of
combining elementary estimating functions.

9.4.2 Combination of estimating functions

Suppose that the observed random variables Y have a distribution
that depends on @ and that, for each 8, g;(Y;6) is a sequence
of independent random variables having zero mean for all . For
example if the Y's are generated by the autoregressive process

Y, = 0Y_1 + €, Yo = ¢,
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where €, are i.i.d. N(0,1), we could take

g =Y~ 0%
or, if 8 # 0,
9; =Y /0-Y1.

A second example in which the g; are non-linear functions of Y is
given in the following section.

In order to combine the n elementary estimating functions into
a single p-dimensional optimal estimating equation for 8, we define
the following nxp matrix, D, with components D;,., which depend
on both 4 and y.

Dy = —E{-a—gi(%ﬂ | 4:}. (9.14)

If V is the (diagonal) conditional covariance matrix of g; given
A;, we take as our estimating function for 4

U(8;y) =D"V7lg. (9-15)

Since D;, and V are functions of the conditioning variables, and g;
has zero mean conditionally, it follows that U(#;y) also has zero
conditional mean.

The above estimating function is unaffected by linear transfor-
mation of the elementary estimating functions g to g* = Bg, where
B = B(6) is a full-rank nxn matrix whose components may depend
on A. Under this transformation we have

g* = By, v*=BVBT, D*=BD,

so that D*TV*~lg* = DTV~lg as claimed. Note that the
components of g* are not independent.

In the autoregressive process described above, this procedure
applied to the sequence g, gives

UG;y)=> Yiige =Y Yia(Ys — %)
t t

When applied to the sequence g; the same estimating function,
which is also the log-likelihood derivative, is obtained by a slightly
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more circuitous route. Note that, although g; is linear in Y, the
final estimating function is quadratic in Y.

By a modification of the argument given in section 9.2.3, the
asymptotic variance of 0 is

i;! = cov(d) = (DTVTID)"L

Usually, and particularly so in the autoregressive model, it is better
to use the observed value of this matrix rather than its expected
value. The same recommendation applies in the example below.

Ezample: Fieller-Creasy problem

The following rather simple example is chosen to illustrate the fact
that elementary estimating functions can frequently be chosen in
such a way that incidental parameters are eliminated. Suppose
that the observations come in pairs Y; = (Y;1,Yi2), which are
independent with means (y;, p;/6) and variances 2. It is assumed
that § = E(Y;1)/E(Yip) is the parameter of interest. From the
stated assumptions it follows that

9:(Y;0) = Yi; — 0Y;,

has mean zero and variance o2(1 + 62). The derivative of g;
with respect to 8 is —Y;o. Application of (9.14), taking A4;(8) =
Yo + 8Y;1, gives the residual derivative
D; = Yip + (Vi1 ~ 6Yi2)0/(1 + 62)
= (Yio + 0Yi1)/(1 + 62).

The estimating function for € is therefore

U6) = Z (Yiz + Y1) (Yi1 — 0Yi2)

- o2(1+ 62)? ’
which is identical to the conditional log likelihood score statistic
(7.3).

This score function ordinarily has two roots, one at 8, the other
at —1/6. One of these corresponds to what would be considered
a maximum of the log likelihood: the other corresponds to a min-
imum. In any case, Normal approximation for ] may be unsat-
isfactory unless the information is large. The alternative method
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of generating confidence sets directly from the score statistic is
preferable. In other words we take the set

{6:1U(0)/i(0)] < k3y0},

where the observed information for § may be taken to be

: (ya2 + 0yi)?
0) = e
i) =3 o2(1+ 62)3°
and ®(k%) =1 — a.
For an alternative argument leading to the same result see
section 7.2.2.

9.4.3 Ezample: estimation for megalithic stone rings

Suppose that Y; = (¥;1,Yis), ¢ = 1,...,n, are the observed
Cartesian coordinates of points in a plane, assumed to lie on or near
the circumference of a circle with centre at (wy,ws) and radius p.
We have in mind archaeological applications in which the ‘points’
are standing stones forming a curve that is assumed here to be an
arc of a circle rather than a complete circle. For a statistical model
we assume that the points are generated in the following way:

Yii=wi +R; cf)s €; (9.16)
Yio = wo + R;sine;

in which Ry,..., R, are positive independent and identically dis-
tributed random variables with mean p. The quantities €4, ...,€,
may be regarded either as fixed (non-random) nuisance parameters
or as random variables having a joint distribution independent of
R. It is undesirable and unnecessary in the archaeological context
to assume that ¢,,...,€, are identically distributed or mutually
independent. Usually the stones are roughly equally spaced around
the circle, or what remains of the circle, so the angles cannot be
regarded as independent.

In order to construct an estimating equation for the parameters
(wy,wq, p) we observe first that, under the assumptions stated
above,

9 = {(Yi1 ~w1)?+ (Yo ~w)?}2 ~ p

= Ri(w1,wq) ~ p
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are independent and identically distributed with mean zero condi-
tionally on A = (€y,...,€x)-

The derivative vector of g; with respect to (wi,w2,p) is equal
to (cose€;,sine;, 1), which is independent of g; by assumption.
Comnsequently the estimating functions for the three parameters
are

)fi —
> (Bi=p) = cosei x (Ri= p) /6"

Z _)/‘;——2;:}2 (R; = P) = sine; x (R; — p)/p2 (9.17)
> _(Ri~p)/e?,

where we have taken var(R;) = o2p%. Under the assumption that
the €s are independent of R, or at least that cose¢; and sine; are
uncorrelated with R, these three functions all have zero mean.
These equations are in fact the ordinary least-squares equations
obtained by minimizing the sum of squares of the radial errors
ignoring the angular errors.

We take as our estimate of p?0? the mean squared radial error,
namely

PP52 =Y (Ri~p)*/(n~3).

Note in this case that it would be a fatal mistake to use the un-
conditional expected value of the derivatives of g; in the definition
of the coefficient matrix (9.14). If the angles are identically dis-
tributed, not necessarily uniformly, around the circle then E(cos €)
and E(sine) both constant. The resulting estimating equations
then have rank 1. ‘

To illustrate this method of estimation we consider the data in
Table 9.3, taken from Angell and Barber (1977). The Avebury ring
has been studied by a number of authors including Thom (1967)
and Thom, Thom and Foord (1976) who have divided the stones
into four major groups, labelled A, B, C and W. From the diagram
in Fig. 9.3 it can be seen that each of the individual arcs is quite
shallow and that arc W is not immediately distinguishable from a
straight line.

Table 9.3 gives the fitted centres and radii for each of the
arcs considered separately. The final line gives the residual mean
squared radial error, using degrees of freedom rather than sample



9.4 OPTIMAL ESTIMATING FUNCTIONS 345
Table 9.3 Stone number and position in the Avebury ring!

Arc C Arc W Arc A Arc B
No. =z y No. =z Y No. =z Y No. =z Y

733.744.0 9 4453 234 30 1936244 40 146.8 936.9
659.7 28.0 10 413.8 46.2 31 24.9663.0 41 175.2 9624
624.219.3 11 3779 741 32 33.3698.3 42 206.7 984.7
588.413.9 12 357.1 94.1 33 43.7731.3 43 237.6 1002.9
551.6 12.3 13 327.71124 34 55.5764.4 44 270.3 1022.5
5151 9.5 14 300.6 136.2 35 62.9790.1 45 292.5 1031.2
478.016.6 15 272.0158.8 36 69.2815.0 46 315.8 1042.0

16 243.5183.0 37 85.0 849.8

17 216.3 205.0 38 98.5 884.6

18 188.9 229.8 39 123.6 910.5

19 163.5 255.5

20 140.0 285.0

21 120.6 305.7

22 103.1 323.1

QO -3 O U W=

23 85.9 344.0
24 61.8371.3
& =530.8 @ = 1472.0 @1 = 795.0 @ =512.7
@9 = 651.0 &2 = 1553.4 @2 = 516.5 @2 = 533.1
p=638.8 p=1840.4 p="17828 p=5454
P27 = 5.60 p’6% =3.78 p%6% =9.00 pl6t =0.72

tData taken from Angell and Barber (1977).

size as divisor. In order to test whether the data are consistent
with a single circle for arcs A, B and C, we fitted a circle to these
three arcs together. The position of the fitted centre is shown in
Fig. 9.3. The residual sum of squared radial errors is 878.8 on 21
degrees of freedom, whereas the pooled residual sum of squares
from the separate fits is

4x560+7x9.00+4x0.72=288.3

on 15 degrees of freedom. The increase in residual sum of squares is
clearly statistically highly significant, showing that the three arcs
are not homogeneous.

When models are fitted to shallow arcs, the parameter estimates
tend to be highly correlated. For example the standard errors and
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Fig. 9.3 Diagram of the Avebury ring showing the fitted centres of arcs A,
B and C, together with the joint fit and the fitted arc W. An approzimate
99% confidence set is shown for the centre of arc A. Distances in feet.

correlation matrix for arc C are

e( 5) = 108.4 1.0
..(w) =14.57 and -0.87883 1.0
e.(@y) =108.6 0.99995 -0.87584 1.0

A confidence set for the position of the centre would be approx-
imately elliptical with major axis almost vertical and very much
larger than the minor axis. Such a 99% confidence set for w,,
corresponding to RSS < 181, is shown in Fig. 9.3. The correlations
are considerably smaller when the three arcs are combined. If the
arc were a complete circle the correlations would be nearly zero.
This example has been chosen by way of illustration. In the
archaeological context it is difficult to take the standard errors
literally, but they may be useful in a qualitative way. The main
statistical assumption, that the radial errors are independent, is
not supported by residual plots of fitted residuals against stone
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number. There is a noticeable but complicated residual pattern of
positive serial dependence for arc W.

A version of model (9.16) for fitting ellipses is described in
Exercise 9.5.

The estimates given here are the same as those obtained by
Freeman (1977), but different from the two sets of estimates given
by Thom, Thom and Foord (1976) and Angell and Barber (1977).
For a comparison of various alternative methods of estimation from
the viewpoint of consistency, efficiency and so on, see Berman and
Griffiths (1985), Berman and Culpin (1986) and Berman (1987). A
related, but less tractable model for fitting circles is discussed by
Anderson (1981).

9.5 Optimality criteria

In order to justify the optimality claims made on behalf of the
estimating functions (9.5) and (9.15) it is essential to state clearly
the criterion use for making comparisons and also to state the class
of estimators within which (9.5) and (9.15) are optimal. Evidently
from the discussion in section 9.3.3 the quasi-likelihood estimate is
sometimes less efficient than maximum likelihood, so that claims
for optimality, even asymptotic optimality, cannot be global.

In keeping with the major theme of this chapter we consider first
the class of linear estimating functions

h(y; 8) =H" (y - p(B)) (9.18)

where H, of order nxp, may be a function of 8 but not of y.
Clearly h(y;B) is linear in y for each 8. However the estimate
B, here assumed unique, satisfying h(y;8) = 0, is ordinarily non-
linear in y. We now demonstrate that, asymptotically at least, all
linear functions of B have variance at least as great as the variance
of the same linear function of B, i.e. var(a TB) > var(aTB) where
B is the root of (9.5).

Under the usual asymptotic regularity conditions we may ex-
pand the estimating function in a Taylor series about the true
parameter point giving

B~ B~ (H"D) 'h(y; 8),
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where H and D are evaluated at the true parameter point. Thus
the asymptotic covariance matrix of g is

cov(B) ~ > (HTD) " 'HT VH(DTH) !,

where D;, = 0u;/86,. The claim for asymptotic optimality of the
quasi-likelihood estimate rests on the fact that the matrix

cov(B) - cov(ﬂ) ~ a’z(HTD)_lHTVH(DTH)‘1 - igl

is non-negative definite for all H. In order to demonstrate this
claim we need only show that the difference between the precision
matrices

{cov(B)} ™ = {cov(B)} !

is non-negative definite (Exercise 9.7). This difference is equal to
DT(v~'-HMH"VH)'H")D,

which is the residual covariance matrix of DTV ™'Y after linear
regression on HTY, and hence is non-negative definite. This
completes the proof, that for large n, cov(8) > cov(8) with the
usual strong partial ordering on positive-definite matrices. The
covariance matrices are equal only if H is expressible as a linear
combination of the columns of V~'D.

The proof just sketched is formally identical to a proof of the
Gauss-Markov theorem for linear estimators. The strength of this
proof is that it applies to a considerably wider class of estimators
than does the Gauss-Markov theorem: its weakness is that it is an
asymptotic result, focusing on B rather than on the score function
directly.

The proof just given applies equally to the so-called non-linear
estimating function (9.15) provided that we agree to make all
probability calculations appropriately conditional. Provided that
A; = A, the same for each ¢, (9.15) is conditionally linear in g.
In other words g is asymptotically conditionally optimal given 4
within the class of estimating functions that are conditionally linear
in g. One difficulty with this criterion is that there may well be
some ambiguity regarding the best choice of A. The theory offers
little guidance in this respect.

A variety of optimality conditions, including both fixed-sample
and asymptotic criteria, are discussed by Godambe and Heyde
(1987).



9.6 EXTENDED QUASI-LIKELIHOOD 349

9.6 Extended quasi-likelihood

The discussion in sections 9.2, 9.3 has been concerned entirely
with the fitting and comparison of regression models in which the
variance function is known. The quasi-likelihood function (9.3) or,
if it exists, (9.11), cannot be used for the formal comparison of
models having different variance functions or different dispersion
parameters. The properties listed in section 9.3.1 refer only to
derivatives with respect to 8 and not with respect to a2

We have seen in section 9.2.4 how different variance functions
can be compared graphically. The purpose of this section is to
supplement and to formalize such comparisons via an extended
quasi-likelihood. Then pairs of residual plots such as Figs 9.1a
and 9.2 may be compared numerically via the extended quasi-
likelihood as well as visually. The introduction of such an extended
quasi-likelihood also opens up the possibility of modelling the
dispersion parameter as a function of covariates (see Chapter 10).

In order to avoid difficulties of the kind encountered in sec-
tion 9.3, we assume here that the observations are independent.
The extended quasi-likelihood is then a sum over the n components
of y. For a single observation y we seek to construct a function
Q*(u,0%;y) that, for known o2, is essentially the same as Q(u;y),
but which exhibits the properties of a log likelihood with respect
to o-derivatives. Thus we must have

QF (1, 0%y) = Qs y) + k(o y)
D(y; p)

=-—xa T h(a%;y)

for some function h(a?;y), which we take to be of the form
h(a%y) = ~3h1(a?) ~ ha(y).

In order for Q* to behave like a log likelihood with respect to o
we must have E(0Q*/0a?) = 0. Thus

1 p
0= ﬁE{D(Y;#)} ~ 1hi(a?),

implying that
athi(0®) = E{D(Y;p)}. (9.19)
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To a rough first-order of approximation we have E(D(Y;pu)) =
a?, giving h)(0?) = log(o?) + const. Thus the extended quasi-
likelihood function is given by

Q*(u,0%y) = ~3D(y; ) /o? — $loga®. (9-20)

This expression can be justified to some extent as a saddlepoint
approximation for the log density provided that o2 is small and
all higher-order cumulants are sufficiently small. To be explicit,
suppose that the higher-order cumulants of Y are given by

Kri1 = KhK2, for 722, (9.21)

where k2 = 0?V(u), and differentiation is with respect to u. As
shown in Exercise 2.1, (9.21) is a property of exponential-family
distributions and of averages from such distributions in which o=?2
is an effective sample size. Thus k3 = O(g*), kg = O(c®) and so
on. The saddlepoint approximation for the log density is then

~3D(y;w)/0” — Jlog(2na*V (),

which differs from @Q* by an additive function of y. See, for exam-
ple, Barndorff-Nielsen and Cox (1979), Nelder and Pregibon (1987),
Efron (1986), Jorgensen (1987) or McCullagh (1987, Chapter 6).
Note that saddlepoint approximations depend on the entire set of
cumulants, and not just on the low-order cumulants.

More accurate approximations can be obtained for E(D(Y;u))
provided that information is available concerning higher-order cu-
mulants of Y. To a certain extent, however, this requirement vio-
lates the spirit of least squares, which is based on first and second
moment assumptions only. Using the representation (9.4) it can be
shown that

E(D(Y;p) ~a+ 12V2{604VV'2 304VIV" ~4V'K3}. (9.22)

If (9.21) can be justified up to order 4, this expression may be
reduced to
E(D(Y;p)) = a®{1+ (505 ~ 3pa)/12},
= o?{1+ 22V V - 3V")/12},
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where the standardized cumulants p3 = x2/x3 and py = K, /K3 are
both O(g?). By the same argument we find

var(D) ~ 2k2/V? = 204
cov(D,Y) =~ (k3 ~ k2K5)/ V.

The approximate covariance reduces to zero under the simplifying
assumption (9.21) but not otherwise.

In what follows we assume that o2 is sufficiently small to justify
the approximation E(D) =~ o2. It follows then that the derivatives

Rt Y-—up
o~ a?V(p)
0Qt D(Y;u) 1
802~  20% 2407

have zero mean and approximate covariance matrix

1 K3 — KaKb
a2V(u) 200V2
K3 — KoKb 1
20612 204

The expected value of the negative second derivative matrix is the
same as the above except that the off-diagonal elements are zero.
Note that if

K3 — K2K) = O(c?)

for small o, the correlation of the two derivatives is O(o), and hence
negligible. Consequently, with this entirely reasonable condition,
Q™" has the properties of a quasi-likelihood with respect to both
mean parameter and dispersion parameter. Further, the Fisher
information matrix for (u, o) is diagonal, a property that simplifies
some calculations.

The argument just given is a partial justification for the use
of the extended quasi-likelihood for the joint parameter (u,d?).
The assumptions required are that o be small and that x,(Y) =
O(o?(r=1)), Efron (1986) and Jgrgensen (1987), using the stronger
assumption (9.21), reach similar conclusions.
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9.7 Bibliographic notes

The term quasi-likelihood seems first to have been used in this con-
text by Wedderburn (1974) although calculations similar to those
in section 9.2 appear also in unpublished work by Jarrett (1973).

Questions of efficiency and optimality, and to a lesser extent
robustness, are addressed by Godambe (1960), Bhapkar (1972),
Cox and Hinkley (1968), Morton (1981), Cox (1983), McCullagh
(1983, 1984), Firth (1987), Godambe and Heyde (1987) and Hill
and Tsai (1988). )

Estimates having increased efficiency can sometimes be obtained
by considering non-linear estimating functions or by combining two
or more estimating functions, This subject has been studied by
Jarrett (1973) and subsequently by Crowder (1987), Firth (1987)
and Heyde (1987).

The problem discussed in section 9.3.3 has previously been
studied by Firth (1982).

9.8 Further results and exercises 9

9.1 Suppose, conditionally on M = m that ¥ ~ P(m), the
Poisson distribution with parameter m, and that M in turn has
the gamma distribution M ~ G(av,v) with mean p = E(M) = av
and coefficient of variation »~2. Show that the unconditional
mean and variance are E(Y) = p = av, and

var(Y) = av + a?v.

Suppose now that Y has independent components generated in the
above way with u; = E(Y;) not all equal. Show that if v; = v,
a known constant, then the distribution of Y has the natural
exponential-family form with variance function V(u) = u + p?/v,
which is quadratic in g. On the other hand if @; = a, a constant,
show that the variance function has the standard over-dispersed
Poisson form V(u) = ¢u with ¢ = 1+ e, but that Y does not then
have the linear exponential-family form.

More generally, if both a and v vary according to the relations

o =0+pu; v i=y+0u]l,
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show that V(u) = p + 6u + ¢u? and that the distribution of Y
again does not have the linear exponential-family form. Compare
the exact likelihood with the corresponding quasi-likelihood in the
second and third cases.

9.2 Show that the likelihood function given at the end of sec-
tion 9.3.3. can be written in the form

(1~m)™ay(1 —7T2)m2 Y Po(¢; m1, ma, y),

where Py(t) is defined in section 7.3.2. Hence show that the log-
likelihood derivatives with respect to A; = logit(m;) are

8/\1 Z{nl ~mym},
E\; = Z{y ~ Kk1(¢)) ~ mama},

where «1(1) is the non-central hypergeometric mean, and summae-
tion runs over constituencies. Interpret these equations in terms of
the EM algorithm.

9.3 Deduce that the maximum-likelihood estimates in the previ-
ous exercise satisfy Yy = 3 m#, + mafa. Show that the Fisher
information matrix for @ = (7., A;~\z2) is a sum over constituencies
of matrices of the form

m Vi + maVe (my -~ ma)Vi V2 1

Ip = L.
(m1~m2)ViVa  (m1Vi+ meVo)ViVe ~ KoV v?

where V; = m(1~m1), Vo = ma(1~72) and kg 18 the hypergeometric
variance, which depends on 1. Under what conditions are these
parameters orthogonal? Deduce that the Fisher information matrix
has rank 2 even if m;; = mj, for each 7, but that A; ~ Ao is not
consistently estimated unless X has rank 2.

9.4 Show that the integral along the straight-line path ¢(s) from
t(sg) = b to t(s1) = ¢ of the tangential component of the vector
ATt is given by

/ctTA dt(s) = 3(c+ b)TA(c~b).
b
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Find the value of the integral along the path from b to ¢ to d and
back to b. Hence deduce that if A = AT the integral around the
loop is zero. Conversely, deduce that if the integral around every
closed loop is zero then A must be symmetric.

9.5 Consider the model
Y1 = w1 + pR; cose¢; cos ¢ — AR;sine; sin g
Yo = wg + pR;cose¢; sin ¢ + AR; sine€; cos ¢

for an ellipse centered at (wi,w2) with semi-axes of length p, A

inclined at an angle ¢ to the z-axis. Assume that R; are indepen-

dent and identically distributed with mean 1, and independently of

the es. Using the method described in section 9.4.3, construct an

unbiased estimating function for the parameters (wq,ws, p, A, ¢).
Take as the elementary estimating functions

X3 XA\
R,-—l:(p; + /\'2) ~1,

where
Xa= (Ya—wi)cosg+ (Yiz ~ws)sing = pR;cose;
Xz = ~(Yi1 ~ wi1)sin g + (Yi2 — w2) cos ¢ = AR; sine;.
Show that the required coefficients (9.14) are
Dy = cose;cosdp/p~sine;sing/ A,
D;g = cose;sing/p + sine; sin ¢/ A,
D3 = cos? ¢;/p,
Dy = sin ¢; /),

D;5 = (p— )A) cos¢; sin€;.

]

Hence compute the information matrix for the five parameters.

9.6 Suppose that the covariance matrix V can be written in the
form
V = DRD,
where R is independent of g and
D = diag{D1(p1);- .-, Dn(tn)}-

Show that the quasi-likelihood function exists only if V;; is inde-
pendent of g for all ¢ # j. In other words R must be diagonal or
D must be independent of u. [Section 9.3.2].
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9.7 Let A and B be any two positive-definite matrices of the
same order. Prove that

A~B>0 implies A™'~B"1<0,

where > 0 means non-negative definite.

9.8 Suppose that the random variables Yi,...,Y, are indepen-
dent with variance var(Y;) = o?uZ, where the coefficient of vari-
ation, a, is unknown. Suppose that inference is required for gy,
where

log(psi) = Bo + Br(z; ~ T5).

Show that the quasi-likelihood estimates of By, 81 are uncorrelated
with asymptotic variances

var(fo) = 0Yn, and var(f) = 0¥/ 3 (zi ~ %)?

9.9 Suppose, for the problem described above, that a Normal-
theory likelihood is used even though the data may not be Normal.
Show that the ‘maximum likelihood’ estimates ,30, (1 thus obtained
are consistent under the assumptions stated. Show also that the
true asymptotic variance of 3;, as opposed to the apparent value
given by the Normal-theory log likelihood, is

var(y) = T+ 2005 +za(1(p ﬁf)}u +20%)2

where p3 = K3 /mg/2 and pg = K4 /K3 are the standardized third and
fourth cumulants, assumed constant over z. For a range of plausible
values of a2, p3, ps, compare the efficiencies of the two methods of
estimation. :

Derive the asymptotic relative efficiency of §; to B1 under the
assumption that the data are in fact Normal. [McCullagh, 1984b].

9.10 Suppose, conditionally on Y;, = m;, Y,; = s;, that Y =
(Y11, Y12, Ya1, Yoo) has the non-central hypergeometric distribution
(7.9) with odds ratio ¢. Deduce that

9(Y;9) = Y11Ye ~ ¢Y12Yo
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is an unbiased estimating function for 1. Show also that if ¢ = 1

var(g(Y;1)) = TL2,

Hence deduce that for n independent 2x2 tables Y with common
odds-ratio
Yy ~ oYY,y

m(i)

i
is an unbiased estimating equation for ¢, but is not optimal unless

P =1.

The estimator produced by this function

- Z)G(f)yzzi)/mfi)
T Y mw
is known as the Mantel-Haenszel estimator. Find an expression for
the asymptotic variance as n — 00 of ¥,z When ¢ = 1. [Mantel
and Haenszel (1959); Mantel and Hankey (1975); Breslow and Day
(1980, p.240); Breslow (1981); Breslow and Liang (1982)].

9.11 Use the above estimating equation to estimate the common
odds-ratio for the data in Table 7.2. Compare your estimate and
its estimated variance with the values obtained in section 7.4.3.



CHAPTER 10

Joint modelling
of mean and dispersion

10.1 Introduction

In the models so far discussed the variance of a response has been
assumed to take the form

var()fi) = ¢V(/‘t)v

in which V(u) is a known variance function. The choice of
variance function determines the interpretation of ¢. For example
if V(i) = 1, ¢ is the response variance: if V(p) = p?, ¢ is
the squared coefficient of variation (noise-to-signal ratio) of the,
response. Similarly for other variance functions. In the simplest of
generalized linear models the dispersion parameter ¢ is a constant,
usually unknown, but in circumstances where Y; is the average
of m; elementary observations it may be appropriate to assume
that ¢; is proportional to known ‘weights’ w; = 1/m;. For one
example of this, see the discussion of the insurance-claims data in
section 8.4.1. More generally it may be the case that ¢; varies in a
systematic way with other measured covariates in addition to the
weights. In this chapter, therefore, we explore the consequences of
constructing and fitting formal models for the dependence of both
u; and ¢; on several covariates, following a suggestion made by
Pregibon (1984).

To a large extent the impetus for studying this extended class
of models derives from the recent surge of interest in industrial
quality-improvement experiments in which both the mean response
and the signal-to-noise ratio are of substantive interest. For
economy of effort, fractional factorial and related experimental
designs are often used for this purpose. The aim very often is

357
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to select that combination of factor levels that keeps the mean
at a pre-determined ‘ideal’ value, while at the same time keeping
the variability in the product at a minimum. It is thus necessary
to study not just how the mean response is affected by factors
under study, but also how the variance, or other suitable measure
of variability such as the noise-to-signal ratio, is affected by these
factors.

For grouped data or ordinal responses, model (5.4) is designed
to achieve a similar purpose.

10.2 Model specification

The joint model is specified here in terms of the dependence on
covariates of the first two moments. - For the mean we have the
usual specification

E(Yt) = Wi = g /l't Ext]ﬂ],
ar(Y;) = é:V (i),

in which the observations are assumed independent. The dispersion
parameter i8 no longer assumed constant but instead is assumed to
vary in the following systematic way.

(10.1)

E(d;) = ¢i; G = h(¢i) = 2“"]71

var(d;) = 7Vp(¢;).

(10.2)

In this specification d; = d;(Y;; p;) 18 a suitable statistic chosen
as a measure of dispersion; h(:) is the dispersion link function;
¢ is the dispersion linear predictor, and Vp(¢) is the dispersion
variance function. The dispersion covariates u; are commonly, but
not necessarily, a subset of the regression covariates x;.

Two possible choices for the dispersion statistic d; are

1. the generalized Pearson contribution

di =1 =(Yi ~ w)?/V (i)

2. the contribution to the deviance of unit i: d; = r3.
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For Normal-theory models, but not otherwise, the two forms are
equivalent. Note that, when evaluated at the true u, E(r) = ¢
exactly whereas E(r2) ~ ¢ only approximately.

To fit the extended model we must choose suitable dispersion
variance and link functions. If Y is Normal d; has the ¢;x? distri-
bution, so that a gamma model with Vp(¢) = 2¢? would be chosen.
The most natural link functions include the identity, corresponding
to additive variance components, and the log, corresponding to
multiplicative effects of the covariates. If Y is non-Normal, adjust-
ments to the dispersion model may be necessary to account for the
bias in 72 or for the excess variability of r2. Some possibilities are
discussed in section 10.5.

The two models (10.1) and (10.2) are interlinked; that for the
mean requires an estimate of 1/¢; to be used as prior weight, while
the dispersion model requires an estimate of u; in order to form
the dispersion response variable d;. The form of the interlinking
suggests an obvious algorithm for fitting these models, whereby we
alternate between fitting the model for the means for given weights
1/ (13,-, and fitting the model for the dispersion using the response
variable di = d,(Y,,ﬂ,)

10.3 Interaction between mean and dispersion effects

If the data contain replicate observations for each combination of
covariate values for the mean, then an estimate of the variance
can be formed for each distinct point in the covariate space of
the model for E(Y). Suppose now that we fit p parameters in
the model for the mean response. With a total of n’ distinct z-
values this leaves n’ — p contrasts having zero mean that contain
information about the dispersion. The information from these n'—p
contrasts can then be combined with the replicate estimates to
improve the model for the dispersion. The practical difficulty is
that use of supposedly null contrasts presupposes that the model
for the mean be substantially correct. For suppose, for example,
that a continuous covariate contributes a term Bz to the linear
predictor for the mean, but 3 is small so that the effect is judged
insignificant. Nonetheless its omission from the model for the mean
may produce relatively large values of (y — )2 at the two ends
of the z-scale and small values at the centre. This characteristic
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pattern will appear as a quadratic effect of z in the dispersion
model. Likewise, omission of an interaction between two factors
in the linear predictor for the mean will result in the inflation of
supposedly null contrasts used to model the dispersion.

The correct choice of variance function  for the mean is also
important if distortion of the dispersion model is to be avoided.
Thus, in designing an experiment for modelling both mean and
dispersion, it is advisable to have estimates of dispersion based
on pure replicates. Information from null contrasts can then be
combined with the information from replicate contrasts if they
prove compatible.

10.4 Extended quasi-likelihood as a criterion

The extended quasi-likelihood, @, developed in section 9.6, pro-
vides a possible criterion to be maximized for the estimation of u
and ¢ and for measuring the goodness of fit. We write

n

207 =Y+ S logCraV ), (103
* 1

1

where d; are the deviance components in the model for the means,

ie. v
Py~
d,-=2/ Yi 7> .
m

%Z0)

Suppose now that the two parts of the model are parameterized as
p = p(B) and ¢ = ¢(-y). Then, from equation (10.3) we see that
the estimating equations for @ are the Wedderburn quasi-likelihood
equations

yi— i Opg
_— = 0, 10.4
= V(i) 0B; (10.4)

except that 1/¢; must now be included as a weight, the dispersion
being non-constant.
The estimating equations for < are given by

~ d;~ ¢; O¢i -
> 57 o 0. (10.5)

i=1
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These are the Wedderburn quasi-likelihood equations for V(u) =
12 with the deviance component as response variable. Thus, so
far as estimation is concerned, the use of Q% as an optimizing
criterion is equivalent to assuming that the deviance component
has a variance function of the form Vp(¢) = ¢2, regardless of the
variance function for Y. This can only be approximately correct,
so we now consider some adjustments to the estimating equations
for the dispersion to allow for non-Normal ¥ and other factors.

10.5 Adjustments of the estimating equations

10.5.1 Adjustment for kurtosts

The estimating equations for the dispersion parameters obtained
from Q% are the same as those that would be obtained by assuming
that d; has the ¢;x? distribution, i.e. that we have gamma errors
with a scale factor of 2 (gamma index = %). In fact, however,
the variance of d; often exceeds the nominal value of 2¢Z, and
appropriate allowance should be made for this excess variability.
The correct variance of (Y — p)? is

var{(¥ ~ )’} = r + 263 = 203(1 + pa/2),

where
. 2
Py = K4 / K3

is the standardized fourth cumulant. Thus the variance of 2 =
(Y — )2 /V (p) is 2¢%(1+ ps /2). To use this result we need to know
the value of ps. However for over-dispersed Poisson and binomial
distributions the adjustment can be made provided that the fourth
cumulant of Y has a particular pattern in relation to the second
cumulant. If condition (9.21) holds up to fourth order then

ov o’V
I€2=¢‘/, I€3=¢2737, and K4 ¢3 802

Consequently p; and p, are expressible in terms of ¢ and the
derivatives of the variance function as follows:

ps = ¢V () /{V()}"? and ps = V" (p) + 03,
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where primes denote differentiation with respect to pu.
Under similar assumptions the approximate mean and variance
of the deviance contribution, 3, are

E(r3) ~ ¢(1+ b)
var(r3) =~ 2¢%(1 + b)2,
where b = b(¢, u) = (503 ~ 3p4)/12 is usually a small adjustment.
In general the standardized cumulants p2 = 2 /k3 and p4 depend

on both x and ¢.
Expressions for these adjustments are shown in Table 10.1.

Table 10.1. Dispersion adjustments for some standard distributions

Distribution 1+ pa/2 b(¢, 1)
Normal 1 0
Poissont 14 ¢/(2) ¢/(61)

) ot _¢;(1—67r(1—7r)) ﬁb_(l—w(l—w))
Binomial 1+ 2m w(l—m) 6m\ w(l1-m)
Gamma 14 3¢ ¢/6
Inverse Gaussian 14 15¢u/2 0

fwith over-dispersion (Section 6.2.3)
twith over-dispersion (Section 4.5)

The estimating equations for the dispersion parameters may be
adjusted by incorporating (1 + p4/2)~! or an estimate thereof as a
prior weight. The use of such an adjustment has been proposed by
Prentice (1988) in the context of over-dispersed binary data.

10.5.2 Adjustment for degrees of freedom

The dispersion estimating equations derived from Q% make no
allowance for the fact that p parameters have been fitted to the
means. The effect of fitting is to decrease the average size of
the dispersion response variables d;. A simple adjustment is to
multiply the second term in Q* by v/n, where v = n — p is the
residual degrees of freedom for the deviance. Thus, for the purpose
of fitting the dispersion response model, we use the modified Q,T,,



10.5 ADJUSTMENTS OF THE ESTIMATING EQUATIONS 363

defined by
~2Q4 = Z :;— + %Z log(¢:V (u:))- (10.6)

For a model in which the dispersion is constant, (¢; = ¢), this
adjustment gives
¢=DJv

by analogy with the unbiased estimator of variance for Normal-
theory linear models. More generally, this adjustment yields
approximate restricted maximum likelihood estimates, which are
widely preferred to unadjusted maximume-likelihood estimates for
the estimation of variance components and covariance functions,
See section 7.2. If, as. is common, the dispersion link is the
logarithm, the modification changes only the intercept, which is
often of little interest. However, with a beta-binomial model, for
which the dispersion factor is

(b,‘ = 1+9(m,—1),

@3, and the unmodified Q* give different estimates of 6.

10.5.3 Summary of estimating equations for the dispersion model

The preceding discussion indicates that there is a variety of minor
variations among the possible estimating equations for fitting the
dispersion model. There are at least 23 = 8 variations based on
the following:

1. choice between d = rZ and d = r3;
2. choice between prior weight 1 and (1 + p4/2)7;
3. adjustment for degrees of freedom or not.

On balance it appears desirable to make the adjustment for degrees
of freedom. Adjustment for kurtosis also seems to be desirable
provided that a reasonably accurate estimate of p, is available.
The choice between r2 and 72 is less clear-cut.

Note that Q* and Qj; provide an optimizing criterion using
extended quasi-likelihood for only two of these forms. For the
remainder we must rely on the theory of optimum estimating
equations. Further work is required to give guidance for selection
among these alternatives. Yet another form is based on work by
Godambe and Thompson (1988), which we describe next.
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10.6 Joint optimum estimating equations
Beginning with the pair of elementary estimating functions

g1 =Y — p;,
g2i = (Yi ~ ) ~ sV (13),

both of which have zero mean, optimum estimating equations for
both the regression parameters and the dispersion parameters may
be derived using the method described in section 9.4. In order
to derive these equations we require the covariance matrix of g
together with the expected derivative matrix of g with respect to
the parameters. In carrying out this differentiation it is convenient
initially to take the parameters (u;, ¢;) to be unrestricted.
The covariance matrix of (gy5, g2;) is

_ [ .2 K3
Vi= (ng n4+2n§> ’
in which k2 = ¢;V(p;) and the subscript ¢ has been omitted from
the cumulants. The inverse covariance matrix is

V-_l - i Ky + 2"6% ~K3
: A ~K3 k2 )’

where A = det(V;) = x3(2 + ps — p3).
The negative expected derivative matrix of (g;;, g2;) with respect

to (,u,-,q&,-) is
1 0
Di = (¢V’ V)

with rows indexed by the components of g. Thus

DTV-! = 1 e+ 262 ~ K3V’ KopV' — K3
L A —k3V KoV ’

Provided that the regression and dispersion models have no param-
eters in common, the estimating equations thus obtained for (8,%)
are

Ky + 263 ~ K3V’ o k2pV ks Opi _
sV 86, (10.7)
> (g2~ "33911'/'{'2)%‘67: = 0.
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The subscript 7 has been omitted in all coefficients. These are not
the same as the extended quasi-likelihood equations (10.4), (10.5),
even after (10.5) is adjusted for kurtosis.

Note that if k3 = ko¢V’, a property of exponential-family
distributions, we have

-1
Txr—1 __ I€2 0
DV = (—n3V/A K,2V/A>'

It follows that if the regression and dispersion models have no
parameters in common then the estimating equations for the
regression parameters are

Yi — Bi Oy :
7 N~ aa =Y lev"')p)
~ ¢:V (1) 0B;

which is identical to the quasi-likelihood equation (10.4).

10.7 Example: the production of leaf-springs for trucks

These data, taken from Pignatiello and Ramberg (1985), relate to
the production of leaf springs for trucks. A heat treatment is to be
designed such that the free height y of a spring in an unloaded
condition is as close as possible in mean value to eight inches,
while having as small a variability as possible. To this end a one
half fraction of a 2° experiment, with each treatment combination
replicated three times, was performed using the factors

B: furnace temperature,
C': heating time,

D: transfer time,

E: hold-down time,

O: quench oil temperature.

The data are given in Table 10.2.

Of the five factors O is somewhat different from the others in
that it is apparently less easily controlled. We shall nevertheless
follow Nair and Pregibon (1988) by treating it in the same way as
the others.
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Table 10.2. Data for a replicated 2°~! factorial experiment to investigate
the free height of leaf springsJr

Factor levels

Run B C D E 0 Free height
1 - - — — - 7.78 7.78 7.81
9 + - - + — 8.15 8.18 7.88
3 - + — + - 7.50 7.56 7.50
4 + + - - - 7.59 7.56 7.75
5 - - + + — 7.94 8.00 7.88
6 + - + — - 7.69 8.09 8.06
7 - + + - - 7.56 7.62 7.44
8 + + + + - 7.56 7.81 7.69
9 - - — - + 7.50 7.25 7.12
10 + - - + + 7.88 7.88 7.44
11 - + - + + 7.50 7.56 7.50
12 + + — — + 7.63 7.75 7.56
13 — — + + + 7.32 7.44 7.44
14 + - + - + 7.56 7.69 7.62
15 - + + - + 7.18 7.18 7.25
16 + + + + + 7.81 7.50 7.59

TSource: Pignatiello and Ramberg (1985).

We require models for both the mean and dispersion effects
with a view to finding the factor combination that minimizes the
dispersion while keeping the mean close to the target value of eight
inches. We begin by modelling the mean assuming homogeneity
of the dispersion. The range of the response variable is small in
relation to the mean response, so we are unlikely to find evidence
to cast doubt on the assumptions of Normality or constancy of
variance. In Fig. 10.1, where the run variances plotted against the
run means, there is little evidence that the variance changes with
the mean response.

A main effects model for the mean response shows that D has a
negligible effect, and a model with all two-factor interactions shows
the effect of E to be independent of the rest. Finally we arrive at
a linear predictor of the form

M=(B+C).O+E.
Note that the defining contrast for this design is
I=BCDE.
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Fig. 10.1 Run variances (log scale) plotted against run means for leaf-
spring data.

Thus the aliased pairs of two-factor interactions are
BD=CE, CD=BE, DE=BC

Fortunately none of these interactions is significant in this analysis.
A shortened analysis of variance table takes the form

Term S.8. d.f. m.s.
B+C+E+O 1.898 4 0.4745
B.O+C.O 0.414 2 0.2071
Total M 2.312 6 0.3853
Rest of treatments 0.124 9 0.0138
Replicates 0.530 32 0.0166

The table of means for model M shows that C' has virtually no
effect at the higher level of O, but has a negative effect at the lower
level. Increased furnace temperature (B) has a positive effect at
all levels of O, but is twice as great at the higher level of O than at
the lower level. Hold-down time (E) has a positive effect regardless
of the other factors. The combination giving a fitted value closest
to the target of eight inches is

(B,C,D,E,O) = (+,~, +,—,~), followed by (+,~, %, +,~).
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The fitted means are 7.953 and 8.057 respectively.

The analysis of dispersion is less clear cut. The original analysis
by Pignatiello and Ramberg uses a linear model for the logarithms
of the within-replicate sample variances. They selected the largest
of the 15 factorial contrasts, which were B, DO, BCO = DEO,
CD = BF and CDO = BEQO. However, this selection procedure
ignores the marginality conditions discussed in section 3.5, and
carries a strong risk of selecting the accidentally large contrasts.
A further objection to this analysis is that, with high probability,
at least one of the sample variances will be exceptionally small.
This may occur because of rounding. In the first run, for example,
the sample variance is 0.0003, the next smallest being 0.0012. On
the log scale, the sample variance for run 1 is exceptionally large
and negative, which explains why such high-order interactions were
found in the dispersion model.

If the original data were Normally distributed, the sample
variances would be distributed as s> ~ $x3/2 with ¢ = o2. More
generally, for samples of size r = 3, we have

K 2r2
b + 2

E(s®)=ry = ¢, var(s’)= = ¢*(1+ pa/3).

r—1
Thus we treat the replicate variances as the response, using gamma
errors and log link. If ps is taken as zero the distribution of
s? is effectively exponential, so the scale factor should then be
taken to be unity. The resulting fits show that only B and C
have any appreciable dispersion effects. The deviances for selected
dispersion models are shown together with the extended quasi-
likelihood criterion in Table 10.3.

Table 10.3 Deviances for selected log-linear dispersion models fitted to
the leaf-spring data

Dispersion Gamma Quasi-likelihood
model deviance d.f. -2Q%, d.f.
1 26.57 15 106.9 31
B 20.58 14 101.1 30
C 22.99 14 103.4 30
B+ C 16.08 13 96.4 29
B+C+D+E+O0O 15.00 10 95.4 26

B.C 15.89 12 96.3 28
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The parameter estimates and standard errors for the log-linear
model B + C are R
b= 1.369+0.514,

(10.8)
¢ =—1.092 + 0.514,

showing that the variance at the higher furnace temperature (B)
exceeds the variance at the lower temperature by an estimated
factor of exp(1.369) =~ 3.9. The effect of increased heating time (C)
is to decrease the variance by the factor exp(—1.092) =~ 0.34. The
standard errors given above are based on the estimate 1 + p4/3 =
1.056 = X?/13 obtained from the dispersion model B + C. Note
that for exponential errors the expected value of the gamma mean
deviance is approximately 7/6, which is almost exactly what is
observed!

Table 10.4 Deviances for selected log-linear dispersion models

Dispersion model -2Q%, d.f.
1 135.5 40

B 132.7 39

c 134.7 39

B+C 132.4 38
B+C+D+E+0O 130.8 35
B.E 131.5 37

So far we have not used the information in the null contrasts
for the means to augment the replicate variance estimates. We
therefore repeat the above exercise using model M = (B+C).O+FE
for the means. The results as shown in Table 10.4 are in conflict
with those in Table 10.3. In particular C' now has a negligible
effect, and the effect of B is much reduced. The joint effect of
B and C, which was highly significant in the analysis based on
replicates (deviance reduction = 10.5), is now insignificant with a
deviance reduction of only 3.1 on two degrees of freedom.

One possible explanation is that the null contrasts and the
replicate contrasts are measuring variability of two different types
or from different sources. To examine this possibility in more detail
we now present an analysis of the null contrasts alone, ignoring the
replicate contrasts. To accomplish this we replace all observations
by their run means and fit the dispersion models as before. In this
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Table 10.5 Deviances for selected log-linear dispersion
models using the between-runs contrasts

Dispersion model -2Q%, d.f.
1 67.4 8
B 55.1 7
C 8.13 7
B+C -3.16 6
B.C —-5.63 b)

way the replicate variance is eliminated, and the analysis then uses
information from the null contrasts alone.

The results of a sequence of fits are as shown in Table 10.5.
There are insufficient data available for fitting the dispersion model
B+C+D+E+0. These results show a very large effect for C, and
a smaller but substantial effect for B. The parameter estimates for
the dispersion model B+C are

b= —1.820 + 0.943,
é= 4.785+0.943,

and so are of opposite sign to those derived from the replicate-
contrasts analysis (10.11). This reversal of sign explains the
apparently small effects of B and C obtained from the combined
analysis using all contrasts.

10.8 Bibliographic notes

The idea of using a linked pair of generalized linear models for the
simultaneous modelling of mean and dispersion effects was first put
forward by Pregibon (1984). For linear models with Normal errors
the idea is much older, a simple case being that of heterogeneous
variances defined by a grouping factor; see Aitkin (1987) for a
general treatment or Cook and Weisberg (1983), who discuss score
tests. Smyth (985) compares different algorithms for the estimation
of mean and dispersion effects.
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10.9 Further results and exercises 10

10.1 Using expression (15.10) or (C.4) from Appendix C justify
the claim following (10.8) that, for exponential observations, the
expected value of the mean deviance is approximately 7/6.

10.2 Explain why it is necessary in (10.7) to impose the condition
that the regression and dispersion models should have no param-
eters in common, although they may have covariates and factors in
common. Discuss briefly whether this is a reasonable condition in
practice.

10.3 Derive the results listed in Table 10.1 using the assumptions
of section 10.5.1 for over-dispersed Poisson and binomial distribu-
tions.

10.4 Show that the expected Fisher information matrix derived
from @ for the parameters (3, ) is block-diagonal



CHAPTER 11

Models with additional
non-linear parameters

11.1 Introduction

The word ‘non-linear’ in the chapter title is used in a specialized
sense because, apart from the subset of classical linear models, all
generalized linear models are in a strict sense non-linear. However,
their non-linearity is limited in that it enters only through the
variance function and the link function, the linearity of terms
contributing to the linear predictor being preserved.

So far we have assumed that the variance is a known function of
the mean, except possibly for a multiplicative dispersion parameter,
and that the link function is also known. In this chapter we describe
a number of models in which unknown parameters enter either the
variance or the link function or both. In addition we also consider
the use of terms in the linear predictor of an intrinsically non-linear
type. One example of such a model occurred in section 8.4.4, where

logp =060+ T+ B-1/(T —6)

was used as a model for the mean. Parameters such as 6 are called
non-linear in this specialized sense.

Intrinsically non-linear parameters complicate the fitting algo-
rithm either by introducing an extra level of iteration or by intro-
ducing covariates that change at each iteration. Either of these
effects may render convergence of the iterative process much less
certain, and may also require starting values to be given for the non-
linear parameters. In addition asymptotic covariances for the linear
terms may be produced by the fitting algorithm conditional on
fixed values of the non-linear parameters, and so need adjustment
if uncertainties in the non-linear parameters are to be allowed for.
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11.2 Parameters in the variance function

In the generalized linear models described in Chapters 3-8, five
distributions for error were used. Two of these, the Normal and
gamma, contain dispersion parameters explicitly. The discrete dis-
tributions in their standard forms do not contain such parameters,
although here quasi-likelihood arguments extended the analysis to
include an unknown dispersion parameter also. Provided that the
dispersion parameter is constant, its value is not required in the
solution of the likelihood equations for fi In that sense o2 plays
a special role and its estimation is treated separately from the
regression parameters.

The negative binomial distribution provides an example of a
variance function containing an unknown parameter that is not a
dispersion parameter. The distribution, which is discrete, can be
written in the form

(y+k—-1) a¥

; =0,1,2...
Y (k=1 (1+a)ytk’ y=01,

pr(Y = y;a, k) =

This may be contrasted with the expression in section 6.2.3 in which
a different parameterization is used. In the above parameterization,
the mean and variance are given by

E(Y)
var(Y) = ka + ka® = u + p¥/k.

p=ka,

The log likelihood can be written in the form
I =ylog{ea/(1 +a)} — klog(l + a) + (function of y, k),

which, for fixed k, has the form of a generalized linear model with

canonical link
. o 4
=log| —— ) =log{ —£—
7 Og(1+a> Og(u+k>’

and variance function

V =u+ p¥k.
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The term p can be thought of as the Poisson variance function
and p%k as the extra component arising from mixing the Poisson
distribution with a gamma distribution for the mean to obtain the
negative binomial.

Ordinarily k is not known a prtori, and is clearly not a dispersion
parameter. Estimates of k for single samples and for several
samples have been discussed by Anscombe (1949), but we require
an estimator for arbitrarily structured data. The maximum-
likelihood estimate requires the solutien of a non-linear equation
involving the digamma function. Alternative estimators are those
that make the mean deviance equal to unity or the Pearson X2
statistic equal to its expectation.

Little use seems to have been made of the negative binomial dis-
tribution in applications; in particular the use of the canonical link
is problematical because it makes the linear predictor a function
of a parameter of the variance function. Note that if 4 varies from
observation to observation the above formulation assumes that, of
the two parameters a and k in the mixing distribution, only «
changes with k remaining fixed. See Manton et al. (1981) for an
analysis of survey data in which both a and k are made to depend
upon the classifying covariates; such a model, though of undoubted
interest, lies outside the present framework.

For another example of additional parameters in the variance
function, consider data that are to be modelled with gamma errors,
but which have been collected with an absolute measurement
(rounding) error, rather than with the desirable proportional error.
With proportional rounding error or the retention of a fixed number
of digits, the error variance retains the form V = o2u?: with
absolute rounding error, or the retention of a fixed number of
decimal places, the variance function takes the form V = 72 +02u2.
The first term arises from the constant rounding error and the
second from the assumed underlying gamma errors. The effect of
this modified variance function is to reduce relatively the weight
given to small observations. The quasi-likelihood model with this
variance function would require the estimation of o%/7% in the
same way that k must be estimated for models using the negative
binomial distribution.

Note that rounding from Z to Y has the effect of increasing
the variance. In fact the rounding error, although numerically a
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deterministic function of Z, is essentially statistically independent
of Z, and not of Y. See Exercise 11.1.

11.3 Parameters in the link function

While link functions in generalized linear models are usually as-
sumed known, it may be useful on occasion to assume that the
link comes from a class of functions, members of the class being
indexed by one or more unknown parameters. The goodness of fit
expressed as a function of these parameters can then be inspected
to see what range of parameter values is consistent with the data.
If a particular value is of interest we can perform a goodness-of-
link test (Pregibon, 1980) by comparing the deviance for that value
with the deviance for the best-fitting value, or by using a score test.

11.3.1 One link parameter

A commonly considered class of link functions is that given by the
power function, either in the form

= pt for A # 0,
logp for A =0,

or, in the form having continuity at A = 0,

Exploration of this class of functions, used as transformations of
the data rather than of the fitted values, was considered by Box
and Cox (1964). For any fixed value of A the model can be fitted
with that power link function, and the deviance obtained in the
usual way. When this is done for a range of A-values, the deviances
may be plotted against A to display the range of A-values that are
most consistent with the observed data (and the model formula
used).

If we wish to optimize over A we can adopt the linearizing
strategy proposed by Pregibon (1980), whereby we expand the link
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function in a Taylor series about a fixed Ag and take only the linear
term. Thus for the power family we have

9 A) =t =~ g(p; Ao) + (A — Ao)gh (15 Ao)
= 2 + (A = Ag)p™ log p, (11.1)

so that we can approximate the correct link function = p* by

no = p* = p* — (A — Ao log
= Y Bjz; — (A — Ao)p™ log pu.

Given a first estimate Ag of A, with corresponding fitted values
[1g, we then extend the linear predictor to include the covariate
—ﬂ(’}" log fig. Its parameter estimate gives the first-order adjust-
ment to Ap. The reduction in deviance from its inclusion gives
a test of whether Ay is an acceptable value for A. To obtain the
maximum-likelihood estimate for A we repeat the above process
forming a new adjusted value for A at each stage. Convergence
is not guaranteed, however, and requires that Ay, our starting
value, be sufficiently close to A for the linear expansion (11.1) to
be adequate. To obtain convergence, an inner iteration, whereby
the extra covariate’s values are refined for fixed Ag, may be needed.
Pregibon (1980) comments ‘that the method is likely to be most
useful for determining if a reasonable fit can be improved, rather
than for the somewhat more optimistic goal of correcting a hopeless
situation’.

Figure 11.1 shows the effect with the car-insurance data of
changing the link by varying A in the power family n = p*. The
linear predictor contains the main effects only and the variance
function is taken as V(i) oc 2. The minimum deviance of 124.51
occurs near A = —1, corresponding to the reciprocal link originally
chosen for the analysis, though the 95% limits

124.51
108

{A:dev(A) — 12451 < x 3.93}

show an appreciable range of compatible values for A, including
zero, corresponding to the log link.
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0.5 1.0

Fig. 11.1 Car insurance data: deviance for varying A in the link function
n = p, with nominal 95% confidence limits. Linear predictor includes
main effects, and variance function o 0.

11.3.2 More than one link parameter

The above method extends in principle to more than one parameter
in the link function. For each parameter A, we add an extra

covariate dg
~(5%)sen

to the model matrix and its parameter estimate gives the first-order
adjustment to the starting value Aq. Pregibon (1980) discusses two
examples with two parameters; the first is given by

gl a, A) = {(u+ ) — 1}/,

i.e. a shifted form of the power family, indexed by A, but with an
added unknown origin a. Note that

g(p; 1,1) = p,

so that the identity link is a member of the family.

The second of Pregibon’s examples is useful for models based
on tolerance distributions, such as probit analysis. The generalized
link function is given by

A—6 A+6
ﬂmAJ)=WA 61—(1 ? .
— +9
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when 7 is the proportion responding, i.e. u/m. The family contains
the logit link as the limiting form

A}ggo g(u; A, 6).

The one-parameter link family for binomial data,

9(ms A) =log[{(1/(1 —m)* = 1}/1],

contains both the logistic (A = 1) and complementary log-log link
(A — 0) as special cases. This family may be used to assess the
adequacy of an assumed linear logistic model against alternatives
in the direction of the complementary log-log link.

11.3.3 Transformation of data vs transformation of fitted values

Transformations of fitted values through link functions (whether
with or without unknown parameters) must be distinguished from
transformations of the data values. The latter are fully discussed in
Box and Cox (1964), who deal in particular with the power family.
In using a function g¢(y), rather than y, in the analysis we usually
seek a transformation that yields simultaneously additive effects in
the systematic part of the model and constancy of variance for the
random part. Such a search may be successful; see, for example,
the data set on survival times, given by Box and Cox, where a
reciprocal transformation of the data allowed a linear regression
model to be applied. However, there is no guarantee that both
properties will result from the same transformation. Thus Nelder
and Wedderburn (1972) in their reanalysis of the tuberculin-test
data of Fisher (1949) (see the example in section 6.3.1) show that
while a square-root transformation produces desirable error prop-
erties, a log transformation is required for additivity of effects. It is
an advantage of generalized linear models over data transformation
methods that the transformation to produce additivity can be made
through the link function quite independently of any transforma-
tion of the data to produce approximate Normality or constancy of
variance. Indeed the latter is itself often rendered unnecessary by
the possibility of using a variance function other than a constant.
Thus with the Fisher data mentioned above analysis of

Y with variance function V o p

and of
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Y2 with variance function V = constant,

using a log link for each, produce effectively identical results (Baker
and Nelder, 1978, Appendix D).

11.4 Non-linear parameters in the covariates

As remarked in section 3.3.1 a function of z, such as e*?, is an

acceptable covariate in a linear predictor, provided that k is known;
we simply use the values of e¥* in place of z in the model matrix.
However, if k is to be estimated from the data, then non-linearity
arises. Box and Tidwell (1962) describe a fitting technique by
linearization, which follows closely that for non-linear parameters
in the link function described above. If g(z; ) is the covariate to
be used, with 6 unknown, we expand about an initial value 8y to
give the linear approximation

9(z30) = 9(z360) + (6 — 60)[09/ OBloay-
Thus if a non-linear term in the linear predictor is given by
Bg(z; 6),
we replace it by two linear terms
Bu + v,
where
u=g(z;60), v=1[0g/00ls-0, and = p(6—bo)

An extra level of iteration is again required, and after fitting a
model including u and v as covariates we obtain

6, =60+ %/

as the improved estimate, and iterate. Convergence is not guar-
anteed for starting values arbitrarily far from the solution. If the
process does converge then the presence of the extra term yv en-
sures that the asymptotic covariances produced for the remaining
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parameters are correctly adjusted for the fitting of 6. If we wish
to obtain the asymptotic variance of 8 directly, we need a final
iteration with Bv in the place of v; the components of (X7 WX)~
corresponding to that covariate then give the approximate variance
of 8 and its covariances with the other parameters.

While this technique is undoubtedly useful, and indeed probably
under-used, it is usually unwise to try to include more than a very
few non-linear parameters in this way, especially when the other
covariates are themselves appreciably correlated in the data set. It
will usually be found that estimates of the non-linear parameters
have large sampling errors, and are highly correlated with the linear
parameters and perhaps with each other. This is especially likely
to be so in models where the systematic part consists of sums of
exponentials of the form

Bo + Brek1®r + Brekaez,

with the ks in the exponents requiring to be estimated as well as
the fs.

One example where non-linear parameters arise in a fairly
natural way concerns models for the joint action of a mixture
of drugs (see the example in section 11.5.3). Here, apart from
a single parameter that enters the model non-linearly, the model is
of the generalized linear type with covariate log(z; + 6z2), where
z, and zy are the amounts of the two drugs in the mixture. One
method of analysis is to use the linearizing technique described
above. Alternatively, following Darby and Ellis (1976), we may
maximize the likelihood for various values of § and plot the residual
sum of squares RSS(6) against 6, thereby obtaining a profile
deviance curve similar to that shown in Fig. 11.1. The minimum,
usually unique, gives § and the residual mean deviance s? =
D(6)/ (n —p), where p is the total number of parameters, including
8. Approximate confidence limits for 8 can be found from

{6: RSS(8) — RSS(0) < s*F{,_, o}
where F

l.n—p, 18 the upper 100(1 — @) percentage point of the
F-distribution on 1 and n — p degrees of freedom.

Unfortunately this method of analysis does not allow the covari-
ances of the parameter estimates, allowing for the uncertainty in
8, to be calculated easily. If these are required, the linearization
technique should be used (see example in section 11.5.3).
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11.5 Examples

11.5.1 The effects of fertilizers on coastal Bermuda grass

Welch et al. (1963) published the results of a 43 factorial experiment
with the three major plant nutrients, nitrogen (N), phosphorus (P)
and potassium (K), on the yield of coastal Bermuda grass. The
experiment was performed to produce a response surface for the
effects of the three nutrients, so that an optimal dressing could be
predicted. The four levels for the three factors (all in Ib/acre) were:

Levels 1 2 3 4
N 0 100 200 400
P 0 22 44 88
K 0 42 84 168

The grass was cut about every five weeks and oven-dried. The
yields (in tons/acre) averaged over the three years 1955-57 and
three replicates are shown in Table 11.1 with the factor levels
coded 0, 1, 2, 3. Inspection of the data shows a hyperbolic type of
response to the nutrients but the yield for the (0,0,0) plot shows
that it will be necessary to allow for the nutrients already present
in the soil if inverse polynomials (Section 7.3.3) are to be used to
describe the response surface. We consider, therefore, an inverse
linear response surface with

1/p=n=Fo+ fruy + Bauz + P3us,

where u; = 1/(z; + o), ¢ = 1,2,3. Here z;( = 1,2,3) are the
applied amounts of N, P and K respectively, while a; are the
(unknown) amounts in the soil. If we assume for the moment that
the proportional standard deviation of the yield is constant, we
have a model with gamma errors and the reciprocal (canonical)
link, but with three non-linear parameters «;, a2 and as to be
estimated. The linearizing technique of section 11.4 leads to our
adding the extra covariates v; = Ou;/da; = —u? to the model,
giving the corrections

6ai = Ci/bi; i= 1,2,3,
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Table 11.1 Yields of coastal Bermuda grass as affected by N, P and K

Nitrogen Phosphorus Potassium (K)

(N) (P) 0 1 2 3
0 0 1.98 2.13 2.19 1.97
0 1 2.38 2.24 2.10 2.60
0 2 2.18 2.56 2.22 2.47
0 3 2.22 2.47 2.94 2.48
1 0 3.88 3.91 3.66 4.07
1 1 4.35 4.59 4.47 4.55
1 2 4.14 4.36 4.55 4.35
1 3 4.26 4.72 4.83 4.85
2 0 4.40 4.91 5.10 5.23
2 1 5.01 5.64 5.68 5.60
2 2 4.77 5.69 5.80 6.07
2 3 5.17 5.45 5.85 6.43
3 0 4.43 5.31 5.15 5.87
3 1 4.95 6.27 6.49 6.54
3 2 5.22 6.27 6.35 6.72
3 3 5.66 6.24 7.11 7.32

Data from Welch et al. (1963).

to the current estimates of «; in each iteration, where a; is the
estimate of oy, ¢; is the coefficient of v; and b; that of u;. Starting
values are required for a; and these can be obtained by taking
reciprocals of the data, forming N, P and K margins and plotting
these against u; for various trial values of a;. The following
suggested values are obtained

a, = 40, ay = 22, az = 32.
Six iterations refine these to
a) = 44.60, az = 15.56, a3z = 32.39,
with a final deviance of 0.1965 on 57d.f., corresponding to a
percentage standard deviation per observation of 5.9. The X?
statistic is 0.1986, trivially different from the deviance, as is typical

when the coefficient of variation is small. A final iteration with v;
replaced by b;v; enables us to obtain the asymptotic standard errors
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of the a; directly. The parameter estimates with their standard
errors, are given by:

bo 0.09746 £ 0.00963
b 13.5 £ 1.350
ba 0.7007 £ 0.457
b3 1.336 £ 0.956
a1 44.6 + 4.18

a2 15.6 £+ 8.44

as 32.4+19.1

These agree closely with those given by Nelder (1966) who used an
approximate non-iterative method.

The correlation matrix shows high correlations between the a;
and b;. These are respectively

0.9702, 0.9850, 0.9849,

and reflect the fact that if the a; are taken as known the standard
errors of the b; are reduced by factors of from 4 to 6. Note too the
large standard errors for a; and a3, which do not exclude impossible
negative values; the assumptions of (asymptotic) Normality must
be treated cautiously here.

The inverse linearity of the response may be tested by including
the inverse quadratic terms (z; + ;) in the model. This gives a
deviance of 0.1938 with 54d.f., a negligible reduction. The Pearson
residuals (y — f)/fz show one possible outlier, the yield 2.94 for
levels (0,3,2). The fitted value is 2.43, so that the possibility of a
transposition at some stage from 2.49 to 2.94 might be investigated.
Omission of this point does not change the fit greatly, the largest
effect being on b;. A plot of the residuals against fitted values does
not contradict the assumption of gamma errors.

As shown in Nelder (1966), the quadratic polynomial with
10 parameters fits less well than the inverse linear surface with
unknown origins, which has seven parameters. The latter is also
additive for the three nutrients whereas the quadratic polynomial
requires all the two-factor interaction terms for an adequate fit.
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11.5.2 Assay of an insecticide with a synergist

The data for this example, shown in Table 11.2, are taken from a
forthcoming paper by Morse, McKinlay and Spurr on the estima-
tion of lowest-cost mixtures of insecticides and synergists. They
relate to assays on a grasshopper Melanopus sanguinipes (F.) with
the insecticide carbofuran and the synergist piperonyl butoxide
(PB), which enhances the toxicity of the insecticide. The first
model to be tried is of a type suggested by Hewlett (1969) and
having the form of a logit link and binomial error with ‘linear’
predictor given by

B2x2
6+ zy’

77=a+ﬂ1:c1+

where z, is the log dose of insecticide and z3 is the dose of
the synergist PB. The effect of the synergist is thus modelled as
affecting the intercept by adding a hyperbolic term tending to &;
for large 2. The slope of 3, is assumed unaffected by the amount of
PB. If § were known we could set u = x2/(6 +z2) and a generalized
linear model would result. To estimate § we set up u for some
starting value of § and include the derivative du/36 = —u?/z,
as a further covariate. Starting with 6 = 1 the standard process
converges in four iterations to § = 1.763 and a deviance of 53.34
with 11d.f. The fit is poor with a deviance nearly five times the
base level of 11.

Inspection of the residuals shows that the major part of the
discrepancy comes from the low doses of insecticide where the
fitted kills are all considerably greater than those measured. The
alternative links, probit and complementary log-log, give very
similar results, suggesting that the log dose is not a satisfactory
scale for the insecticide. The low Kkills for the low doses suggest
that there may be a threshold value for the insecticide, and we can
test this by putting a second non-linear parameter 6 in the model
to represent the threshold. The model now takes the form

n=a+ pilog(z — 0} + Bazxa /(6 + x2),

where z is the dose of insecticide. Given current values, 6y and 6o,
of 8 and 6, the linearized form is given by

_ 1 T2 T2
n = a+ flog(z — bo) 71(z_90>+ﬂ2(60+x2> 72(‘50+$2)2
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Table 11.2 Data from assay on insectictde and synergist

Number killed, Sample size, Dose of Dose of
y m insecticide synergist
7 100 4 0
59 200 5 0
115 300 8 0
149 300 10 0
178 300 15 0
229 300 20 0
5 100 2 3.9
43 100 5 3.9
76 100 ' 10 3.9
4 100 2 19.5
57 100 5 19.5
83 100 10 19.5
6 100 2 39.0
57 100 5 39.0
84 100 10 39.0

Data courtesy of Drs Morse, McKinlay and Spurr of Agriculture Canada.

With starting values 6 = 1.76 from the first model and 6 = 1.5
the estimation process again converges quickly to give estimates
6 = 1.67, 6 = 2.06, with a deviance of 18.70 with 10d.f., clearly
a great improvement on the first model. A test of variation in
the slope 8) with level of 3 now gives no significant reduction in
the deviance, whereas with the first model the deviance was nearly
halved by allowing the slope to vary. A final iteration multiplying
the two derivative covariates by b, and by and using the mean
deviance as a heterogeneity factor gives the estimates, standard
errors and correlations shown in Table 11.3.

Table 11.3 Results of the analysis of the insecticide-synergist assay

Parameter  Estimate SE Correlations
o -2.896 0.340
A 1.345 0.143 -0.97
[ 1.674 0.154 0.78 -0.77
B2 1.708 0.241 -0.31 0.26 -0.03
é 2.061 1.49 0.09 -0.07 0.06 0.61

Note that the two non-linear parameters are estimated almost
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independently (correlation -0.07), and that ¢ is ill-determined. In
particular 6 must be positive, so that the standard error is suspect;
a plot of the deviance against fixed values of § near 2 shows a curve
that is non-quadratic. The use of a square-root transformation for
0 is a great improvement and indicates that confidence limits for
6 should be calculated on the square-root scale. The fitting of a
separate intercept for each level of synergist in place of the term in
z2/(6+x2) gives a trivial reduction in deviance, indicating that the
hyperbolic form is satisfactory. There remain two large residuals,
for units 1 and 2, of opposite sign, whose removal from the fit
reduces the deviance from 18.70 to 5.69; however, there seems to
be no good reason to reject them. The relevant values are:

Unit y m I P
1 7 100 14.67 -2.17
2 59 200 43.51 2.66

This analysis indicates that the effect of doubling the dose of
insecticide is to increase the odds of a kill by an estimated factor
of 261 = 2.54. Since there is apparently no interaction between
the insecticide dose and the synergist dose, this odds factor of 2.54
applies at any fixed dose of the synergist. The synergist exhibits
decreasing returns of scale, a large dose increasing the odds of a
kill by the factor exp(,@z) = 5.52. A moderate dose of 19.5 units
increases the odds of a kill by an estimated exp(1.54) = 4.69. These
factors apply at any fixed dose of insecticide.

11.5.3 Mixtures of drugs

If two drugs provoke similar responses, a mixture of both may
exhibit either additive or synergistic effects. If the effect is additive
one drug can be replaced by a suitable proportion of the other to
give the same response. With positive synergism the joint effect is
greater than the sum of the effects of the two drugs administered
separately: negative synergism is the term used to describe the
opposite effect. In an experiment to test for such synergism, Darby
and Ellis (1976) quote the data of Table 11.4, where the response
y is the conversion of (3-3H)glucose to toluene-extractable lipids in
isolated rat fat cells, and the two drugs are insulin in two forms,
(1) standard and (2) A1-B29 suberoyl insulin. These are given in
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seven different mixtures, each at two total doses; there are four
replicate readings for the 14 treatments. Darby and Ellis proposed
the model

E(Yiji) = a + Blog(z1i; + 0z2i5) (11.2)

with constant-variance errors. Here ¢ indexes the mixtures, j the
total dose and k the replicates, while z;;; and x2;; are the amounts
of the two drugs given for mixture ¢ with dose j.

Table 11.4 Results of insulin assay

Ratio of insulin
to A1-B29 Total dose
Mizture  suberoyl insulin  (pmol 17')  Responses for four replicates

1 1:0 20.9 140 144 143 15.2
41.9 24.6 224 224 26.7

2 1:1.85 52.9 11.7 150 129 83
106 20.6 18.0 19.6 20.5

3 1:5.56 101 106 139 11.5 15.5
202 234 196 20.0 17.8

4 1:16.7 181 13.8 126 123 14.0
362 158 174 180 17.0

5 1:50.0 261 85 90 134 135
522 206 175 179 168

6 1:150 309 12.7 95 121 89
617 186 200 19.0 21.1

7 0:1 340 123 150 10.1 8.8
681 209 171 172 174

Data from Darby and Ellis (1976).

Here 6 is the non-linear parameter and we can fit the model by
linearizing it, using the two covariates

ou To
=l = e— = ———
u = log(z, + 0z2), v 50~ 7.3 02a°

we fit @ + Ju + yv for some value 6, and 6 is then updated
by 8, = 6y + v/B. The estimate obtained after iteration is
6 = 0.0461 0.0036, with a corresponding deviance (residual
sum of squares) of 244.0 with 53d.f. Comparing this fit with the
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replicate error of 154.8 with 42d.f., we find an F-value for residual
treatment variation of F'(11,42) = 2.20, just beyond the 5% point.
Darby and Ellis are concerned to compare this model with one
in which @ is allowed to vary with the mixture, and in doing so
to provide possible evidence of synergism or antagonism. Such a
model, which requires a set of partial-derivative covariates, one for
each mixture, reduces the deviance to 194.6 with 48d.f., giving a
residual F'(6,42) = 1.80. While no longer significant at 5%, there is
still a noticeable lack of fit, which investigation shows to be almost
entirely concentrated in the first ‘mixture’, that for which z; is
zero. Without this we find § = 0.0524 and a deviance of 191.2 with
51d.f., giving a residual treatment deviance of 36.40 with 9d.f., so
that the mean deviance is now close to the replicate error mean
square of 3.686.

On this interpretation the interaction between the two drugs is
expressed by saying that one unit of drug 2 is equivalent to 0.052
units of drug 1 in mixtures containing ratios by weight of 1:1.85
or more. In the absence of drug 2 the actual response to drug 1 is
larger than predicted from the model (11.2), the predicted values
for ‘mixture’ 1 (omitting it from the fit) being 12.9 and 19.8 as
against 14.5 and 24.0 actually measured. Plots of residuals from
the restricted model show no pattern when plotted against fitted
values or mixture number, and there are no obvious outliers. The
final analysis of variance is given in Table 11.5; it should be noted
that this analysis differs somewhat from that of Darby and Ellis.

Table 11.5 Analysis of variance for insulin assay

s.8. d.f. m.s.
Treatments 906.6 13
Model (11.2) 817.4 2 408.7
Separate 6s 49.4 5 9.88
Residual 39.8 6 6.63
Alternative subdivision
Model (11.2) 817.4 2
Removal of
mizture 1 52.8 2 26.4
Residual 36.4 9 4.04

Within treatments 154.8 42 3.686




11.7 EXERCISES 11 389

11.6 Bibliographic notes

The use of linearization methods for the optimization of non-linear

functions has a long history going back to Gauss (1826), who gave

a non-linear surveying problem to illustrate the technique of least

squares. Its use in testing possible non-linear transformation of

covariates was stressed by Box and Tidwell (1962) in the context
of regression analysis.

Pregibon (1980) introduced goodness-of-link tests involving the
estimation of parameters in the link function. Nelder and Pregibon
(1987) described methods for the joint estimation of parameters in
both link and variance functions.

11.7 Further results and exercises 11

11.1 Rounding errors: Let Z be a continuous random variable
whose density f(z) has derivatives satisfying the integrability con-
dition
oo
/ F®(2)dz < o0,
— o0
where ¥ > 2 is an even integer. Suppose that the recorded value is

Y =¢(Z/e),

where (x) is the nearest integer to . If ¢ = 107? then Y is Z
rounded to d decimal places. We can thus write

Z =Y +¢€R,

where —1 < R < 1 is the normalized rounding error.

Using the Euler-Maclaurin summation formula (Bhattacharya
and Rao, 1976, p.256; Jeffreys and Jeffreys, 1956, p.280) or oth-
erwise, show that the joint cumulant generating function of (Z, R)
satisfies

Kz r(&1,8) = Kz(§1) + Kr(§2) + O(€")

Ka(©) = log( 12 ) +0(e)
2
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for small ¢. Hence deduce that to a close approximation for small
¢, R is uniformly distributed on (—%, 1], and that the cumulants
of the rounded random variable Y are given by

12

kr(Y)
kr(Y)

kr(Z) for r odd,
kr(Z) + € k. (R) for r even.

12

[Kolassa and McCullagh, 1987]. The curious aspect of this result
is that even though R is a deterministic function of Z, the joint
asymptotic distribution is such that R and Z are statistically
independent to a high order of approximation, provided v is
moderately large. By contrast, R and Y are also asymptotically
independent, but only to a first order of approximation, In fact
cov(R,Y) ~ evar(R) = ¢/12.

11.2 Deduce that if Z has the gamma distribution with index
v>2and if Y is equal to Z rounded to d decimal places, then

var(Y) ~ u% /v + €%/12,

where ¢ = 10™¢. What would be the effect on the variance function
if Z were rounded to d significant decimal digits rather than to d
decimal places?

11.3 Show that if U is uniformly distributed on (0,1) the first

11 _1
four cumulants are 3, 15, 0 and —35-

11.4 Use the linearization technique described in section 11.4 to
fit the non-linear model (8.4) to the data in Table 8.8. Use gamma,
errors, log link and take weights equal to the batch sizes. Find
the maximum-likelihood estimates of the four parameters, together
with their asymptotic standard errors. Plot the residual deviance
for fixed d against 6 in the range 50-100°C to check on the adequacy
of the Normal approximation for 6.



CHAPTER 12

Model checking

12.1 Introduction

The process of statistical analysis as presented in many textbook
examples appears to take the form

model class ) -
. ( select summarize stop.

mode conclusions
data odel 0; 0

Sometimes the model class has only one member, as, for example,
in the standard analysis of a randomized blocks experiment with
an unstructured treatment factor. At other times model selection
may involve, say, selecting a subset of terms from a full factorial
model, using differences in deviance to decide which terms should
be included. Whether or not the prior model is unique the process
effectively assumes that at least one model from the class is the
right one, so that, after fitting, all that remains is to summarize
the analysis in terms of parameter estimates, standard errors
covariance matrix, and so on.

A good statistician selects his model class carefully, paying
attention to the type and structure of the data. Thus in modelling
counts, fitted values from a model should be confined to non-
negative values, because counts are. Similarly if it is known a priori
that a response to a stimulus variable z tails off beyond a certain
level that is well within the range of z in the data, then a linear
term only in £ will not be adequate for the model.

However, even after a careful selection of model class, the
data themselves may indicate that the particular model selected
is unsuitable. Such indications can take two forms. It may be that
the data as a whole show some systematic departure from the fitted
values, or it may be that a few data values are discrepant from the

391
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rest. The detection of both systematic and isolated discrepancies is
part of the technique of model checking. To exemplify a systematic
discrepancy consider a plot of the residuals r against z, one of the
covariates in the linear predictor. If the fit is good the pattern
expected is null, i.e. no relation between r and z. However, if
the plot shows residuals of one sign concentrated at the ends of
the = scale and residuals of the other sign at the centre then this
may be evidence that z? has been omitted as a covariate in the
linear predictor, or for wrong choice of link function. By contrast,
an isolated discrepancy would occur if a few points have residuals
very far from the rest. This latter pattern indicates something
unusual about those particular points; they may be at the extremes
of the z range in a region where the model does not apply, or,
more mundanely, the values may simply be wrong, the result of
misrecording or errors in transcription.

The effect of model checking is to introduce a loop into the
analysis process as follows:

model class -
( select check summarize

data model model conclusions

— stop.

The introduction of this loop changes profoundly the process of
analysis and the reliability of the final models found. In this
chapter we extend, where possible, techniques originally devised for
regression models to the whole class of generalized linear models,
and develop new ones for aspects of the general class that have no
analogues in the restricted one.

12.2 Techniques in model checking

Model-checking techniques may be either informal or formal. In-
formal techniques rely upon the human mind and eye to detect pat-
tern. Such methods take a successful model to be one that, among
other things, leaves a patternless set of residuals. The argument is
that if we can detect pattern in the residuals we can find a better
model; the practical problem is that any finite set of residuals can
be made to yield some kind of pattern if we look hard enough,
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so that we have to guard against over-interpretation. Nonetheless
informal methods are an important component in model checking.

Formal methods rely on embedding the current model in a wider
class that includes extra parameters. If § is such a parameter, and
8, its value in the current model, then a formal method would
find 0, the estimate of # giving the best fit in the wider class, and
compare the fit at 6 with that at 6y. The current model passes the
check if the inclusion of § as an extra parameter does not markedly
improve the fit. Extra parameters might arise from including an
additional covariate, from embedding a covariate = in a family
h(z;0) indexed by 6, from embedding a link function g(n) in a
similar family g(z;6), or from including a constructed variate, say
7%, obtained from the original fit. Formal methods thus look for
deviations from the fit in certain definite directions thought likely
to be important a priori.

Formal methods for dealing with isolated discrepancies include
adding dummy variates taking the value 1 for the discrepant unit
and zero elsewhere. The change in deviance then measures the
effect of that unit on the fit. The addition of such a dummy variate
has an effect on the fit equivalent to deleting that unit from the data
matrix. In assessing the significance of that change, due allowance
must be made for the effect of having picked the most discrepant
unit.

12.3 Score tests for extra parameters

Many procedures used in model checking can be shown to be special
cases of the class of score tests (Rao, 1973, Chapter 6). Consider
two models, one (Mg) with p parameters and a second (extended)
model (M;) with p + k parameters. The deviance test is based
on the reduction in deviance for M; relative to Mg. The score
test, on the other hand, is based on the log likelihood derivatives
with respect to the extra parameters: both the derivatives and
the Fisher information are computed under My. For generalized
linear models the score statistic can be computed by first fitting
Mg, followed by one step of the iteration for M. The reduction in
X? in this first step is the score statistic, sometimes also called the
quadratic score statistic. Pregibon (1982) gives the details.

The computing advantage of the score test over the deviance
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test is that it requires only a single iteration for the extended
model, compared with iteration to convergence for the deviance
(or likelihood-ratio) test. Note that the two tests give identical
results for linear models with constant variance. For k¥ = 1 and no
nuisance parameters the statistics are interpreted geometrically in
Fig. 12.1a, in which the log likelihood derivative is plotted against
the extra parameter \.

Figure 12.1b shows a typical comparison of the two statistics
over a range of A-values. The solid curve gives the minimum
deviance for the model M for varying values of the extra parameter
A, My itself being defined by A = Ag. The deviance statistic is thus
the difference in ordinates Dy — D1. The score statistic at A\g has
the form S(Ag) = U(Ao)Ti (Ao |-)U (o), where U(Ao) is the log-
likelihood derivative with respect to A at Ao, and i(Ag|-) is the
Fisher information for A as defined in Appendix A, treating the
original parameters as nuisance parameters. Its value for varying A
is shown by the dashed line in Fig 12.1b. At A = A both statistics
are minimized and S(}) = 0.

Neither the score statistic nor the deviance statistic is affected by
re-parameterization of . The difference between the two statistics,
which is typically small, arises chiefly from two sources, (i) the
difference between the observed and expected Fisher information,
and (ii) third-order properties of the log-likelihood function. Wald’s
statistic, which is a quadratic form based on A— A, 1s not similarly
invariant.

12.4 Smoothing as an aid to informal checks

Some informal checks involve assessing a scatter plot for approx-
imate linearity (or other relation) in the underlying trend. This
exercise may be difficult, particularly if the density of points on
the z scale varies widely over the range of z values observed. The
problem is that where the density of z-values is high, the expected
range of y values is larger than in a neighbourhood where the z-
values are less dense. The eye finds it hard to make the necessary
adjustments, and may be greatly helped if the scatter-plot is aug-
mented by an empirical curve produced by a suitable smoothing
algorithm (see, e.g. Cleveland, 1979). Such smoothed curves must
be treated with some caution, however, since the algorithm is quite
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SN

Fig. 12.1a. The geometry of the score test for one parameter. The solid
line is the graph of the log likelihood derivative. The shaded area is one
half of the likelihood ratio statistic: the score statistic is twice the area
of the triangle Ao, U(Xo), A1.

dev(})| \

2
|\ X2(\)

T

Ao

Fig. 12.1b. The geometry of the score test: dashed line is the curve of
X? using the adjusted dependent variate and weights from the fit at A;
solid line is the deviance for varying A.

capable of producing convincing-looking curves from entirely ran-
dom configurations. Nonetheless, smoothing is undoubtedly useful
as an aid to informal checks.
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12.5 The raw materials of model checking

We consider first linear regression models with supposedly constant
variance, where model checking uses mainly the following statistics
derived from a fit:

The fitted values fi,
2

The residual variance s,
The diagonal elements h of the projection (‘hat’) mat_ ..,

H = X(XTX)"'X”, which maps y into f.

An important idea is that of case deletion, whereby the fit using all
the cases (points) is compared with that obtained when one point
is deleted. We shall denote statistics obtained by deleting point
i by a suffix in brackets, so that, for example, s(zi) is the residual
variance for the model fitted omitting point i.

A central role is played by the residuals from a fit, and several
forms have been proposed in addition to the basic r = y — 1. We
shall call a residual standardized if it has been divided by a factor
that makes its variance constant. Standardization produces the
form .

Yi T B
V(1 = ki)’
where {h;} are the components of h. If in addition the residual
is scaled by dividing by s, we call it a Studentized standardized
residual, and write )
' Yi — i
T = /O —h) (12.1)
Note that r/2 is just the reduction in the residual sum of squares
caused by omitting the point i, scaled by the residual mean square
for all the points.
Finally there is the important deletion residual defined by

T sV +he)  s@v(L—hy)

in which xT is the ith row vector, X(;) is the model matrix with
the ith row deleted, and

. Vi—Aey  yi— (12.2)

hay = xiT(xg;)x(i))_lxi = hi/(1 = h;).
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The two residuals 7/ and r* are related by
i = Tz,'s/s(i)a

(see Atkinson, 1985), so that r}? is again a reduction in the residual
sum of squares, but this time scaled by S(zi instead of s2. The
deletion residual r} measures the deviation of y; from the value
predicted by the model fitted to the remaining points, standardized
and Studentized like 7’. (The difference in sign in the terms in the
denominators of v’ and r* arises from the fact that y; and f; are
independent, whereas y; and fi; are positively correlated.)

For generalized linear models some extensions and modifications
are needed to the above definitions. First, where checks on linearity
are involved the vectors y and f are ordinarily replaced by z,
the adjusted dependent variate, and 1), the linear predictor. The
residual variance is replaced by an estimate of the dispersion
parameter ¢, and the H matrix becomes

H=WiXX"WX)1X"W}, (12.3)

equivalent to replacing X by WX in the regression version. It
can be shown that, to a close approximation,

V(i — ) = HV (Y — ),

where V. = diag(V(y;)). Thus H measures the influence in
Studentized units of changes in Y on fi. The corresponding matrix
in unstandardized units is V2ZHV~"2 which is an asymmetric
projection matrix. .

In section 2.4 we defined three forms of residual for generalized
linear models, and two of these, the Pearson and deviance residuals,
have been widely used in model checking. For the Pearson residual
the analogous form of (12.1) is given by

rl = i’i— (12.4)
oV (a)(1 - h)

The calculations of Cox and Snell (1968) support a similar stan-
dardization for the deviance residual giving
o™ (12.5)

o)

@(1—h)
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Exact calculations for deletion residuals may become expensive
when iteration is required for every fit. It has become common
practice to approximate the quantities involved in the deletion
residuals by using one-step approximations. This involves doing
one cycle of the fit without point i, starting from the fitted values,
weights, etc. from the complete fit. Use of one-step approximations
allows certain shortcuts to be made, analogous to those used for
regression. We write ;74 and 7}, for the one-step approximations
to (12.4) and (12.5); thus ,r2 is the one-step approximation to 72,
measuring the change in the Pearson x? caused by omitting a point.
The analogous approximation for the change in deviance has been
shown by Williams (1987) to be given by

r2=h 2+ (1 - h) i (12.6)

An equivalent formula is given by Pregibon (1981, p.720). In gen-
eral the deviance residual, either unstandardized or standardized,
is preferred to the Pearson residual for model checking procedures
because its distributional properties are closer to the residuals aris-
ing in linear regression models (Pierce and Schafer, 1986).

12.6 Checks for systematic departure from model

We consider first checks for systematic departure from the model,
beginning with three residual plots.

12.6.1 Informal checks using residuals

If the data are extensive, no analysis can be considered com-
plete without inspecting the residuals plotted against some function
of the fitted values. Standardized deviance residuals are recom-
mended, plotted either against 7 or against the fitted values trans-
formed to the constant-information scale of the error distribution.
Thus we use

i for Normal errors,
2\/,5 for Poisson errors,

2sin"! /4 for binomial errors,

2log i for gamma errors,

~— 1 . .
~24~2 for inverse Gaussian errors.
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The argument for the constant-information scale is as follows: for
Normal errors if we plot y — fi against 4 then the contours of
fixed y are parallel straight lines with a slope of —1. With other
distributions the contours are curves but the constant-information
scale gives a slope of —1 at r = 0 to match the Normal case and
makes the curvature generally slight. For data with binomial errors,
note that f is interpreted as # rather than m#.

The null pattern of this plot is a distribution of residuals for
varying f with mean zero and constant range. Typical systematic
deviations are (i) the appearance of curvature in the mean and (ii) a
systematic change of range with fitted value. Smoothing may be
useful in judging whether curvature is present, but cannot help with
assessing variable range (see section 12.6.2). Note that this plot is
generally uninformative for binary data because all the points lie
on one of two curves according as y = 0 or 1. Furthermore for [
near zero almost all the points have y = 0, and conversely for [
near one.

Curvature may arise from several causes, including the wrong
choice of link function, wrong choice of scale of one or more
covariates, or omission of a quadratic term in a covariate. Ways of
distinguishing between these will be discussed further in sections
12.6.3-4.

A second informal check plots the residuals against an explana-
tory variable in the linear predictor. The null pattern is the same
as that for residuals vs fitted values. Again the appearance of
systematic trend may indicate the wrong choice of link function or
scale of the explanatory variable, or point to a missing quadratic
term. Such a trend may also be an artefact caused by a faulty
scale in another explanatory variable closely correlated with the
one under investigation. Smoothing may help in overcoming the
effect of variable density of points.

A third residual plot, known as an added-variable plot, gives a
check on whether an omitted covariate, u, say, should be included
in the linear predictor. It is not adequate to plot the residuals
against u itself for this purpose. First we must obtain the unstan-
dardized residuals for u as response, using the same linear predictor
and quadratic weights as for y. The unstandardized residuals for
y are then plotted against the residuals for u. If u is correctly
omitted no trend should be apparent.
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12.6.2 Checking the variance function

A plot of the absolute residuals against fitted values gives an
informal check on the adequacy of the assumed variance function.
The constant-information scale for the fitted values is usually
helpful in spreading out the points on the horizontal scale. The
null pattern shows no trend, but an ill-chosen variance function
will result in a trend in the mean. Again smoothing may help
to see the trend more clearly. A positive trend indicates that the
current variance function is increasing too slowly with the mean,
so that, for example, an original choice of V(i) o« u may need to
be replaced by V(u) o p?. A negative trend would indicate the
reverse.

20
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1.5 2.0 2.5 3.0 3.5
Fig. 12.6. The profile extended quasi-likelihood curve plotted against ¢
for the power-family of variance functions applied to the car-insurance
data. '

To check the variance function formally we embed the current
one in a suitable family, usually V(¢) = u¢, indexed by a parameter
¢, and observe how the fit improves as ( varies. For this comparison
we need the extended quasi-likelihood discussed in section 9.6,
which allows the comparison of different variance functions. We
compute the deviance for a range of (, producing a profile quasi-
likelihood curve; approximate likelihood limits are given by the
x? values for a chosen significance level and the prior value (o is
evaluated in respect of the interval so produced. Fig. 12.2 shows
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the curve obtained for the car insurance data (the example in
section 8.4.1); the 95% limits for ¢ are about (1.87,2.85) showing
that our original choice of {; = 2 was satisfactory.

12.6.3 Checking the link function

An informal check involves examining the plot of the adjusted
dependent variable z against 7, the estimated linear predictor.
The null pattern is a straight line. For link functions of the power
family an upwards curvature in the plot points to a link with higher
power than that used, and downwards curvature to a lower power.
Smoothing may be helpful in interpreting the plot. For binary data
this plot is uninformative and formal methods must be used.

There are two formal checks in common use. The simpler
(Hinkley, 1985) involves adding #* as an extra covariate and
assessing the fall in deviance. (A score test may be used as an
alternative.) The other formal check involves embedding the link
function in a family indexed by a parameter A and testing the prior
value \g in the usual way. Uncertainty about the link function is
probably commonest with continuous data having gamma errors,
and with proportions having binomial errors. For the former the
power family n = p* is the most useful. section 11.3 describes the
techniques for estimating A and assessing the adequacy of Ao.

For binomial data various families have been constructed that
include the logistic link (the canonical link) and the complementary
log-log link as special cases. Some of these are discussed in
section 11.3.2

Checks on the link functions are inevitably affected by failure
to establish the correct scales for the explanatory variables in the
linear predictor. In particular, if the formal test constructed by
adding 72 to the linear predictor indicates deviation from the model
this may point either to a wrong link function, or to wrong scales
for explanatory variables or both. The methods described in the
next section may help in distinguishing the various alternatives.

12.6.4 Checking the scales of covariates

The partial residual plot is an important tool for checking whether
a term Gz in the linear predictor might be better expressed as
Bh(z; 0) for some monotone function h(-;8). In its generalized form
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the partial residual is defined by
u=z—N+9T

where z is the adjusted dependent variable, # the fitted linear
predictor and 4 the parameter estimate for the explanatory variable
z.

The plot of u against z provides an informal check. If the
scale of x is satisfactory the plot should be approximately linear.
If not its form may suggest a suitable alternative. The scatter
about any trend may not be uniform, in which case smoothing may
help interpretation. The partial residual plot, if smoothed, can be
remarkably informative even for binary data. However, distortions
will occur if the scales of other explanatory variables are wrong, so
that iteration may be necessary in looking at the partial residual
plots for several zs. This problem may be less severe with the
following formal check which allows simultaneous transformation
of several zs to be tested.

As usual the formal check involves embedding the current scale
in a family h(z; #) indexed by 6; we then calculate the deviance for
a suitable grid of values of 8 to find the position of the minimum,
which gives 6. The fit at § can then be compared with that
at our initial choice of 6y, which is usually 1. The method is
equivalent to the use of a maximum profile-likelihood estimator.
Clearly this procedure can be used for several zs simultaneously.
This is particularly useful when several zs have the same physical
dimensions, so that a simultaneous transformation is likely to be
required. By far the commonest family of transformations is the
power family given by

zf —
h(z;0) = ¢
log(6) for 8 =0.

for 6 # 0,

An informal check for a single covariate takes the form of a
constructed-variable plot for v = 8h/06,; we first fit a model with
v as dependent variable, with the linear predictor and quadratic
weight as for y, and form the residuals. We then plot the residuals
of y against the residuals of v; a linear trend indicates a value of
0 # 6y, while a null plot would indicate no evidence against § = 8.
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12.6.5 Checks for compound systematic discrepancies

So far we have mainly considered checks for a single cause of dis-
crepancy, e.g. a covariate on the wrong scale, a covariate omitted,
or a faulty link function. Each of these discrepancies can be tested
formally by including an extra variable in the linear predictor and
calculating either the deviance reduction or the score statistic for
its inclusion; the process is thus analogous to forward selection
(Section 3.9). The danger, as usual, is that correlations between the
extra variables can lead to each mimicking the effect of the others.
The use of backward-selection, where possible, gives a means of
avoiding the danger; we now fit all the extra variables, giving the
joint effect of all the causes of discrepancy to be tested, and then
find the effect of omitting each one in turn from the joint fit. Again
either the deviance reduction or the score statistic may be used.
Davison and Tsai (1988) give examples of this technique. .

12.7 Checks for isolated departures from the model

In this section we look at model-checking procedures associated
with particular points in the data, especially those that appear in
some way at variance with the pattern set by the remainder. We
deal first with the case of a single possibly discrepant point.

For simplicity we consider first data with a response variable
y and one explanatory variable z. We assume that an identity
link is relevant. The scatter plot of y against z may show an
isolated extreme point, which we define loosely as one well apart
from the main cluster. There are three types of configuration that
are worth distinguishing, and these are shown in Fig. 12.3 with
the extreme point indicated by a circle. In Fig. 12.3(a) the z-
value of the extreme point is close to the mean. Exclusion of this
point has only a small effect on the estimate of the slope, but it
substantially reduces the intercept. Its exclusion also produces a
big improvement in the goodness of fit.

In Fig. 12.3(b) the extreme point is consistent with the rest, in
that a straight line fitted through the rest passes near the extreme
point. Inclusion of the extreme point will increase the accuracy of
B without affecting its estimate greatly.

In Fig. 12.3(c) the straight line fitted through the non-extreme
points does not pass close to the extreme point, so that if it is
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Fig. 12.3. Scatter plots showing the effect of an extreme point in relation
to the configuration of the remaining points. The solid lines are the least
squares fits with all points included: the dotted lines are the fits with the
extreme points excluded.

now included in the fit the value of 3 will change sharply, and the
deviance also.

Three ideas are useful in thinking about the configurations in
Fig. 12.3. The first is that of leverage, which distinguishes (a)
from (b) and (c). The inclusion of the extreme point in (b) and
(c) greatly increases the information about ﬁ, i.e. the point has
high leverage whereas in (a) it has low leverage. The second idea is
that of consistency which distinguishes (b) from (a) and (c). In (b)
the (z,y) values of the extreme point are consistent with the trend
suggested by the remainder, while in (a) and (c) they are not. The
third idea, termed influence, distinguishes (c) from (a) and (b).
The extreme point has high influence if the estimate of the slope
is greatly changed by its omission, as in (c), and low influence if it
is little changed, as in (a) or (b).
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We now develop statistics for measuring leverage, consistency
and influence quite generally.

12.7.1 Measure of leverage

For linear regression models the well-known measure of leverage is
given by the diagonal elements of the ‘hat’ matrix

H=XXTx)"'X7, (12.7)
the ith element of which is
hi = xT(XTX) x;.

Note that if the columns of X are orthogonalized with the first
column constant, H is unaffected. The diagonal elements are then
expressible in the form

hi =1/ ziy +...+ Tiy
= n+ P .
) Z '7"]2'2 Z x_?p

Thus h; —1/n is an invariant measure of squared distance between
x; and the centroid of all n points in the z-space.

The general form of H, given in (12.3), has X replaced by W%X,
which effectively allows for the change in variance with the mean.
It can also be thought of in an informal sense as the ratio of the
covariance matrix of f to that of Y. Now’

> h; = traceH = p,
and there is some advantage in working with a standardized form
hi = nhi/p

so that > h! = n. Hoaglin and Welsch (1978) suggest using
h > 2p/n, i.e. K > 2, to indicate points of high leverage. An
isolated point of high leverage may have a value of h approaching
unity. An index plot of A’ with the limit A’ = 2 marked is a useful
informal tool for looking at leverage.

Note that for GLMs a point at the extreme of the z-range will
not necessarily have high leverage if its weight is very small.
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12.7.2 Measure of consistency

An inconsistent point is one with a large residual from the curve
fitted to the remaining points. Thus the deletion residual intro-
duced in section 12.5 is a natural measure of inconsistency, i.e. small
deletion residuals denote consistent points. For generalized linear
models the one-step approximation given by (12.6) is appropriate.

12.7.3 Measure of influence

Influence can be measured as a suitably weighted combination of
the changes ﬁ(i) — B, where [3(,-) denotes the estimates without the
extreme point, and 3 those with it. Cook (1977) first proposed a
statistic, which for regression models takes the form

D; = (ﬂ(i) - ﬂ)(XTX)(ﬂ(,-) - f’)/PSZ, (12.8)

as a measure of influence of the éth point, when s? is an estimate
of the dispersion parameter. As shown in Fig. 12.2(a) not all
parameters are equally affected by an extreme point, and D; is
intended to provide a suitably weighted combined measure.

From the relation

ﬂ(,) - ﬁ = —(XTX)_lxir,-/(l - h,)
(Atkinson, 1985, p.21), it follows that

D = ’I‘,’;zhi
Top(l— ki)
showing that D; is a function of the quantities involved in the
measurement of leverage and consistency.

Atkinson (1981) suggests modifications to D which have ad-
vantages in standardizing it for different configurations of X and
making extreme points stand out more sharply. First he replaces
7’2 in (12.9) by r*%, which is equivalent to the use of s(zi) in place
of s2. Secondly he scales by a factor (n — p)/p; this has the effect

of making the modified D; equal to 7*? when all points have equal
leverage. Finally he takes the square root, producing the modified

Cook statistic )
n—p hi *
= . * 1
C; { . T hi} |77 ] (12.10)

(12.9)
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To adapt these statistics for use with generalized linear models is
straightforward. D; is now defined by

D; = (Buy - BXTWX)(Bw) — B)/vé,

where the B(,-) will usually be the one-step approximations dis-
cussed in section 12.5. The modified Cook statistic C; can be
adapted by simply replacing r* by 7}, the one-step approximation
to the deletion deviance residual.

12.7.4 Informal assessment of extreme values

The three statistics h, r* and C, introduced above for the measure-
ment of leverage, consistency and influence respectively, each yield
a vector of n values. The interesting values for model-checking
purposes are the large ones (of either sign in the case of r*). To
interpret these we need plots that allow for the fact that we have
chosen the most extreme values to examine. We thus need some
measure of how large the extreme values would be in a sample of
a given size even if no unusual points were present.

The simple index plot of the statistic against case number does
not have this property, but it has value, particularly when a few
points are far from the rest. Normal plots, which make allowance
for selection effects, come in two forms, the half-Normal plot and
the full Normal plot. The former is appropriate for non-negative
quantities like A and C for a statistic like r*, there are two options,
either a half-Normal plot of |r*| or a full Normal plot of r* itself.
For either plot the ordered values of the statistic are plotted against
the expected order statistics of a Normal sample. The latter may
be generated with sufficient accuracy for practical purposes by

—1 i_% .
(i ] T z=1,...,n
n kY
4

for the full Normal plot, and by

n+i+ i
Q—‘(—gz) i=1,...,n
27’L+§

for the half Normal plot. Note that the use of either of these scales
is to some extent conventional, for, while the plot for r* may, in



408 MODEL CHECKING

the absence of unusual points, be approximately linear, there is
usually no reason to expect the h or C plots to be so. Extreme
points will appear at the extremes of the plot, possibly with values
that deviate from the trend indicated by the remainder.

To aid the interpretation of Normal plots Atkinson (1981) devel-
oped the useful idea of an envelope constructed by simulation. For
generalized linear models with a fully specified error distribution
this i1s constructed as follows: for each simulation form pseudo-
data y* by generating random variables from the appropriate error
distribution with mean 4 and dispersion ¢. Refit the model and
calculate the statistic. Order its values. Do k simulations and for
each ordered position select the extreme values from the & simula-
tions. Plot these with the original points to give the envelope. More
stable envelopes can be obtained, if simulation is cheap, by using
larger values of k and less extreme values of the ordered samples.

Atkinson (1985) gives detailed examples on the interpretation
of plots with envelopes for regression models. Simulation is par-
ticularly simple here, because the variance is independent of the
mean, so that 4 can be disregarded, and y* requires just N(0,1)
variables. Note that simulation for models with non-Normal errors
can be speeded up using a one or two-step approximation to the
full iteration beginning with £ as the initial estimate of the fitted
values.

Residuals from data in the form of counts or proportions will
show distortions if there are many zeros (counts) or zeros and ones
(proportions). These produce a concentration of small residuals
near zero, which may appear as a plateau in the Normal plot.

12.7.5 Extreme points and checks for systematic discrepancies

Up to now we have divided model-checking techniques into those for
systematic and those for isolated discrepancies. However it is pos-
sible to formulate questions that involve both kinds of discrepancy.
For example we might ask ‘does the evidence for the inclusion of a
covariate depend largely on the influence of a few isolated points?’.
One way of answering such a question has been given by Williams
(1987); see also Davison and Tsai (1988).

Consider a test by backward selection (Section 12.6.5) for a sys-
tematic discrepancy as measured by the extra variable u. Suppose
that the full linear predictor gives squared residuals rZ,, and that
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without u the residuals are rZ,. Then the differences 72, — r&,

can be used in an index plot to show the influence of each point
on this test for systematic discrepancy. Such a plot might reveal,
for example, that most of the evidence for the effect in question
comes from one or two points that have previously been identified
as possible outliers. If required, the analysis may be repeated with
suspected outliers omitted.

12.8 Examples

12.8.1 Damaged carrots in an insecticide experiment

The data shown in Table 12.1, taken from Phelps (1982), are
discussed by Williams (1987). They give the proportion of carrots
showing insect damage in a trial with three blocks and eight dose
levels of insecticide. With a logit link function and simple additive
linear predictor block+ x, where z is the log dose, we find a deviance
of 40.0 with 20 d.f., rather too large for binomial variation.

Table 12.1 Proportion of carrots damaged in an insecticide erperiment

Dose Block
level j log dose z; 1 2 3
1 1.52 10/35 17/38 10/34
2 1.64 16/42 10/40 10/38
3 1.76 8/50 8/33 5/36
4 1.88 6/42 8/39 3/35
5 2.00 9/35 5/47 2/49
6 2.12 9/42 17/42 1/40
7 2.24 1/32 6/35 3/22
8 2.36 2/28 4/35 2/31

Source: Phelps (1982).

There may be general over-dispersion or perhaps isolated ex-
treme points. Fig. 12.4 shows an index plot (with the data ordered
by columns) of the one-step deletion residual r*. This plot quickly
decides the issue; point 14 (dose level 6 and block 2) is far away
from the rest. The fit omitting this point gives a deviance of 25.3
with 19 d.f Though somewhat above the baseline of 19, it is clearly
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Fig. 12.4 Index plot of one-step deletion residuals r* for carrot data,
showing a single outlier.

a great improvement on the original fit. The fitted value for point
14 is much closer to 7 than to the 17 recorded.

Inclusion of the constructed variable #? after omitting point
14 gives an insignificant reduction (0.2) in the deviance, so that
our choice of link function is not contradicted. (Phelps used the
complementary log-log link, but the difference in fit between it and
the logistic is small.) This example thus illustrates the effect of an
isolated extreme point having an anomalous y-value.

12.8.2 Minitab tree data

This famous set of data on the volume, diameter (at 4’6" above
ground level), and height of black cherry trees was given by Ryan
et al. (1976). Interest attaches to deriving a formula to predict tree
volume v from measurements of diameter d and height h. If all the
trees were the same shape we would expect to find

v=cxd®xh (12.11)

for some constant ¢. Thus we might expect that a successful linear
model would involve log v as response variable with log d and log h
as explanatory variables.
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Fig. 12.5a. Partial residual plot for d in the joint fit of d and h to log(v).

6.0
4 partial .
55 - residual
5.0 4 .
4.5 4
log d
2.2 24 2.6 2.8 3.0

Fig. 12.5b. Partial residual plot for logd in the joint fit of logd and
log h to log(v).

Suppose, however, that someone with no understanding of dimen-
sionality begins by regressing v linearly on d and h with Normal
errors. The deviance is 421.9 with 28 d.f. The (y, &) plot is curved
upwards and the (r, i) plot is quadratic. Addition of #? to the lin-
ear predictor decreases the deviance by an enormous 242.6, about
57.5%.

We can now either transform y to a lower power, or choose
an equivalent link function; for simplicity we shall follow the first
path, and examine the effect of using log v in place of v. The result
of adding 7#? is still appreciable, the deviance falling from 0.262
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to 0.181, though proportionally much less than before, while the
absolute residual plot shows no obvious pattern: Remembering
that the test based on adding #? to the linear predictor may
reflect either a faulty link or a faulty covariate scale, we next
look at the partial residual plot of d, the more important of the
two explanatory variables. This is shown in Fig. 12.5(a); it is
curved downwards. That for h is more scattered and does not
deviate obviously from linearity. The partial residual plot for d
suggests a lower power for d and so we try logd. Given that the
dimensions of d and h are identical, external considerations suggest
that we transform h to logh at the same time. The deviance is
now 0.185, very similar to that given by the #? test with d and
h, and the addition of #? does not further improve the fit. Both
partial residual plots look linear and that for logd is shown in
Fig. 12.5(b). There is no monotone trend in the absolute-residual
plot, though all the big residuals are for points in the intermediate
range. The formal test for the joint power transformation of d
and h to d® and h?® gives the deviance curve shown in Fig. 12.6.
The minimum is at about # = 0.15 where the deviance is 0.1829
with 27 d.f. giving s? = 0.006530. This gives 95% limits for the
deviance of 0.1829 + 4s% = 0.2088, corresponding to limits for 8 of
(—0.32,0.63). This excludes the original § = 1 and includes the
final § = 0, corresponding to the log transformation.

0.23 | Deviance
0.22 1
0.21 A
0.20 4
.1
0.19 4
-0.5 0.0 6 0.5

Fig. 12.2. Minitab tree data: deviance for joint transformation of d and
h to d® and h®.

Note that our original guess at the relation, equation (12.11)
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predicts coefficient for log d and log h of 2 and 1 respectively. Use
of these in the fit gives a deviance of 0.1877 with 30 d.f., which
is trivially different from 0.185 found from the model with the
parameters estimated from the data.

Checks on isolated discrepancies show that:

trees 20 and 31 have high leverage;

trees 15 and 18 have the largest negative deletion residuals;

trees 11 and 17 have the largest positive deletion residuals;

tree 18 has a large modified Cook statistic.
The fit omitting point 18 does substantially reduce the deviance
(to 0.154), but affects markedly only the intercept among the
parameters. There is a curious cluster of extreme residuals for
trees 15-18, which may be accidental. On the whole these latter
checks do not suggest the rejection of any of the trees from the final
model.

12.8.3 Insurance claims (continued)

In the initial analysis of these data in Chapter 8 a model was fitted
using gamma errors and the inverse link. Subsequently the link
function was embedded in the family g(u; A) = p* (Section 11.3.1),
and separately the variance function was embedded in the same
power family V(u; ¢) = uS (Section 12.6.2). The original choice of
Ao = —1 and (o = 2 was thus compared with the best fitting A with
¢ = (o fixed, and also with ¢ for A = Ag held constant. We now
consider a formal check on the joint settings (Ag, (o) against the
best fitting (/\, ( ) when both parameters are allowed to vary. The
criterion is the extended (quasi) deviance when ¢ is also estimated,
namely

¥ log( V(v )

where (13 is estimated by the mean deviance.

The contours are shown in Fig. 12.7 for the x2 values for
p = 0.50,0.80,0.95 and 0.99. The minimum occurs at { = 2.4
and A = 0.75, with the original choice of (2, —1) lying comfortably
inside the 95% contour. The fit for (2,0), i.e. with a log link, is less
good, but again lies within the 95% contour. Note that the axes of
the contours are closely aligned to the axes of (¢, A), showing that
the parameters are effectively orthogonal. Thus conservative 95%
limits can be obtained by projecting onto the axes.
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¢
L5 2.0 2.5 3.0

Fig. 12.7 Contour plot of the extended profile quasi-deviance for (¢, A) for
the car-insurance data. The contours correspond to nominal confidence
levels 0f 0.5, 0.8, 0.95 and 0.99.

12.9 A strategy for model checking?

This chapter has presented a number of techniques, both formal
and informal, for checking the internal consistency of models,
looking for both systematic deviation and for isolated unusual
points. In principle we might hope to develop a strategy in which
the various techniques are applied in an algorithmic fashion to give
a complete check with accurate diagnoses of any deviations present.
In practice such a strategy seems a long way off and model checking
remains almost as much art as science. A major problem lies
in the complex way that different deviations can interact. Thus
a goodness-of-link test may give a significant result because of a
faulty choice of link function; but it may also fail because one or
more covariates is mis-scaled, or an interaction term is missing,
or because of the presence of a few ‘bad’ points. Similarly an
inconsistent point of high leverage may reflect the fact that the
chosen model is breaking down at the edge of the treatment space,
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or that someone made a recording error or a mis-transcription,
(‘All interesting points are wrong’ is one cynic’s view). Again many
model-checking methods for extreme points are heavily dependent
on the extreme points being fairly isolated. The occurrence of
a small clump of such points may be much harder to identify.
One promising possibility, for regression models, is the method
of least median of squares, in which a very robust fit is used
to identify such clumps of extreme points: see Atkinson (1986)
and Rousseeuw and Leroy (1988). The action to be taken after
identifying an inconsistent point is itself heavily dependent on the
context of the problem and the special knowledge of the analyst.
These considerations all lead to the presence of the question mark
in the section heading.

12,10 Bibliographic notes

For an early account of methods for the examination of residuals,
see Anscombe (1961) and Anscombe and Tukey (1963).

Most recent published work is for linear regression models,
usually under the heading of regression diagnostics. Atkinson
(1985) gives a very readable account, with some references to
generalized linear models, though he mostly prefers the route via
data transformation rather than the GLM specification involving
link functions for the mean u. See also the books by Cook and
Weisberg (1982), Belsley et al. (1980) and Hawkins (1980).

Cox and Snell (1968) discuss residuals in a very general context
including topics such as standardization and non-linear transfor-
mations. Goodness-of-link tests are discussed by Pregibon (1980)
and by Atkinson (1982). The technique of using a constructed
variable for detecting departures of a specific nature goes back to
Tukey (1949). Other useful references are Andrews and Pregibon
(1978) and Pregibon (1979).

Cook (1977, 1979) introduced the notion of influential observa-
tions in regression. Williams (1987) deals explicitly with methods
for GLMs and introduces the modified form of deviance deletion
residual. Chatterjee and Hadi (1986) review work in regression,
while Kay and Little (1987) and Fowlkes (1987) deal specifically
with the awkward case of binary data.
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12.11 Further results and exercises 12

12.1 Schreiner Gregoire and Lawrie (1962) conducted an exper-
iment to examine the effect of supposedly inert gases on fungal
growth. Their data were presented in graphical form only: this
report and the data are taken from Bliss (1967).

The fungus Neurospora crassa was grown at 30°C on an agar
medium in tubes filled with an inert gas containing approximately
5% oxygen. The following growth rates in millimetres per hour,
each the mean of 5 or 6 tests, were thought to be related to a
suitable function of the molecular weight (MW) of the inert gas.

Table 12.2 Rate of growth of the fungus Neurospora crassa

Gas He Ne N, N Ar Ar Kr Kr Xe Xe

MwW 4.0 20.2 28.2 28.2 39.9 39.9 83.8 83.8 131.3 131.3
mm/hr | 3.51 3.14 3.03 2.83 2.71 2.76 2.27 2.17 1.88 1.85

Source: Bliss (1967), p.471.

1. Plot the growth rate against MW and (MW)¥2. Comment.

2. Taking the growth rate, R, as the response fit linear models
using identity, log and reciprocal links, combined with various
power transformations (identity, %%, %2, £ and log) of
MW. For which combinations is the residual deviance small-
est?

3. Interpret in biological terms the combination of powers ob-
tained in part 1. What possible physical interpretation could
be given to the z%3 transformation?

5. Examine the deviance residuals, first for pattern in the plot
against MW, and second for conformity marginally with the
Normal distribution.

5. Is the estimate of residual variance consistent with that ob-
tained from the four replicate pairs?

6. Schreiner et al. report that

R = 3.88 — 0.1785(MW)*/2.

Is this summary consistent with your findings?
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Table 12.3 Relation in male cats of heart weight in gm. to body weight
n kg.

Body
wt. Heart weight (gm.)

1.7 6.5 7.0

1.8 58 73 6.1 7.1 7.7 74

1.9 81 91 80 72 73 8.0

2.0 65 65 6.7 75 78 81 86 7.7

21 (101 7.0 72 81 83

2.2 7.2 76 10.7 96 91 7.9 85 9.6 89

2.3 96 96 85 88 82 9.2 87 89

24 93 91 73 79 79 9.6 9.1 9.0 10.8 9.6
25 8.8 12.7 86 12.7 93 7.9 11.0 88 93 82 87 10.4 9.6
26 (105 83 94 7.7 11.5 9.4 13.6 10.1 109 9.6 9.9
27 |120 104 80 96 96 9.8 125 9.0 11.1 10.5 11.6 11.9
28 |10.0 12.0 13.5 13.3 9.1 10.2 11.4 10.1 10.9

2.9 9.4 11.3 10.1 10.6 11.8

3.0 113.3 10.0 13.8 10.6 12.4 12.7 104 11.6 12.2

3.1 9.9 12.1 14.3 12.5 11.5 13.0

3.2 |11.6 13.6 12.3 13.0 13.5 11.9

3.3 | 11.5 149 14.1 154 120

34 | 144 12.2 128 11.2 124

3.5 [15.6 11.7 15.7 12.9 17.2

3.6 | 14.8 13.3 15.0 11.8

3.7 111.0

3.8 | 14.8 16.8

3.9 §14.4 20.5

Source: Chen, Bliss and Robbins (1942)

12.2 Repeat the analysis of the data in Table 12.1, using an index
plot of the deviance residuals to detect outliers. Compare this plot
with that in Fig. 12.4. Comment on the differences and similarities.

12.3 Chen, Bliss and Robbins (1942) obtained the data shown
in Table 12.3 as part of an assay experiment comparing the
effect of calotropin with other cardiac substances such as uscarin
and ouabain. Following the experiment the animals’ hearts were
weighed to see whether the cardiac effect might be more closely
related to heart weight than to body weight. Table 12.3 shows the
relationship between heart mass and body mass for 149 male cats
used in the experiment.

1. Plot heart weight against body weight. Comment.
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2. Fit the regression model of heart weight against body weight.
Are the data consistent with a straight-line model passing through
the origin? Fit the model passing through the origin.

3. Plot the residuals against body weight for the models fitted in
part 2. Comment.

4. Regress log(heart weight) against log(body weight). Are the
data consistent with the hypothesis that the slope is unity?
What is the physiological interpretation of a unit slope? Fit
the model in which the slope is unity and examine the residuals
graphically.

5. Compute the mean of log(heart weight) for each of the 23
distinet values of body weight. Regress these sample means
on log(body weight) using a weighted linear regression model.
Compare the parameter estimates and standard errors in this
weighted regression with those obtained in part 4. Explain the
similarities and discrepancies observed.

6. For the model fitted in part 5, plot the residuals against the
fitted values, taking care to use an appropriate standardization.
Comment on this plot and on its relation to the plot in part 3.

7. Test the adequacy of the linear regression model in part 4 by
including a non-linear term in log(body weight).

8. Give a brief summary of your findings.



CHAPTER 13

Models for survival data

13.1 Introduction

This chapter deals with models for the analysis of data in which
the response variate is the lifetime of a component or the survival
time of a patient. Survival data usually refers to medical trials, but
the ideas are useful also in industrial reliability experiments where
the emphasis is on failure times rather than survival times,

Survival data are distinguished from most other types by the
widespread occurrence of censoring. Censoring occurs when the
outcome of a particular unit (patient or component) is unknown
at the end of the study. Thus we may know only that a particular
patient was still alive six months into the study, but the exact
failure time is unknown either because the patient withdrew from
the study or because the study ended while the patient was
still alive. Censoring is so common in medical experiments that
estimation methods must allow for it if they are to be generally
useful.

A second characteristic of survival data is the frequent occur-
rence of time-dependent covariates. These arise when the status of
a subject changes during a trial. Such a covariate x, say, cannot
be represented by a single value z; for patient i, but takes values
that may change with time.

13.1.1 Survival functions and hazard functions

Let the survival time, T, for individuals in a population have a
density function f(t). (In practice f(-) usually depends on other
parameters, but for the moment we omit reference to these.) The
corresponding distribution function

F(t) = /_ f(8)ds

419
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is the fraction of the population dying by time ¢{. The comple-
mentary function 1 — F'(t), often called the survivor function, is
the fraction still surviving at time t. The hazard function h(t)
measures the instantaneous risk, in that h(¢) 4t is the probability
of dying in the next small interval §¢ given survival to time ¢. From
the relation

pr(survival to ¢ + 6t)
= pr(survival to t) pr(survival for §t|survival to t)

we have

1= F(t +6t) = {1 - F()} {1 — h(t) 61},

whence

St F'(t) = {1 — F(t)} h(t) ét,
so that the hazard function is given by

h(t) = f()/{1 - F(t)}.

A distribution for survival times must have a hazard function with
suitable properties. Thus for large ¢ a hazard function should not
decrease, because beyond a certain point the chance of breakdown
or death does not ordinarily decrease with time. For small ¢ various
forms can be justified, including one that initially declines with ¢,
for such a distribution could describe the behaviour of a machine
part with a settling-in period, where reliability increases once the
initial period is over.

The simplest hazard function, a constant, implies an exponential
distribution of survival times and hence a Poisson process. For if
T has the density

then
F(t)=1-eM,

and so
h{t) = A

Other forms of hazard function appear in later sections.
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13.2 Proportional-hazards models

The hazard function depends in general both on time and on a
set of covariates, some of which may be time-dependent. The
proportional-hazards model separates these components by spec-
ifying that the hazard at time ¢ for an individual whose covariate
vector is x is given by

h(t; x) = A(t) exp{G(x; B)},

where the second term is written in exponential form because
it must be positive. This model implies that the ratio of the
hazards for two individuals is constant over time provided that
their covariates do not change. It is conventional, but not necessary
(Oakes, 1981) to assume that the effects of the covariates on the
hazard are also multiplicative. This additional assumption leads
to models that may be written in the form

h(t; x) = A(t) exp(B7 x), (13.1)

where 5 = BT x is the linear predictor. The model thus implies
that the ratio of hazards for two individuals depends on the
difference between their linear predictors at any time, and so,
with no time-dependent covariates, is a constant independent of
time. This is a strong assumption that clearly needs checking in
applications. Various assumptions may be made about the A(2)
function. If a continuous survival distribution is assumed, A(%)
is a smooth function of ¢, defined for all ¢ > 0. Cox’s model
(Cox, 1972a) treats A(t) as analogous to the block factor in a
blocked experiment, defined only at points where deaths occur,
thus making no assumptions about the trend with time. In practice
it frequently makes surprisingly little difference to estimates and
inferences whether we put a structure on the base-line hazard
function A(%) or not. We consider first estimation of 8 in the linear
predictor with an explicit survival distribution, following closely
the development in Aitkin and Clayton (1980).
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13.3 Estimation with a specified survival distribution

We begin with the proportional-hazards model (13.1), and develop

the likelihood for the data, some of which may be censored; for this

we need both the density function and the survivor function.
From the definition of the hazard function we have

M) = F(1)/{1 - F()} = A(De”,
so that
—log{1 — F(t)} = A(t)e",

where

is known as the cumulative hazard function. Thus the survivor
function is given by

S(t) = 1 - F(t) = exp{~A(t)e"},
and the density function by minus its derivative, i.e.

£(t) = A(t) exp{n — A(B)e"}.

At the end of the study an individual who died at time ¢
contributes a factor f(t) to the likelihood, while one censored at
time t contributes S(t). Suppose now that we define w as a variate
taking the value 1 for an uncensored observation and value 0 for
a censored one, and let there be n uncensored and m censored
observations. Then the log likelihood takes the form

n+m

l= Z {w; log f(t:) + (1 —w;) log S(t:)}

i=1

= > _{wiflog A(t:) + mi} = Ati)e™)

= Z {w,-{log A(t:) + 7} — A(t)e™ + w;log ( 22%) } _

Now if we write u; = A(¢;)e™, { becomes

Z(wi log p; — pi) + Z w; log (22’;) .

1 1
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The first term is identical to the kernel of the likelihood function
for (n + m) independent Poisson variates w; with means u;, while
the second term does not depend on the unknown 8s. Thus, given
A(t), we can obtain estimates of the s by treating the censoring
indicator variate w; as Poisson distributed with mean p; = A(t;)e™.
The link function is the same as for log-linear models except that
there is a fixed intercept log A(#;) to be included in the linear
predictor. Such a quantity is known in GLIM terminology as an
offset.

The estimation process is less straightforward if the offset con-
tains parameters of the survival density whose values are not known
in advance. First, however, we deal with the exponential distribu-
tion for which no such difficulties arise.

13.3.1 The exponential distribution

For this distribution A(t) is the constant A, so that the cumulative
hazard function is

At) = /Ot A(s)ds = AL

Thus A(t)/A(t) = 1/t and no extra parameters are involved. It
follows that

IOg i = log ti + m,
so that the offset is just log ¢; and the log-linear model can be fitted
directly. Two other distributions give particularly simple forms for
A(t) and these we now consider.

13.3.2 The Weibull distribution

By setting A(t) = t*, a > 0, we obtain a hazard function
proportional to at®*~! and a corresponding density f(¢) of the
Weibull form:

f(t) = at® Hexp(n — t*eM)}; t>0.

Now A(t)/A(t) = a/t and depends on the unknown parameter «,
which must be jointly estimated with the 8s. The kernel of the
log-likelihood function is

nloga + Z(wi log i — p4),

1
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Table 13.1 Times of remission (weeks) of leukaemia patients, treated
with drug (sample 1) and placebo (sample 2)

Sample 1 (6) 6 6 6 7 (9 (10)
10 (1) 13 16 (17)  (19)  (20)
22 23 (25) (32) (32) (34 (35

Sample 2 1 1 2 2 3 4 4
5 5 8 8 8 8 11
11 12 12 15 17 22 23

Data from Freireich et al. (1963).
Figures in parentheses denote censored observations.

and, given «, the likelihood equations for the 3s are the same as
those for a log-linear model with offset alogt;. The equation for o
given the Js takes the form

nfa =) (i —wi)logt;. (13.2)

1

The estimation procedure begins with @ = 1 (the exponential
distribution), uses the log-linear model algorithm to fit the fs,
then estimates a from (13.2), oscillating between the two stages
until convergence is attained.

Note that the log likelihood for the model differs from that of
the log-linear model by the inclusion of the extra term nlog &, so
that the deviance requires adjustment by a term —2nlog &.

13.3.3 The extreme-value distribution

For this distribution A(t) = e**, giving a hazard function propor-
tional to ae® and a density f(t) in the extreme-value form

f(t) = ae™ exp(n — e**7), (13.3)

Note that the transformation u = exp(t) transforms the distribu-
tion to the Weibull form. It follows that we need only replace ¢
by u in the estimating procedure for the Weibull to obtain the
corresponding one for this distribution.
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13.4 Example: remission times for leukaemia

The data in Table 13.1 from Freireich et al. (1963) have been
analysed by Gehan (1965), Aitkin and Clayton (1980) and others.
There are two samples of 21 patients each, sample 1 having been
given an experimental drug and sample 2 a placebo. The times
of remission are given in weeks and figures in parentheses denote
censored observations. To fit a survival model of the type discussed
in section 13.3, we set up a pseudo-Poisson variable taking values 0
for the censored and 1 for the uncensored observations. To fit the
exponential distribution we apply an offset of log ¢, and models with
a single mean and with separate sample means (S) give deviances
as follows:

Model Deviance df.

1 54.50 41
S 38.02 40

The more general Weibull distribution yields for model S the
value & = 1.366 with a deviance of 34.13 on 39 d.f. The reduction
in deviance of 3.89 is thus marginally significant at the 5% level.
Separate fits of & to the two samples give similar estimates of 1.35
and 1.37; the estimate of the sample difference for @ = 1.366 is
b1 = 1.731, corresponding to a hazard ratio of exp(1.731) = 5.65 for
sample 2 as compared with sample 1. The standard error of by, for
o with a fixed prior value of 1.366, is £0.398; to adjust this for the
simultaneous fitting of @, we must border the information matrix
for the two parameters in the linear predictor with the second
derivatives that include a and then invert the expanded matrix.
The details for this example are given in Aitkin and Clayton (1980)
and give b; = 1.73+0.41; the validity of this SE may be checked by
plotting the deviance for fixed values of 3; in the neighbourhood of
the estimate 1.73. The resulting curve rises slightly more steeply
on the lower than on the upper side, but the effect at the 2 x SE
distance is quite small. Thus our 95% limits for the log hazard
difference are 1.73 £ (1.96 x 0.41) = (0.93,2.53) corresponding to
hazard ratios of (2.52, 12.6).

The data of this example have been analysed by Whitehead
(1980) using Cox’s model and treating ties by both Peto’s and Cox’s
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Table 13.2 Comparison of estimators for the leukaemia data

Model (treatment of ties) b SE
Exponential 1.53 0.40
Weibull 1.73 041
Cox (Peto) 1.51 0.41
Cox (Cox) 1.63 0.43

methods. His results (after correcting observation 6 in sample 1,
which was censored), together with those obtained above using
parametric survival functions, are summarized in Table 13.2. The
estimates all fall within a range of about half a standard error,
and the increase in standard error from the Cox model as against
the parametric survival functions is quite small. Efron (1977)
and Oakes (1977) discuss this phenomenon from a theoretical
viewpoint.

13.5 Cox’s proportional-hazards model

Cox’s (1972a) version of the proportional-hazards model is only
partially parametric in the sense that the baseline hazard function
A(t) is not modelled as a smooth function of ¢. Instead, A(t) is
permitted to take arbitrary values and is irrelevant in the sense
that it does not enter into the estimating equations derived from
Cox’s partial likelihood (Cox, 1975).

13.5.1 Partial likelthood

The argument used to derive the partial likelihood function is as
follows. First observe that we need only consider times at which
failures occur because, in principle at least, the hazard could be
zero over intervals that are free of failures and no contribution to
the likelihood would be made by these intervals. Let t; <12 <...
be the distinct failure times and suppose for simplicity that there
are no tied failure times. The risk set immediately prior to the
Jjth failure, R(t;), is the set of individuals any of whom may be
found to fail at time t;. Thus, individuals who have previously
failed or who have been censored are excluded from R(t;). Given
that one failure is to occur in the interval (t; — 6t,1;), the relative
probabilities of failure for the individuals in R(t;) are proportional
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to the values of their hazard functions. Let x; be the value of the
covariate vector for the failed individual. The probability under the
proportional-hazards model that the individual who fails at time
t; is the one actually observed is

/\(t)exp(ﬂij) _ exp(ﬂij) .

EAD e (Bx) | 3 exp(B x)’ (134)

where summation extends over the risk set R(t;). .

This conditional probability is the probability of observing x; in
sampling from the finite population corresponding to the covariate
vectors in R(t;), where the selection probabilities are proportional
to exp(ﬂTx). This is a generalization of the non-central hyper-
geometric distribution (section 7.3.2). This argument effectively
reverses the roles of random failure times and fixed covariates to
fixed failure times and covariates selected according to the proba-
bility distribution described above.

The partial likelihood for 8 is the product over the failure times
of the conditional probabilities (13.4), and so independent of the
baseline hazard function A(t). These conditional probabilities have
the form of a linear exponential-family model so that 8 can be
estimated by equating the vector sum of the covariates of the failed
individuals to the sum of their conditional means. Note, however,
that the conditioning event changes from one failure time to the
next as individuals are removed from the risk set either through
failure or through censoring.

13.5.2 The treatment of ties

The occurrence of ties among the failure times complicates the
analysis, and several techniques have been proposed for dealing
with this complication. One method due to Cox (1972a) is as
follows. Suppose for definiteness that two failures occur at time
t and that the vector sum of the covariates of these two failed
individuals is s;. The factor corresponding to (13.4) is then defined
to be

exp(B7s;)/ Z exp(B7s), (13.5)

where the sum in the denominator extends over all distinct pairs
of individuals in R(t;). In other words we construct the finite
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population consisting of sums of the covariate vectors for all distinct
pairs of individuals in the risk set at time ¢;. The probability under
an exponentially weighted sampling scheme that the failures were
those of the pair actually observed is given by (13.5), which again
has the exponential-family form. Note however that the number
of terms in the denominator of (13.5) quickly becomes exceedingly
large for even a moderate number of ties at any failure time.

Any reasonable method for dealing with ties is likely to be satis-
factory if the number of failed individuals constitutes only a small
fraction of the risk set. In fact the likelihood contribution (13.5) is
exact only if failures are thought of as occurring in discrete time. In
practice, however, ties occur principally because of grouping. With
grouped data the appropriate likelihood (Peto, 1972) involves the
sum over all permutations of the failed individuals consistent with
the ties observed. Suppose, for example, that two failures are tied
and that the failed individuals have covariate vectors x; and xs.
The probability for the sequence in time (xi, X2) or (x2, X1), either
of which is possible given the tie, is

exp(ﬂTxl) exp(ﬂsz) exp(ﬂsz) exp(ﬂTxl)
Y rexp(B7x) Yp exp(B7x) Y pexp(B7x) Y5, exp(B7x)’ |
(13.6

where R; is the risk set excluding x;(j = 1,2). Clearly the
likelihood contribution becomes increasingly cumbersome as the
number of ties becomes appreciable.

Expressions (13.5) and (13.6) for the contribution to the like-
lihood can both be derived by arguments involving exponentially
weighted sampling from a finite population without replacement.
If the number of ties is small we may use the simpler expression

exp(8”s)
{Crexp(B %)} (18.7)

where s is the sum of the covariate vectors of the m tied individuals
(Peto, 1972). This term corresponds to sampling with replacement.
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13.5.3 Numerical methods

The likelihood formed by taking the product over failure times
of the conditional probabilities (13.4) can, in principle, be maxi-
mized directly using the weighted least-squares method discussed
in Chapters 2 and 8. Alternatively we can regard the covariate
vector of the failed individuals as the response and condition on
the set of covariates of all individuals in the risk set at each failure
time, these being regarded as fixed. If we write y for the covariate
vector of the failed individual the log likelihood for one failure time
takes the form

BTy —log {3 exp(8"x)},

with summation over the risk set. This has the form of an
exponential family model with canonical parameter 8 and b(8)
(in the notation of section 2.2) equal to log{3_ exp(8Tx)}. The
(conditional) mean is then given by b'(8) and the variance by b"(8).
However, this formulation is unhelpful computationally because
there is no explicit expression for the quadratic weight (here equal
to the variance function) as a function of the mean.

The computational difficulty can be avoided by a device similar
to that used in section 13.4. Suppose that k; individuals are at
risk immediately prior to ¢; and that just one individual is about
to fail. If we regard the observation on the failed individual as
a multinomial observation with k; categories, taking the value
1 for the failed observation and 0 for the remainder, then the
contribution to the likelihood is again of the form (13.4), but now
interpreted as a log-linear model for the cell probabilities. Thus
the numerical methods of Chapter 5 may be used provided that the
algorithm allows variable numbers of categories for the multinomial
observations.

Alternatively (Whitehead, 1980) a Poisson log likelihood may be
used provided that a blocking factor associated with failure times is
included. The idea here is that at each failure time each individual
in the risk set contributes an artificial Poisson response of 1 for
failure and 0 for survival. The mean of this response is exp(a+87 x)
for an individual whose covariate value is x and a represents
the blocking factor associated with failure times. Because of the
equivalence of the Poisson and multinomial likelihoods discussed
in section 6.4, the estimate of @ and the estimate of its precision
are identical to those obtained from the multinomial likelihood and
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hence to the partial likelihood.

The computations can be simplified if the number of distinct
covariate vectors is small so that individuals in the risk set may
be grouped into sets of constant hazard. The adjustment for ties
is simple for the third method described above (often called Peto’s
method). In the multinomial log likelihood we set the multinomial
total equal to the observed number of tied failures at that time.
No adjustment to the algorithm is required. The corresponding
Poisson log likelihood is equivalent to Peto’s version of the partial
likelihood.

Whitehead (1980) describes the adjustments to the Poisson
likelihood required to maximize the likelihood corresponding to
Cox’s method for dealing with ties.

13.6 Bibliographic notes

The recent literature on the analysis of survival data includes books
by Cox and Oakes (1984), Elandt-Johnson and Johnson (1980),
Gross and Clark (1975), Lawless (1982), Lee (1980), Kalbfleisch
and Prentice (1980) and Miller (1981).

Cox’s model was proposed by Cox (1972a), and fitting via
GLIM discussed by Whitehead (1980); the pseudo-Poisson model
for parametric survival functions was proposed by Aitkin and
Clayton (1980), who also discuss the definition of residuals and
the necessary adaptation of standard graphical techniques (see also
Crowley and Hu 1977). For a comparison of Cox and Weibull
models, see Byar (1983).

13.7 Further results and exercises 13

13.1 In medical trials the recruitment of patients frequently
continues over a prolonged period, spanning perhaps the entire
trial. Consider such a trial to test a new drug that is claimed to
benefit patients suffering from angina by reducing the incidence of
coronary disease. The protocol specifies eligible patients to be those
aged 55-75, showing symptoms of angina who have no previous
record of heart attack and are taking no other medication. After
being judged eligible and consent has been obtained, a patient
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is randomized to one of two groups, either the new drug or the
standard treatment.

Discuss how you might analyse the data that have accumulated
after two years in such a trial. Consider in particular the following
points.

1. What are appropriate definitions of failure:
deaths from all causes;
deaths from coronary disease only;
all heart attacks whether fatal or not.
2. Choice of origin for the time scale:
calendar time from the beginning of the study;
time from individual patient randomization;
time from first appearance of patient’s angina symptoms.
3. Non-compliance because of non-fatal side-effects:
4. Who to include in the risk set:
all known survivors among those randomized;
all survivors excluding those no longer complying.

13.2 Let X3y < X(2) <--- < X(n) be an ordered sample of 7.7.d.
exponential random variables of unit mean. Define the normalized
differences

Y, =nX(1), Y,'=(TL—Z'+1)(X(,-)—X(,-_1)), 1=2,...,n.

Show that Y),...,Y, are 7.1.d. exponential random variables of unit
mean.



CHAPTER 14

Components of dispersion

14.1 Introduction

The models so far considered all have the property that the observa-
tions are assumed independent and the variability associated with
each observation is determined by at most a single dispersion factor,
a2 or ¢, to be estimated. In many areas of application, however,
the experimental or survey design is such that variation is present
at several levels or strata. In the absence of external effects, units
in the same cluster tend to be more alike, or positively correlated,
than units in different clusters. In an educational-testing context
pupils within classrooms within schools form a natural hierarchy
of three strata, and it is natural to associate a random compo-
nent to the units within each of the three strata. Usually these
variance components, or dispersion components as we shall call
them, are given contrasting descriptive labels such as ‘between-
schools variance’ and ‘between-classrooms-within-schools variance’,
or ‘between-animals variance’ and ‘within-animals variance’ de-
pending on the context. Usually the between-blocks or between-
animals variance is larger than the within-blocks or within-animals
variance. For example in the tuberculin-assay problem discussed
in section 6.3.1, where four measurements were taken on each cow,
it was anticipated that the variability of reaction between different
cows would be considerably larger than the variability between
sites on the same animal. Consequently, provided that there is no
interaction between tuberculins applied at different sites, greater
precision can be achieved by comparing tuberculins on the same
animal.

432
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14.2 Linear models

Before proceeding to consider more complicated non-linear models
it is helpful to consider first the essential ingredients of linear
models with so-called ‘random effects’. We take as our example
the tuberculin-assay data in Table 6.1. To keep the discussion as
simple as possible it is assumed initially that all effects are additive
with constant variance on the log scale. This assumption is almost,
but not quite, in accord with the analysis in section 6.3.1.

The standard mathematical description is to express the re-
sponse as an additive function of both fixed (non-stochastic) and
random effects, all random effects being assumed independent.
Thus we write

log Yijky = i + v + Tk + €ijk, (14.1)

where k denotes the tuberculin type and volume applied at site ¢
to cows in cow class j. Primary interest centres on the tuberculin
effects 7, and the analysis in section 6.3 focused exclusively on
the joint effect of tuberculin type and volume. Of secondary
interest, but nonetheless perhaps physiologically important, is the
sensitivity to tuberculin of the four sites on the cow’s neck. Thus
7. and o; are considered here as fixed effects. Since there can
be no lasting scientific interest in the sensitivity of individual
unidentified cows, it is appropriate to take -y;, the cow-class effect
corresponding to differences between cows, as independent random
variables. Finally, the residual errors €;;; are taken to be mutually
independent and independent of the cow-class effects ;.

Since Yjj(x) is the sum of observed values for 30 cows, it is
appropriate to take

var(e;jk) = 02/30, var(y;) = 05/30.

Thus o2 is the ‘within-cow’ variance and o} is the ‘between-cow’
variance. Note that var(logY) =~ cv¥(Y) (Exercises 14.10-11).
Further, if Y; are independent,

v Y} =~ cvi(Y)/n,

where cv(Y) is the coefficient of variation of Y. The variances o2

and o} then refer to individual cows and not to averages or totals
over 30 cows.
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The usual analysis-of-variance decomposition is shown in Table
14.1. From the ‘error’ line in this table we obtain the estimate 62 =
0.0216 or ¢ = 0.147. In other words, the within-cow coefficient of
variation is approximately 15%. From the ‘cow-class’ line together
with the ‘error’ line we find 62 = 0.8821 or 6, = 0.939, showing
that the between-cow coefficient of variation is approximately 94%.
In other words there is very substantial variation between animals,
and comparatively little variation within animals.

Table 14.1 Analysis of variance for the tuberculin-assay data

Source S.8. df. M.S. E(M.S.)

Cow class 0.47232 3 0.11833 0?%/30 + 402 /30

Sites 0.08324 3 0.02775 0%/30+4) (i — &)%/3
Treatments | 0.17596 3 0.05865 0%/30+4) (rx — 7)¥/3
Error 0.00433 6 0.00072 ¢%/30

Total 0.73584 15

Because of the orthogonality built into the Latin square design
the site effects and the tuberculin effects are uncorrelated, and inde-
pendent under Normality. Further, the variances of the estimated
tuberculin effects and site effects are functions only of o2 and not
of a’f. For this reason, if interest focuses on the site and tuberculin
effects, the same results would be obtained if we were to condition
on the cow-class effects and take them as fixed. The estimated site
effects are

a = (0.000,0.093,0.128, —0.053),

and the standard errors of simple contrasts are 6/v/60 = 0.019.
Thus sites 2 and 3 are significantly more sensitive than sites 1
and 4.

14.3 Non-linear models

The discussion in this section is meant to be quite general, but in
order to keep the terminology concrete we use the tuberculin-assay
example. The analysis that follows is performed on the original
scale and avoids explicitly transforming the data. This feature is a
characteristic of generalized linear models.
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Suppose that the conditional mean and variance of Y;;(x) given
the cow-class effects are as follows:

E(Y;;(x) | assignment of cows to classes) = M;;x),

var(Yi;k) | assignment of cows to classes) = 02V(M,-]-(k)),

where V (-) is the known conditional variance function. All obser-
vations, whether in the same cow class or in different classes, are
assumed to be conditionally independent. Suppose in addition that
the conditional mean satisfies the log-linear model

log Mij(k) =o;+ 9+ Tk (14.2)

in which the treatment effects 7, and possibly the site effects
«;, are the parameters of interest. Evidently this conditional
formulation specifies a generalized linear model, which happens in
this case to be log-linear. In this example all parameters, including
74, can be estimated in the usual way without further assumptions,
and no new issues arise. The analysis in section 6.3 corresponds to
the choice V(M) = M, whereas the analysis in the previous section
via response transformation corresponds roughly to V(M) = M2.

Suppose now that we insert into the model the further, quite
reasonable, assumption that the cow-class effects are independent
and identically distributed random variables from a particular
family of distributions, say

7 ~ N(0,0). (14.3)

This additional assumption does not invalidate the conditional
analysis recommended above, but it does open up the possibility
that a more efficient analysis could be devised by making use of
the random-effects assumption (14.3).

The most illuminating examples of this type occur when the
parameters of interest are not estimable in the conditional model
(14.2). Estimation is then impossible in the absence of a further
assumption such as (14.3). Suppose, by way of example, that the
tuberculin-assay design is such that all cows in a given class receive
the same treatment at each of the sites. Suppose further that two
replicates of the experiment are available, so that there are eight
cow classes in all. In other words the experimental arrangement
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Table 14.2 Alternative design for tuberculin assay problem

Cow class (§) I Im I 1 V VI VII VIII
Treatment (k) A B C D A B C D
1
Ny 2
Site (i) 3 Yiie
4

is as shown in Table 14.2. Evidently the treatment contrasts are
now aliased with a subset of the cow-class contrasts, and are not
estimable in the fixed-effects model (14.2).

Taking the log-linear model (14.2) together with the random-
effects assumption (14.3), however, we have

M,k = zi:exp(ai) x exp(7y;) X exp(7x)
so that the unconditional means for the cow-class totals are
By = B(M jx)) = 3 exp(a;) x E(e”) x exp(7)
= Y exp(a;) x exp(a}/2) x exp(7y).
On the log scale we have
log(s2.5(k)) = Tk + comst, (14.4)

which depends only on the treatment applied. Clearly the eight
cow-class totals are independent random variables. Their uncondi-
tional variances are given by

var(Y, ;i) = o2 Z E{V (M)} + var(M, ;). (14.5)

If V(M) = M this gives
var(Y, ;) = 021 + #5) €V7(€7)
= o?p.jky + N?j(k) (exp(op) —1).
On the other hand if V(M) = M? we have
var(Y, i) = 02 Y E(M} ) + var(M.;(x))

=0y il + v’ (€N} + uZigy evi(e)
i

o2
= u?j(k){cvz(e") + T(l +cvi(e”)) (1 +cvi(e™)) }
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where cvZ(a’) = Y.(o) — &')?/(n@?). In the first case the un-
conditional variance function is approximately quadratic provided
that o2fi > o2. In the second case the unconditional variance
function is exactly quadratic. Thus the parameters in (14.4) can
be estimated from the eight cow-class totals by using a quadratic
variance function and a log link.

From two replicates the coefficient of variation of the cow-
class totals can be estimated on four degrees of freedom. It is
this estimate that must be used for setting confidence limits for
treatment effects.

For the estimation of site effects it is unnecessary to use the
random effects assumption (14.3). The site effects are estimable in
the fixed-effects model (14.2) and their variances do not depend
on o2. From two replicates the residual variance o can be
estimated on 21 degrees of freedom using the residual deviance
from model (14.2).

14.4 Parameter estimation

Parameter estimates are obtained using the quasi-likelihood esti-
mating equation (9.5). We use this method in preference to explicit
maximum likelihood chiefly because it is often much simpler and is
based only on properties of the unconditional mean and covariance
matrix of the observations. Suppose that the unconditional mean
and covariance matrix of Y are

E(Y)=pu(B), cov(Y)=V(ua?),

where the components of a2 are the dispersion components. Then,
following the notation established in Chapter 9, the estimating
equations for B are U(B,a?) = 0, where

U(B,0%) = D"V~ (y - u(@). (14.6)

Ordinarily, but with some important exceptions, the solution to
this equation depends on the dispersion components, usually on
ratios of dispersion components. In such cases it is necessary to
use a supplementary set of estimating equations for the dispersion
parameters. Such a system of estimating equations is now derived.
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In all of the examples that we have in mind the dispersion
components are physical characteristics of identifiable populations
and the covariance matrix can then be written in the form

Vip,0%) = o2Vi() + ... + o2 Vi(w). (14.7)

Usually the rank of V;(u) is equal to the number of elements in
the sample that are drawn from the population indexed by j.

By way of illustration we consider the example discussed in the
previous section, in which there are two dispersion components.
The response variances are given by

var(Yi)) = 02 E(V(Mijx))) + var(Mijx))-

If the conditional variance function is V(M) = M, this expression
reduces to

var(Yijr) = 0° pijiry + {exp(o}) — 1}u; ey

Similar calculations show that the only non-zero covariances have
the form

cov(Yijy Yirjky) = cov(Mijky, Mirjeiry)
= pijky Hirjkry {exp(o) — 1}

for i’ # i. On comparing these expressions with the general form
(14.7) we find 0? = 0%, Vy(u) = diag(p), 0% = exp(ci) — 1, and
Vo(u) = pIp”, where J is a block-diagonal unit matrix taking
the value unity if two observations refer to the same cow class, and
zero otherwise. Note that the rank of V, is equal to the number of
cow classes.

The most natural way to estimate the dispersion components is
to choose k suitable quadratic forms and to equate the observed
values of these to their expectations as functions of the parameters.
Usually the root of (14.6) is fairly insensitive to the choice of a2,
so for that purpose the choice of quadratic forms is not critical.
However, the asymptotic covariance matrix of B,

cov(B) ~ (DTV~ID)~!

does depend heavily on o2.
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In many applications there is a natural set of quadratic forms
Q. = (Y - wTP.(Y — ), r=1,...,k, (14.8)

in which P, is a fixed projection matrix associated with the rth
random effect. Usually P,Y is equivalent to a set of marginal
totals, in which case @, is the sum of squares for that set of
totals. Provided that V(u) satisfies the additive decomposition
(14.7), these quadratic forms have expectations

k
E(Q.) =) _ tr{P,V;}d}, (14.9)

=1

which are linear functions of the dispersion components. In this
way we obtain k simultaneous equations for the k dispersion
components. As usual with variance components, the estimates
obtained need not be positive.

More generally the method of restricted maximum likelihood,
as described in section 7.2, can be used here, even though the
observations are usually not Normally distributed. However this
method gives rise to more complicated estimating equations and
requires the inversion of V(u,02) for various values of the dis-
persion parameters. For that reason we use the simpler but less
efficient method described above.

In practice, if p = dim(@) is positive, it is necessary to use f in
place of g in (14.8) and to iterate between (14.6) and (14.8). This
method of estimation is illustrated in the following section.

14.5 Example: A salamander mating experiment

14.5.1 Introduction

This section describes a particular problem, involving an exper-
iment with binary responses, for which neither the methods of
Chapter 4 nor those of Chapter 9 are directly applicable. In fact
straightforward application of linear logistic models could lead to
misleading conclusions, so it is essential to recognize the char-
acteristics of a design in which explicit recognition of dispersion
components is necessary. The problem described here involves sev-
eral dispersion components associated with different subgroups or
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Table 14.3. Design used in a salamander mating ezperiment!
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tRBF rough-butt female; WSF whiteside female; RB rough-butt male;
WS whiteside male.

Each female is paired with three males of each type: each male is paired
with three females of each type.

populations, and is not to be confused with simple over-dispersion
in which the observations are independent and there is only one
dispersion component.

The analysis presented here is admittedly rather rough and
ready. It involves at various stages Taylor approximations whose
adequacy, even for applied work, is more dubious than usual.
However, we believe that problems of this nature are sufficiently
common, and suitable statistical techniques either primitive or
excessively complicated, that a protracted discussion of a particular
example is worthwhile.
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14.5.2 Ezperimental procedure

The purpose of this experiment, conducted by S. Arnold and P. Ver-
rell of the Department of Ecology and Evolution at the University
of Chicago, was to study the extent to which mountain dusky sala-
manders from different populations will interbreed. These popula-
tions, all belonging to the same species, are geographically isolated
from one another, and are found at high elevations in the south-
ern Appalachian mountains of the eastern United States. Thus
the salamanders paired together in the laboratory would never
encounter each other in their natural environment—at least not at
this moment in geological time. The manner in which mechanisms
that prevent interbreeding evolve is of great interest to biologists
studying speciation. The question of interest here is whether these
barriers to interbreeding can evolve in populations that are isolated
from one another.

The data given here refer to two populations called Rough Butt
(RB) and Whiteside (WS). Forty animals were used in each of
three experiments, one conducted in the summer of 1986 and two
in the Fall of the same year. Normal practice is to use fresh animals
for each experiment but in this instance the animals used in the
first Fall experiment were identical to those used in the Summer
experiment. Repeat experimentation using the same animals is
potentially important but, because it is the exception to normal
practice, this aspect will be ignored in the analyses that follow.
The three experiments will be treated as if different animals were
used in each.

The forty salamanders available in each of the three experiments
comprise

10 Rough Butt males numbered 1-5 & 6-10 (RBM)
10 Rough Butt females numbered 1-5 & 6-10 (RBF)
10 Whiteside males numbered 1-5 & 6-10 (WSM)
10 Whiteside females numbered 1-5 & 6-10 (WSF)

According to the design in Table 14.3, which was used in each of
the three experiments, Rough Butt females numbered 1-5 (RBF 1-
5) were sequestered as heterosexual pairs with Rough Butt males
numbered 1-5 on 3 occasions June 4, 12 and 20, and with Whiteside
males numbered 1-5 also on 3 occasions, June 8, 16 and 24. These
Rough Butt females were never permitted to see RBM 6-10 nor
WSM 6-10. Thus, in effect, the design contains two replicates as
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Table 14.4. Observed matings: Summer '86

Date
Females June4 June 8 June 12 June 16 June 20 June 24
1 1 1 1 0 1 1
2 1 1 1 1 1 1
RBF 3 RB1 WSO RB1 WS 1 RB 1 WS1
4 1 1 1 0 1 1
5 1 1 1 1 1 1
6 1 1 1 0 1 1
7 0 0 0 1 0 0
RBF 8 WS0 RB1 WS o0 RB 0 WS 1 RB 1
9 0 0 1 1 1 1
10 0 0 1 0 1 0
1 0 1 1 1 0 1
2 0 0 0 1 0 0
WSF 3 RB0O WSO RB 0 WS 0 RB O WS 1
4 0 1 1 1 0 1
5 0 1 0 0 0 0
6 0 0 1 0 0 0
7 1 1 1 0 1 1
WSF 8 WS1 RBO WS 1 RB 0 WS 1 RB 0
9 1 1 1 1 1 0
10 1 0 0 1 1 0

shown in Table 14.8. The non-zero values in Table 14.8 are the
actual numbers of matings observed for the various crosses in the
Summer '86 experiment. It should be pointed out that, although
there are 25 possible crosses between the females RBF 1-5 and
the males WSM 1-5, only 15 of these crosses are permitted by the
design. For example, RBF 1 was not permitted to see RBM 2 or
RBM 3. Conversely RBM 1 did not see RBF 4 or RBF 5.

In order for the design to be complete in this sense it would have
been necessary to extend the experiment over 10 nights instead of 6.
This was considered impractical because four days of recuperation
are required between successive pairings, enabling females to trans-
port sperm, and males to synthesize spermatophores. A complete
design would have extended the duration of the experiment from
21 days to 37 days. The design used here comprises eight replicates
of an incomplete Latin square, although little use is made of that
design in the present analysis.

The design of the experiment permits a comparison of the
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Table 14.5. Observed matings: Fall ’86 (re-runs)

Date
Females | Sept. 4 Sept. 8 Sept. 12 Sept. 16 Sept. 20 Sept. 24
1 1 0 1 0 1 0
2 1 1 1 0 0 1
RBF 3 RB0O WS1 RB1 WS1 RB 1 WS1
4 1 0 0 0 0 0
5 1 0 1 0 0 0
6 1 1 1 0 0 0
7 1 1 0 1 0 1
RBF 8 WS1 RBO WS o0 RBO WS 1 RB O
9 1 1 1 1 0 1
10 0 0 1 1 1 0
1 0 1 0 0 0 1
2 0 1 0 0 0 1
WSF 3 RB0O WS1 RBO WS 1 RB O WS1
4 0 0 1 1 0 1
5 0 0 0 0 0 0
6 1 0 1 1 1 1
7 1 0 1 0 0 0
WSF 8 WS0 RBO WS o0 RB 0 WS 0 RB O
9 1 1 1 1 1 1
10 1 0 1 1 1 0

mating probabilities for the four possible crosses. In the analysis
that follows we concentrate on comparing the mixed crosses. In
other words we focus on the question of whether the RBF/WSM
crosses result in mating more frequently or less frequently than
the WSF/RBM crosses. The observed number of matings in
the Summer 86 experiment for each of the crosses is shown in
Table 14.7. For the comparison in question we observe that the
RBF/WSM cross resulted in 20 matings out of 30 encounters: the
WSF/RBM cross resulted in only 7 matings out of 30 encounters.
While the difference is apparently quite substantial, it is difficult to
set confidence limits on the difference or on the odds ratio because
the Bernoulli observations in Table 14.4 are not independent. Even
if there is no time trend it would be a gross over-simplification
to assume that there is no variation among individual males or
among females or to assume that the six observations on any one
animal are independent. A binomial comparison is inappropriate
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Table 14.6. Observed matings: Fall '86
Date
Females Oct. 4 Oct. 8 Oct. 12 Oct. 16 Oct. 20 Oct. 24
1 1 1 1 0 1 1
2 0 0 0 1 0 0
RBF 3 RB1 WS1 RB1 WS 0 RB 1 WS 1
4 1 0 1 1 0 0
5 0 1 1 0 1 0
6 0 1 1 1 1 1
7 0 1 0 0 0 0
RBF 8 WS1 RB1 WS 1 RB1 WS1 RBO
9 0 0 1 0 1 1
10 0 1 1 1 1 1
1 0 0 0 1 0 1
2 0 1 0 1 0 1
WSF 3 RB1 WSO RB1 WS 0 RBO WS 1
4 1 1 1 0 0 0
5 0 1 1 1 0 1
6 0 0 1 0 0 0
7 1 0 1 0 0 0
WSF 8 WS0 RBO WS 1 RB 0 WS 1 RB O
9 1 0 0 0 1 0
10 0 0 1 0 1 0

and potentially misleading here because the variability in the totals
is undoubtedly in excess of that predicted by the binomial model.

14.5.3 A linear logistic model with random effects

It is convenient to begin by considering a model for the observed
data conditionally on the actual animals used in the experiment.
From this conditional perspective it is reasonable to suppose that
the 120 observations in Table 14.4 are independent but not iden-
tically distributed. For the sake of simplicity we assume here that
there is no time trend and that all effects are additive on the logistic
scale. The conditional fixed-effects model formula is therefore

individual female effect + individual male effect + cross effect.
(14.10)
The male and female effects are factors whose 20 levels identify the
animals, and the cross effect has the four levels R/R, R/W, W/R
and W/W in the order female/male. The cross effect is partly
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aliased with the sum of the male and female effects, and hence not
all cross-effect contrasts are estimable in (14.10).

Table 14.7. Observed number of matings in an incomplete crossed design
(Summer '86)

Males
Females RBM 1-5 WSM 1-5 RBM 6-10 WSM 6-10
RBF 1-5 15 12 — —
WSF 6-10 5 12 — —
RBF 6-10 — — 7 8
WSF 1-5 — — 2 9

We do not propose to fit the fixed-effects model for a number of
reasons. First, most of the contrasts of interest are not estimable.
Second, some of the individual effects may be estimated as *oo.
Rough Butt females 2 and 5 had success rates of 6/6, so their effects
are estimated as +o0o on the logistic scale. Third, the individual
animal effects are of scientific importance only to the extent that
they mimic the populations from which they are drawn. The main
advantage of considering (14.10) explicitly is that the random-
effects model of interest is a sub-model of (14.10). Consequently
the statistic that is sufficient for the fixed-effects model must also
be sufficient for the random-effects model.

In order to make further progress or to draw any interesting
scientific conclusions it is necessary to make further assumptions
regarding the relationship between the experimental animals and
the populations that they are supposed to represent. We shall
assume here that the experimental animals are, either in fact
or in effect, a random sample from their respective populations.
The individual effects in (14.10) are therefore regarded as random
variables with variances o2 and ¢,2. The male and female variances
are assumed constant across populations.

The sufficient statistic, S, for the fixed-effects model is the set of
totals for each animal and cross type. The values for Summer '86
are shown in Table 14.8.

In what follows we apply the method of quasi-likelihood either
to the vector S or to the original observations Y. We use uncondi-
tional expectations and variances, and denote the four probabilities
of interest by myg, Taw, Twr and www. If we denote by Y;; the
observation corresponding to female 7 and male j, then E(Yj;) is
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Table 14.8 Components of the sufficient statistic S: Summer '86

Random effects Systematic effects

Animal RBF WSF RBM WSM Observed Fitted

1 5 4 5 4 R/R 22 22
2 6 1 3 5 R/W 20 20
3 5 1 5 6 W/R 7 7
4 5 4 3 5 w/w 21 21
5 6 1 4 4
6 5 1 2 3
7 1 5 1 1
8 3 3 2 5
9 4 5 3 4
10 2 3 1 4

Fitted 4.2 2.8 2.9 4.1
52 2.84 2.84 210 1.88

equal to one of these four probabilities according to the popula-
tions from which the male and female are drawn. (At no point in
the experiment was the same pair observed twice, so this notation
introduces no ambiguity.) Similarly, the components of E(S) are
linear functions of the four probabilities.

The unconditional covariance matrix of Y;; is assumed to have
the pattern implied by (14.10), namely that observations on non-
overlapping pairs of animals are independent. Selected elements of
the covariance matrix are assumed to have the following form:

Tar(l — Tar) if i =k, 7 =1, both of type R;
Voo = 029%(Tar) if i = k[=R]; j # 1, both R;
ET Y o2g(mew)g(mww) i i # (=R, W j = I[= W];
0 ifi£k, j#L
(14.11)

and so on for some known function g(-). Other non-zero compo-
nents have the form

an(l_ﬂ'nw)v 0'1.-292(77Rw)1 Ujgz(WRw)v Ul-?g(WRR)g(WRW)v"‘y

depending on whether the two observations are identical, have one
Rough Butt female in common, one Whiteside male in common,
one Rough Butt female in common, and so on. This covariance
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matrix with g{(m) = =w(1 — m) can be obtained via a Taylor
approximation based on (14.10) provided that o2 and o? are
sufficiently small. For details see Exercise 14.2.

With this covariance matrix it can be shown that the quasi-
likelihood estimates of the four probabilities are

fan = Z Yi]'/301 Taw = Z Yi]'/301
R
. FR ) il (14.12)
fwr = Y. Y;;/30 and #Ayw = Y Y;;/30,
W/R ww

as indicated in Table 14.8. For a sketch of the derivation see
Exercises 14.8-9. The remarkable aspect of this is that the quasi-
likelihood estimates do not depend on the values of 6;2 or 62, though
their distributions do. Provided that the covariance matrix has the
form (14.11) the quasi-likelihood estimates are the same as if the
two dispersion components were zero.

Since the parameter estimates are linear functions of the data,
the covariance matrix of # may be obtained in terms of the dis-
persion components using (14.11). We find after some considerable
algebraic reduction that

30cov(#) = II(I - II)

2(c2+02) 302 302 0
302 2(02+02) 0 302
+G 302 0 2(a2+02) 302 G
0 302 R 2(c2+02)
(14.13)

where G = diag{g(7ar), 9(Taw ), 9(Twn), 9(Tww)} and I = diag{x}.
A similar but slightly more complicated expression can be obtained
if the exact covariance matrix is used in place of (14.11). For
example the exact variance of 307y is

Mar(l — Tar) + cov(F(aRR + e +61), Flags + €1 + 62))
+ cov(F(ann + €1 + 81), Farn + €2 + 61)),

while the covariance of 307z, and 307w is

3cov(F(anr + €1 + 61), Flarw + €1 + 62)), (14.14)
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where F'(-) is the cumulative logistic function, and ¢;, with variance
o2, and 6;, with variance 02, are the female and male random
effects. Only the first term of the Taylor expansions is included
in (14.13).

The quasi-likelihood estimates are exactly the maximum likeli-
hood estimates obtained from the linear logistic model containing
only the four-level factor ‘cross type’. The covariance matrix ob-
tained from this analysis is the first term in (14.13). The second
term arises entirely as a result of covariances among the observa-

tions, and could conceivably dominate the first term.

14.5.4 Estimation of the dispersion parameters

From the approximate covariance matrix (14.11) we see that the
covariance matrix of {Y;;} is expressible in the form

Vo(7) + o2Vi(n) + 62 Va(x).

Consequently the expected value of any quadratic form in the resid-
uals is linear in the dispersion components o2, 02. For purposes
of estimation the easiest way to proceed is to choose two suit-
able quadratic forms and to equate the observed values of these
to their expectations as functions of ¢2,052. This gives a pair of
simultaneous linear equations for the dispersion components. For
reasons given in the previous section such quadratic forms should
be functions of the sufficient statistic S.

In Table 14.8 the expected value of each entry in column 1 is
3Mr + 3maw, estimated as 4.2, which is the column mean. Similar
calculations apply to the next three columns. The variance of each

entry in column 1 is

var(S1) = 3ma(l — M) + 3Mmaw (1 — Taw )
+ 60F2{7rR2R(1—7rRR)2 + 7rrfw(1—7rm,v)2 + 3Map (1~Mar ) Maw (1~ Taw) }

which we denote by k2(S). Within column 1 some of the covari-
ances are zero: the non-zero covariances are not all equal because
some pairs of females have one male in common and others two.
The sum of the covariances between ; and S for 7 # j in column 1
is

90%,,(9) = 6003{7&2“(1 — Tar)? + 7rR2w(1 — 7er)2}.
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It follows from the result established in Exercise 14.6 that the
expected mean square for column 1 is

E(mean square) = k2(5) — &11(9),
which is estimated as
1.2533 + 1.3080052 — 0.05840,2.

Similar calculations for the second column give an expected mean

square of
1.1667 + 1.13285.2 - 0.050702.

The estimates used here are based on the pooled mean square for
females, and the pooled mean square for males. Details of the
calculations are shown in Table 14.9.

Table 14.9 Estimation of the dispersion components from S

Source  Mean square E(Mean square) a2
RBF 2.8444 1.2533 + 1.30800 — 0.05840;2
WSF 2.8444 1.1667 + 1.132862 — 0.05074,2
Total F 5.6888 2.4200 + 2.440802 — 0.109162  1.3704 = &2
RBM 2.1000 1.1233 + 1.05110;2 — 0.04680;2
WSM 1.8778 1.2967 + 1.400952 — 0.06230;2
Total M 3.9778 2.4200 + 2.45200,2 — 0.10910;2  0.6963 = &2

The results of similar calculations for the Fall 86 experiments
are summarized in Table 14.10. Evidently the mating probabilities
are quite consistent across the three experiments, 7,y being con-
sistently lower than the other three probabilities. The estimated
dispersion components are similar for the first two experiments,
but the pattern is reversed for the third experiment. It should be
borne in mind, however, that the variability of these estimates is
appreciable, and negative estimates are not impossible. Because
of correlations among the components of S it is difficult to assign
degrees of freedom to the sums of squares in Table 14.9.

Using the pooled estimates of all parameters together with
(14.13), we find that the estimated covariance matrix of 90# is

0.2222 0.1772 0.1506 0.0977
0.2469 0.1506 0.2188 0.1448
0.1665 * 1 0.0077 0.0995 0.1015

0.2222 0.1448 0.1015 0.1772
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Table 14.10 Summary of parameter estimates from three erperiments.

Parameter estimate Dispersion component
Ea:periment ﬁ‘RR ﬁ‘RW 7’i'wg 7AI'ww 6'1;? 6’13[

Summer 86 0.7333 0.6667 0.2333 0.7000 1.3704 0.6963
Fall ’86 (re-run) 0.6000 0.4667 0.2333 0.6667 0.9787 0.5997
Fall ’86 0.6667 0.5333 0.1667 0.6333 0.3954 1.3440

Pooled estimate  0.6667 0.5556 0.2111 0.6667 0.9148 0.8800

The random effects account for about half of the total variability
in the parameter estimates, although not all contrasts among the
#rs are affected equally (Exercise 14.12). The pooled estimate of
the mixed contrast is fzw — fwr = 0.3445 with estimated standard
error (0.0904. Thus the evidence for a non-zero mixed contrast is
evidently very strong. From this analysis there i1s no evidence of
differences among the probabilities Mg, Trw and Tyw.

Despite the fact that the magnitudes of the random effects as
estimated in Table 14.10 are approximately equal for the two sexes
it appears from closer inspection that the nature of the effect for
males is quite different than for females. A comparison of the
two sets of animal totals for the Summer ’86 and the first Fall ‘86
experiment shows a strong correlation for males but no evidence
of any correlation for females. Thus it appears that the male
random effects persist over several months at least whereas the
female effects are short-lived. This conclusion applies to both male
populations and both female populations.

14.6 Bibliographic notes

Linear models in which there is more than one variance component
have been used for many years going back at least to the work of
Fisher and Yates in agricultural experiments. For detailed accounts
of specific designs see Kempthorne (1952, Chapter 9) or Cox (1958c,
Chapters 7,8). For the estimation of variance components more
generally in cases where the design is unbalanced, the method
of restricted maximum likelihood is usually preferred to ordinary
maximum likelihood. For an account of this see section 7.2,
Patterson and Thompson (1971) or Harville (1974, 1977).

There is a parallel but extensive literature on educational test-
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ing, which uses ordinary maximum-likelihood estimation for unbal-
anced Normal-theory linear models. See, for example, Goldstein
(1986) or Bock (1989).

Although the need has long been recognized by practising statis-
ticians, the development of analogous models and techniques of
estimation for non-Normal data or for non-linear effects has pro-
ceeded very slowly. Some notable exceptions are Stiratelli, Laird
and Ware (1984), who use a Bayesian argument, with a diffuse prior
on the regression coefficients, for the estimation of the dispersion
parameters. Gilmour, Anderson and Rae (1985) discuss a random-
effects probit model. For Normal-theory linear models the previous
two methods reduce to restricted maximum likelihood. Anderson
and Aitkin (1985) develop an unmodified maximum-likelihood esti-
mation procedure for nested variance components in linear logistic
and probit models. Their likelihood is obtained by direct numeri-
cal integration assuming Normal random effects, and the resulting
estimates are not the same as those suggested here.

In the previous three papers the effects of interest are defined as
linear contrasts of the conditional logits. In section 14.5.3, however,
the effects of interest are defined in terms of the unconditional
probabilities or logits: the random-effects model (14.10) is used
only to justify the choice of covariance matrix. A qualitatively
similar argument is given by Prentice (1988). Zeger, Liang and
Self (1985) and Liang and Zeger (1986) also argue in favour of
specifying models for the unconditional rather than the conditional
probabilities, but the choice must ultimately be governed by what
the interesting parameters are in any given context. For further
discussion regarding the distinction between subject-specific mod-
els such as (14.10) and population-averaged models corresponding
to the estimates (14.12), see Zeger, Liang and Albert (1988).

Morton (1987) considers models for counted data in which
the random effects are nested and effects are multiplicative. His
method of estimation, using quasi-likelihood estimating functions,
is very similar to that used here. The salamander example is rather
unusual in that the random effects are crossed rather than nested.

Despite the apparent paucity of references, this subject is ex-
tremely important with a broad range of applications. At the
time of writing it is evident that the topic is a rich source of good
research problems.
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14.7 Further results and exercises 14

14.1 Consider the vector S whose 44 components are displayed in
Table 14.8. Show that T} = §1 — Sgr /10 — Sgw /10 is uncorrelated
with Sgr, Srw, Swr and Sww, and that E(T;) = 0. Hence deduce
that the quasi-likelihood estimates of the parameters are given by
(14.12).

14.2 Suppose that € is a Normal random variable with mean zero
and variance o2. Define the following random variable and its

expectation:

expla +¢)

= d = E(P).
1 +exp(a +e¢)’ anc.m (P)

Justify empirically the approximation = ~ F(a*), where F(z) =
e /(1 + e*), and

a* = a — 0% tanh{a(l + 2exp(—-0?%/2))/6}.

For 02 < 2, the maximum error of this approximation is about
0.003 on the probability scale. Show that the approximation has
the correct limiting behaviour in the limit as @ — *oo for fixed
2
o’
By differentiating the above approximation with respect to «,

show that the variance of P is approximately
var(P) ~ o’ (1 — m)mt(1 — nt) x 1(1 + 2exp(—0¥/2)),

where ' = F(a(l + 2exp(—0?/2))/3). This approximation is
considerably more accurate than the Taylor approximation in
(14.11).

14.3 Suppose that €1, €5 are Normal random variables with vari-
ances 02, 02, and correlation p. Show that the correlation p’ of
F(e1) and G(eg) satisfies

UFalls

i% ~14 i{af(%,—:>2+ag(g—,:>2— 2p(7102{;7é7} >1

when terms of order ¢4 and smaller are ignored. Under what
conditions is p’ equal to p?
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14.4 Using the notation of the previous Exercise, define the ran-
dom variables Py, P, together with their expectations as follows:

P, = exp(a; + €1) P, = exp(az + €2)
17 1F exp(ai + €1)’ 1+ exp(ag + €2)’
™ = E(Pl), g = E(Pz)

Using the results given in the previous Exercises, find an approxi-
mation for the covariance of P, and Ps.

Compute the exact covariance numerically for variances and
covariances in the range 0-2. Comment on the adequacy of the
approximate formula.

14.5 Compute the components of the sufficient statistic S for
the first fall 86 experiment (data in Table 14.5). Compare the
individual animal totals with those in Table 14.8. Compute the
correlation coefficients or regression coefficients of the Fall totals
on the Summer totals for each of the four groups. Comment on
your findings.

14.6 Show that if Y7,...,Y, have common mean g and covariance
matrix &; j, then the expected value of

s? = ! Z(Y, —)7)2

n—1

is given by

1 1
E(s®) = n Z Kii— -r_z(_ntl_) Z"f'i,]"

vy

14.7 The pooled estimate of the dispersion components in Ta-
ble 14.10 is the average estimate for the three experiments. By
pooling together the sums of squares for F' and M from the three
experiments and equating these totals to their expectations, show

that the pooled estimates are G2 = 0.9035 and 62 = 0.8759.

14.8 Suppose that the random vector Y satisfies the linear model

E(Y)=Xg, cov(Y)=V.
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Let B be the ordinary least-squares estimate B = (XTX)_leY
and let R be the residual vector

R=(I-P)Y =Y - XB.

Let X denote the column space of X. Show that if Vz lies in X
for each £ € X then R and @ are uncorrelated and

B=p=X"WX)"IXTWY,
where W = V™!, Deduce also that V™!z € X. [Kruskal, 1968].

14.9 Using the result established in the previous exercise show
that the maximum quasi-likelihood estimates of the parameters
in the salamander example are given by (14.12) provided that
the experiment is suitably balanced. Obtain the required balance
condition.

14,10 Show that if Y has the gamma distribution G(u, v), then
var{log(Y)} = 4'(v),

where 9(z) = I"(z)/T'(z). Under what conditions is the approxi-
mation var(logY) =~ cv?(Y’) adequate for the gamma family?

14.11 Repeat the calculations of the previous exercise under the
assumption that Y has the log-Normal distribution, log(Y) ~
N(p, o).

14.12 Consider the model formula (14.10) written in matrix

notation in the form
Zb + X,

in which Z is a (120 x 40) incidence matrix identifying the animals
paired together in each trial, and X is a (120 x 4) incidence matrix
for the cross type, R/R, R/W, W/R and W/W., Show that the
matrix (I- Z(ZTZ)‘ZT)X has rank 1, with span corresponding to
the contrast R/R — R/W — W/R + W/W. Hence justify the claim
made in section 14.5.3 that most of the effects of interest are not
estimable in (14.10).

Using (14.12) and (14.13) find an estimate of the above contrast
and obtain a numerical estimate of the standard error, (i) under
the assumption that the between-animal variances are zero, and
(ii) using the estimates given in Table 14.10. Explain briefly why
the standard error in (ii) is smaller than in (i).



CHAPTER 15

Further topics

15.1 Introduction

This chapter describes briefly a number of topics related to gener-
alized linear models, some of which are of current research interest.

15.2 Bias adjustment

In large samples the bias of maximum-likelihood estimators is
O(n~1), and hence negligible compared with standard errors. For
samples of more modest size, or for problems in which the number
of parameters is appreciable compared with n, the bias may not
be entirely negligible. In such cases the usual approximations can
often be improved by making a bias adjustment to the maximum-
likelihood estimate. In what follows we describe how the leading
term in the asymptotic bias can be computed by weighted linear
regression.

15.2.1 Models with canonical link

In the case of full exponential-family models with canonical link
function, such as linear logistic models for binomial data, log-linear
models for Poisson data, inverse linear models for exponential data,
the approximate bias of the maximum-likelihood estimate can be
obtained by a very simple supplementary computation, which we
now describe.

Using tensor notation with implicit summation over indices
that appear twice, the components of the approximate bias vector
b = E(B - B) are given as follows:

E(BT - =b =~ _%K’T’B'{'t’u'{'a,t,u- (15.1)

455
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For a derivation of this and related asymptotic formulae for max-
imum likelihood estimators, see McCullagh (1987, Chapter 7). In
this formula x™*® are the components of the inverse Fisher informa-
tion matrix, elsewhere written using matrix notation as (X” WX)~1
where, for canonical-link models, W = cov(Y). The expression for
the components of the three-way array ks 4, in terms of the model
matrix X = {z%} is
n
Kotu = 3 ToT3T,K3i,
i=1
where k3; is the third cumulant of the ith component of the
response vector.
As an intermediate step in the derivation it is helpful to consider
the contracted array with components

bs =—;n”un = ——Z.’L‘ K34 .’L‘t.’L‘ Kh (15.2)

Using matrix notation, the product zizJ k%% is written as the nxn
symmetric matrix
Q= X(XTWX)"1xT,
which is the asymptotic covariance matrix of ). Consequently the
final factor appearing in (15.2) is the ith diagonal element of Q,
which we write as (;;. Thus
. K3
by = —3 leg'ﬁ% Qi —
3 K24
Using matrix notation the components on the right of the above
equation are just XTWE, where & = —%Qﬁlﬁai/lﬁzi.
Evidently from (15.2) the bias vector b is obtained by premulti-
plying the components b, by the inverse Fisher information matrix.
This operation gives

b = (XTWX)1XTWg, (15.3)

which is easily obtained as the vector of regression coeflicients in
the formal linear regression of £ on X with W as weight vector. In
other words we retain the weights and the model formula from the
log-linear or linear logistic model, but the link function becomes the
identity and response vector becomes €. The binomial index vector
and any prior weights are assumed to be incorporated into W.
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15.2.2 Non-canonical models

For non-canonical models the tensor expression for the first-order
asymptotic bias of B is a little more complicated because it involves
the covariance between the vector of first-order derivatives and the
matrix of second-order derivatives of the log-likelihood function.
However, calculations similar to those given in the previous section
show that the bias vector can be obtained by a similar supplemen-
tary regression computation. It is only necessary to re-define the
formal response vector in this regression and then to use (15.3).
We find that the components of £ are given by

&= _%(Z_;.,',>Qii, (15.4)

where p1, = Ap;/0n; and pl = 9%p;/0n? are the derivatives of the
inverse link function. Note that the weights in (15.3) are the usual
. . /2
quadratic weights, namely W; = pu}”/Ko;.
The following Table gives expressions for §; for some common
link functions.

Link &
identity 0
log -Qii/2

IOgit Q,;,j(ﬂ',j - %)
probit Qiini/2
clog-log  Qii(exp(m) —1)/2

For binary regression models £; has the same sign as 7;, though
the vectors £ and n are not co-linear in R". However, under
conditions of approximate quadratic balance (Q;; = const), and
provided that |8)| is small, it may be shown that the bias vector b
and the parameter vector # are approximately co-linear. A very
rough approximation for small || is

b =~ pf/m., (15.5)

where m, = Y. m; and p = dim(B). Thus bias adjustment for
binary regression models has an effect on the parameter estimates
approximately the same as shrinkage towards the origin by the
factor 1 — p/m,.



458

15.2.3 Ezxample: Lizard data (continued)

FURTHER TOPICS

To illustrate these computations we use the linear logistic model
(4.24) applied to the data in Table 4.5. The parameter estimates
shown in Table 4.8 lead to the following fitted quantities:

Qii =
fi =

N N~

0.8749, 0.8977, 0.7699, 0.9558, 0.9645, 0.9120, . . .
0.1161,0.1333,0.1246, 0.1506, 0.1749, 0.1530, . ..
0.0435,0.0530, 0.0336, 0.0687, 0.0812, 0.0630, . . .
2.4085, 0.8266,1.4171,0.5488, 0.2740,0.9634, . ..

Only the first six components of the fitted vectors are shown here:
these correspond to the first two rows of Table 4.5. Note that w;

for linear logistic models is just m;#;(1 —

#i).

Weighted linear regression of £, using the same model formula,
gives the bias vector b shown together with B in the followmg

Table:
Parameter Estimate S.E. b ,[3 -b
u 1.9447 0.3408 0.0436 1.9011
H 1.1300 0.2568 0.0238 1.1062
D —0.7626 0.2112 —0.0090 —0.7536
S —0.8473 0.3217 —0.0302 -0.8171
T(2) 0.2271  0.2500  —0.0009 0.2280
T(3) —0.7368 0.2988 —0.0095 -0.7273

The largest biases here are about 10% of a standard error. In cases
of marginal statistical significance biases of this magnitude could
have a small effect on the conclusions, but they are unlikely to be of
any consequence in this example. However an examination of the
approximate biases is helpful here as a check on the significance of
the factor S, which, though significant in the maximum-likelihood
analysis, does not show up as significant in the preliminary analysis
in Table 4.6 and Fig. 4.2. The bias adjustment indicated above
reduces the significance of S, but not by an amount sufficient to

alter the conclusions.
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15.3 Computation of Bartlett adjustments

15.3.1 General theory

A simple, or fully specified, null hypothesis Hy:8 = 63 may be
tested using the likelihood-ratio statistic, which is twice the differ-
ence between the maximum log likelihood and the value attained
at @g. For generalized linear models in which the dispersion par-
ameter is known, this difference may be written in terms of the
deviance as follows:

A =20(8;Y) — 2(60;Y) = D(Y;80) — D(Y; ).

We have assumed here for simplicity of notation that the dispersion
parameter is equal to unity.

Under the usual asymptotic regularity conditions for large sam-
ples the asymptotic mean of this statistic is

E{D(Y;80) — D(Y;0)} = p+¢, + O(n" %),
= p{1 + b,(80)} + O(n™?),

where p = dim(8) and b(6) is known as the Bartlett adjustment
factor. In fact it is possible to show that all cumulants up to any
fixed order, r, are given to the same order of approximation by

ke {D(Y;80) — D(Y;8)} = (r —1)!2""1p {1 4 b,(80)}" + O(n™2).

(15.6)
For an outline proof in the single-parameter case, see Appendix C.
The leading term in this expression is just the rth cumulant of the
Xf; distribution. From the multiplicative property of cumulants
it can be seen immediately that the cumulants of the adjusted

statistic
A

~1+b,

’

agree with those of the x2 distribution when terms of order O(n~2)
are ignored. Note that b, and ¢, are both O(n™') by assumption.

Although convergence of the cumulants implies convergence
in distribution provided that the asymptotic cumulants uniquely
determine a distribution, the order of magnitude of the discrepancy
in the cumulants is not necessarily the same as the size of the
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error in the cumulative distribution function. Nevertheless it seems
plausible to conclude that the distribution of the adjusted statistic
is given by

A~ Xp? + O(n_z)v

and in fact this claim is correct at least in the non-lattice case. In
the lattice case the error cannot be reduced below O(n~12) without
resorting to discontinuous approximations, which are extremely
inconvenient. It is unclear in that case whether the adjustment
improves the approximation or not.

For composite null hypotheses, which are more common in
applications, a similar adjustment can be made. The statistic can
be written in the form

A(8,80) = 21(8;Y) - 21(B0; Y) = D(Y;80) — D(Y;8), (15.7)

where &0 is the estimate of the nuisance parameters under Hy, and
0 is the unrestricted estimate. Assuming that the hypotheses are
nested, and that ¢ < p is the dimension of the parameter space
under Hy, the mean of this statistic is

E{A(8,80)} =p+ e +0O(n"%) - (¢ + ¢q + O(n72))
=p—q+ (6 —€) + O(n™?)
= (p— Q{1 + bpe(0)} + O(n7?).

Thus the required adjustment factor is now

bpq = (Pbp — qbg)/(p — q) = (€p — €4) /(P — q)- (15.8)

The cumulants of the maximized likelihood-ratio statistic (15.7)
obey (15.6) with p replaced by p — ¢. Hence the cumulants of the
adjusted statistic agree with those of xf,_q apart from terms of
order O(n~2).

15.3.2 Computation of the adjustment

We focus here on computing ¢, as if the null hypothesis were simple.
Differencing is necessary if nuisance parameters are present. All
quantities are computed at 90 rather than the true @, which is
usually unknown.
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The calculations that follow use the general expression (29)
of McCullagh and Cox (1986). The aim here is to present that
expression in a more readily computable form, by exploiting special
properties of generalized linear models. Final expressions are
presented in matrix notation although intermediate calculations
make some use of index notation.

For the present discussion it is convenient to introduce the
following diagonal matrices.

D(2) = dlag{H:I — u:2 leg m/dﬂz}a
W = diag{n?/V;} = DVV™'DO.

In addition to these, the following non-diagonal matrices arise
naturally as a by-product of the weighted least squares algorithm
used to compute parameter estimates.

Q = X(XTwx)~1x7,
P =DWQDWVL,

Note that 02Q is the asymptotic covariance matrix of # and
02D(1)QD(1) is the asymptotic covariance matrix of ji.

The first and second derivatives of the log likelihood with respect
to the regression parameters g, are

Ur = 81/86, = Y «i DOVHY; — py),
Ups = 8°1/06,08, = Y _ siai DOV Yi — i) — ziaiW,

where zi are the components of the model matrix X. The
Fisher information matrix is XTWX, which we write as &, 5, with
inverse K™%,

Evidently, for all generalized linear models, the log likelihood
derivatives are linear functions of Y, a property that simplifies
much of the subsequent calculations. A key step in deriving a
simple expression for the Bartlett factor involves working with the
residual second derivative matrix rather than U,,. The covariance
of U,; and U, is a three-way array whose components are

Krop = 3 2izi DV DV g,
i
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Since only arithmetic multiplication is involved, the order of terms
in the above sum is immaterial. It is a remarkable property of
generalized linear models that all such ‘mixed’ cumulants are sym-
metric under index permutation. In other words, for generalized
linear models, but not in general, ky5¢ = Kry,s = K¢, and so on.

The residual matrix of second derivatives after linear regression
on U, is

Zx’x’ DOV Y6 — P} (Y — ).

For purposes of computation we may write

Ve = 3 2iai DOV - ),
i

but the former expression is simpler for theoretical calculations.

The Bartlett factor can now be given as a linear combination of
six invariant functions of the joint cumulants of U, and V,,. The
invariant fourth cumulant of U, 1s

1,1 z —4 r,8 t-u.
ps = E it it V. gkt
=E (Pii)?pai, (a)
i

where P;; are the diagonal elements of the asymmetric projection

matrix P, and py; = k4;/k3; is the usual standardized fourth

cumulant of ¥;. The two quadratic skewness scalars are

P13 = Z-”f' Qi H;SV.' K3 K7° er]JHISV K3j
ij
= Z(Pimai/'ﬁzi)VflPz’j(ij'ﬁaj/'ﬁzj); (b)
ij
s =Y (Vi Py)’kaira;. (c)
ij

These scalars can be computed easily using simple matrix opera-
tions.
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Similar calculations show that the two scalar measures of the
variability of V,, can be simplified as follows.

Vrs guk K" = T DA V™H(I - P)DPgq, (d)
Vrs, tuk” b Z Qz] Q’L] [D(z)v ( P)D(z)]ij’ (e)

where ¢ is a vector with components ;. Finally we have one
further scalar

Vr ok kb = gTDOVHI - P)g", (f)

where g; = g;W;k3j/k2;. The notation on the left of the preceding
three equations is taken from McCullagh and Cox (1986).

Although the tensor expressions on the left of (d)-(f) are
algebraically more appealing than the matrix formulae, the latter
expressions have the advantage for numerical purposes that they
use only simple operations on matrices and vectors. Numerical
computation involving higher-order arrays is thereby avoided.

In terms of these scalars the correction may be written as the
linear combination

= —3(a) + 3(0) + §(c) — 3(d) + 3(e) — 3(f)- (15.9)
If the canonical link is used only the first three of these terrﬁs

contribute.

15.3.3 Ezample: exponential regression model
Suppose that Y7,...,Y, are independent exponential random vari-
ables with 7; = log u; satisfying the linear model n = X3. We find
that the required matrices are as follows:

DY = diag{y;}, ~ D® =diag{-p:}, W=I,

Q= X(XTX)" X7, P = diag{p;}Qdiag{n; '},

so that P;; = (@;; even though P is not symmetrical. These
properties permit simplification of (15.9) giving

& =3 Z Q3 — 14" (1- Q. (15.10)
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In this particular case, since the model is of the translation type,
€, does not depend on the value of the parameter.

To take a simple numerical example, consider the data on
survival times for 17 leukaemia patients given by Feigl and Zelen
(1965). The data are discussed by Cox and Snell (1981, pp.148-
150), who consider the model

log u; = fBo + Pz, (15.11)

in which y; is the expected survival time, and z; is the logarithm of
the initial white blood cell count. The likelihood-ratio statistic for
testing the hypothesis Hy: 3; = 0 comes to 6.826 on one degree
of freedom yielding a p-value of 0.89%. Here we compute the
Bartlett-adjusted statistic as a check on the adequacy of the x?
approximation.
Since in this case
Qi = 1 (z; —ZT)(z; — %)
Y Y(wi—z)?

it follows that

713
Q?=é+M
s

For the leukaemia data this gives
€2 = (4/17 + 0.00003849) /6 — 0.0688/4 = 0.0220.

Similar calculations under Hy give ¢; = 1/(6n) = 0.00980. Thus
ba1 = 0.0122 giving a corrected statistic of 6.744. The p-value is
increased to 0.94%—a. trivial increase in this case. The usual 2
approximation appears to be quite accurate here even though the
sample size is not especially large.

On the other hand if we were interested in testing the adequacy
of the model (15.11) with no specific alternative in mind, the
likelihood-ratio statistic is equal to 19.46 on 15 degrees of freedom.
For the Bartlett adjustment we find €;7 = 17/6 giving

bz = (17/6 — 0.0220)/15 = 0.187.

Thus the adjusted statistic is 19.46/1.187 = 16.39. The p-value is
thereby increased from 19.4% to 35.6%. The 19% reduction in the
value of the statistic is substantial and could in principle weaken
the force of the conclusions, although that has not happened in
this case. For example if the unadjusted statistic corresponds to a
p-value of 1%, the p-value for the adjusted statistic is 4%.
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15.4 Generalized additive models

In choosing the set of terms to be included in the linear predictor
of a generalized linear model we make the prior assumption that
some subset of the terms chosen will give an adequate picture of the
response surface generated by the covariates. If the actual shape
of the surface is not expressible as a function of the terms and link
function chosen then the fitted values will deviate systematically
from the actual response surface. Model-checking techniques de-
scribed in Chapter 12 can be used to detect this state of affairs,
and perhaps to remedy the misfit. An alternative method, due to
Hastie and Tibshirani (1986, 1987ab), is to fit generalized addi-
tive models, which, for continuous covariates z, replace the linear
predictor n = 3. z;0; by the additive model

n=a+3 fi(z;)
J

in which f;(z;) are smooth functions estimated from the data. The
model remains additive with respect to the covariates, but it is no
longer linear in them. The functions f;(-) are identifiable up to an
arbitrary constant, much like the levels of a factor.

15.4.1 Algorithms for fitting

We consider first the fitting procedure for a single covariate z, using
a generalized additive model with link function g(-) and variance
function V(-). One method associates with each point (y;, ;) a set
of neighbours on the z-axis, and estimates a value of the response
function at x; for each ¢ by applying the standard GLM algorithm
with linear predictor a + 8z; in that neighbourhood. Then f (z;)is
the fitted value of n—« at z;, i.e. we use linear interpolation within
each neighbourhood. This algorithm, also called the local-scoring
algorithm, can be thought of as using a weighted running-lines
smoother on the adjusted dependent variable z. The algorithm is
efficient because the running-lines smoother can be updated easily
as we pass from one neighbourhood to the next. Neighbourhoods
are usually defined to include a certain fraction, or span, of the
points. Commonly, spans of 40-50% are used, with appropriate
contraction at the ends. The fit obtained depends on the span
used: the shorter the span the rougher the fit.
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When more than one covariate is involved the algorithm acquires
an additional loop in which each f;(-) is fitted using the current
estimates of the remaining functions. This is known as the back-
fitting algorithm, and takes the form

fory=1,...,p

form partial residual r; = z — 7 + fj(xj)
smooth r; with GLM weights W to update f;(:c])
repeat.

The full algorithm may be set out as follows:
Initialize: f;o)(:cj) =0, & = g(%)
fori=0,1,...
form current estimates of 7 (x;), 4@, 2 and W®
perform back-fitting algorithm to obtain ¢#*+1) and f](’“)(:c]-)
repeat until deviance stabilizes.
This algorithmn depends on the choice of span or fraction of points
used for the local linear fit. At one extreme, if the span is 1, the
algorithm produces the generalized linear fit. At the other extreme,
if the span is equal to 1/n and if all the z-values are distinct then
fi; = ¥;, and no smoothing occurs.

15.4.2 Smoothing methods

In the algorithm just described the running-lines smoother may be
replaced by any other smoother, which may in turn be linear or
non-linear. Running-lines and cubic-spline smoothers are linear in
y, while a running-median smoother is non-linear. Another non-
linear method involves maximizing the local likelihood for each
neighbourhood. In practice, however, this usually gives results very
close to that produced by the linear local scoring method.

The choice of span can be made data-dependent by choosing it
to minimize the cross-validation deviance.

The effective number of parameters associated with an estimated
smooth function can be calculated from the formula

tr(28 — STWSW™1)

in which S is the smoothing matrix applied to the vector z to
produce f(-), and W is the weight matrix. For the running-lines
smoother this formula simplifies to tr(S).
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15.4.3 Conclusions

Generalized additive models can be used either as a descriptive
tool for expressing the joint effect of several explanatory variables
as the sum of functions of them individually, or as an exploratory
device to suggest a suitable class of transformations of covariates
to be included in a generalized linear model. The restriction to
additive terms can be relaxed by including product terms of the
form fi2(z1z2) in addition to fi(z1) and fa(z2). However not all
functions of two variables are expressible in the form

fi(z1) + f2(z2) + fra(z122).

Generalized partially additive models, in which some covariates
enter linearly and others additively, may eventually prove to be
the most useful application of these techniques.

15.5 Bibliographic notes

Bartlett (1937, 1954) gave explicit correction factors for a number
of likelihood-ratio test statistics, including a number of test statis-
tics that arise in multivariate analysis. Similar expressions for log-
linear models were given by Williams (1976), and, for generalized
linear models, by Cordeiro (1983, 1987). See also Ross (1987).

The matrix formulae in section 15.3 appear to be new. An
alternative scheme for computing Bartlett adjustments is described
by Barndorff-Nielsen and Blaesild (1986).

15.6 Further results and exercises 15

15.1 Compute the angle in RP between the parameter vector
B and the bias vector b for the main-effects model fitted to the
lizard data in section 15.2.3. Use the Fisher information as the
inner product matrix. Comment briefly on the adequacy of the
approximation (15.5).

15.2 Show that the matrix P defined in section 15.3.2 is a
projection matrix. Describe the range space of P, i.e. the set of
vectors x such that Px = x. Explain how this space depends on
the value of the parameter vector. '
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15.8 Derive expression (15.10) for the Bartlett adjustment for
exponential regression models from the general expression (15.9).
Show that the second term in (15.10) vanishes if X is the design
matrix for a one-way layout.

15.4 Suppose Y; ~ o?x3/f;, independently for i = 1,...,k.
Specify the null hypothesis Ho:0? = 02 and the unrestricted
alternative as generalized linear models. Use (15.9) or (15.10) to
compute the Bartlett adjustment factor. [Bartlett, 1937].

15.5 Fit the log-linear model (15.11) to the leukaemia data and
check the calculations given in section 15.3.3.
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Elementary likelihood theory

Scalar parameter

This appendix contains a concise summary, without proofs and
omitting esoteric details of regularity conditions, of the more im-
portant properties of likelihood functions, derivatives and esti-
mates, that are used throughout the book.

Definition: The log likelihood is the logarithm of the joint proba-
bility or probability density function of the data, denoted by

1(6;y) = log fy (y;9).

If Y is a vector having n independent components, the log likeli-
hood is a sum of n independent terms

1(8;y) =) log fv, (v:;9)-

This representation is often used, at least implicitly, in the deriva-
tion of asymptotic results for large n.

Derivatives: Under mild regularity conditions the log-likelihood
derivatives satisfy the following moment identities:

(%) -0
2

o°l ol
Eo(gz) + oo (55) =©
“\gez) * %"\ g
The notation above is chosen to emphasize the fact that the twin
processes of differentiation and averaging take place at the same

value of §. These relations are obtained by differentiating with
respect to @ the identity

(A1)

/fy(y; f)dy=1.

469
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The necessary regularity conditions are those required to justify
interchanging the order of differentiation with respect to the par-
ameter and integration over the sample space. In particular, the
sample space must be the same for all values of the parameter, or
at least for all # in an open neighbourhood of the true parameter
point.

Further differentiation with respect to 6 gives higher-order iden-
tities, sometimes called the Bartlett identities after Bartlett (1954).
The third-order identity is

3 0%l ol ol
63 507 55) * B0 (aa) =0 (4.2)
These results, connecting moments of log-likelihood derivatives, are
exact for all sample sizes provided, of course, that all the necessary
moments are finite.

Terminology: The log-likelihood derivative U(8;y) = 0l/00 is
sometimes called the score statistic. Its variance

(0= () =-54(35)

is called the Fisher information for 8 and plays an important role
in much of what follows.
If the components of Y are independent we may write

U(0;y)=2?_108_f(;’é_(11ﬂ’

ZE(alogfy. Yi; )) ’

showing explicitly that the score statistic is a sum of n independent
contributions and that the Fisher information based on the vector
Y is the sum of the Fisher informations from the components.

Asymptotic results: The following results hold under further reg-
ularity conditions related to the behaviour of the sequence of ob-
servations for large n, or to be more precise, as the amount of
information, #(#), becomes large. In particular, the first derivative
suitably normalized converges in distribution to a standard Normal
random variable. Thus

(2L + 30w

(02 (55) ~ N(0,1) 4 Op(n™?) (4.3)



APPENDIX A 471

provided that the assumed model is correct and that the derivative
is computed at the true parameter point.

The error term is governed more by the magnitude of () than

by the number of components of Y. Most commonly, however, (6)
is roughly proportional to n» and it is then immaterial whether we
normalize by n or by i(8).
Mazimum-likelihood estimation: Ordinarily the likelihood function
has a single maximum in the interior of the parameter space. The
maximum-likelihood estimate, denoted by 6, is then obtained as the
solution of the equation U(f; y) = 0. For large i(6), the distribution
of 0 is often adequately approximated by

~

6 -6~ N(0,i(0)"1), (A.4)

assuming, as always, that the model is correct. Higher-order
approximations based on Edgeworth series are given by McCullagh
(1987, p.210).

Occasionally, however, it may be found that the maximum
occurs at a boundary point of the parameter space, which may be
finite or infinite. The above approximation is then inappropriate.
Approximate confidence limits can be obtained directly from the
likelihood function or the likelihood-ratio statistic.

Likelihood-ratio statistics: For large n, the log likelihood at 6 differs
from the log likelihood at the true parameter point by a random
amount whose approximate distribution is given by

2(0;Y) - 2(0;Y) ~ x? + O(n7). (A.5)

This approximation is often quite accurate for small values of n
even when the Normal approximation (A.4) is unsatisfactory. The
set of all f-values satisfying

20(0;y) — 20(6,y) < x3 4

is an approximate 100(1 — «)% confidence set for the parameter
and is usually more accurate in terms of coverage probability than
intervals based on (A4.4).

The above approximations can be improved further using meth-
ods given in Appendix C.
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Vector parameter

For vector-valued parameters, the same results apply with suitable
minor changes of notation. The score statistic is the gradient vector
of the log likelihood at 6 and the Fisher information 7(#) is now to
be interpreted as a matrix. With obvious modifications, identities
(A.1) apply to the vector case. The vector version of (4.2) is given
by McCullagh (1987, p.202).

The asymptotic results (A4.3) and (A.4) extend readily to vector-
valued parameters provided that the limit () — oo is understood
to apply to the eigenvalues of the information matrix and not to
the components. An important regularity condition is that ()
have constant rank for all § in the region of interest.

Nuisance parameters: Suppose that € is partitioned into two
components 8 = (¢, A), both of which may be vector-valued. The
first component is to be regarded as the parameter of interest. The
joint Fisher information matrix for 8 may then be partitioned as

follows: ) )
i(0) = (W’ "9 ) :
Iay LA

Its inverse is denoted by
WY YA
. -1 _ 1 ]
i(0)"" = (Z-,hp Z-AA)
so that, from the formulae for the inverse of a partitioned matrix,
{I¥P}71 = iy — ipainiing (4.6)

is the approximate inverse covariance matrix of 1/3 Moreover, if ;\,,,
is the maximum likelihood estimate of A for fixed ¢, the gradient
vector of the log likelihood, calculated at (1, Ay), has approximate
covariance matrix {i¥¥}~! rather than iy,. By contrast, the
derivative with respect to ¢ at (¢, A) has exact covariance matrix
iyy- Thus it is reasonable to regard (A.6) rather than iy, as the
Fisher information for 4 when A is unknown. Note that two matrix
inversions are required in order to produce the expression in (A.6).

Likelihood-ratio statistics: For large n, the log likelihood at 6 differs
from the log likelihood at the true parameter point by a random
amount whose approximate distribution is given by

26, V) - 20(6;Y) ~ x2 + O(n™1), (A7)
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where p is the dimension of 8 or the rank of i(f). If there are
nuisance parameters in the model, the maximized likelihood-ratio
statistic has approximate distribution

A, XKY) = A%, A3 Y) ~ x3, +0(n7"),  (48)
where p — ¢ is the dimension of 9 or the rank of i¥¥ in (4.6).
These approximations are often quite accurate for small values of

n even when Normal approximations for parameter estimates are
unsatisfactory. The set of all 9-values satisfying

2(P, A y) — 20, A, ¥) € X2 g

is an approximate 100(1 — a)% confidence set for 9.
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Edgeworth series

Suppose that Y7, ...,Y,, areindependent and identically distributed
random variables having finite cumulants, k) = u, k3 = 02, k3, K4,
up to order four. Define the standardized sum

Y1+...+Yn—nu

ayn

Denote by F,,(z) the probability pr(X, < ). By the central limit
theorem, X, is asymptotically standard normal and F,(z) — ®(x)
as n — oo. If the distribution of ¥ has a continuous component,
then F,(z) may be approximated more accurately for large n by
an Edgeworth series as follows:

X, =

E,(z) = 9(2) - ¢(z){pa(a® — 1)/(6n"2) + ps(c® - 32)/(24n)

+ p3(z5 —102° + 15x)/(72n)} (B1)

where p3 = K3/ ng/ % and pa = K4/K2% are the standardized cumulants
of Y. The difference F,,(z) — En() is o(n~!) uniformly in = on
bounded intervals.

In the case of lattice distributions, this expansion is incorrect
because Fy(z) is discontinuous with jumps of order O(n~'2) at
the possible values of X,. The Edgeworth approximation is
continuous and hence must involve an error of order O(n~%2)
near the discontinuities of F,(z). However, the Edgeworth series
can be adjusted to accommodate these discontinuities in F,(z) as
follows. Suppose that the possible values of Y; are the integers
0,1,2,.... Define the continuity-corrected abscissa and a ‘precision
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adjustment’ or Sheppard correction as follows:

LWt tyn—mut;
av/n (B.2)
1
24no?’

T=1+

Then the Edgeworth series with the usual two correction terms

may be written
Fo(2) = Eq(72) + o(n71). (B.3)

This approximation is valid only when computed at the ‘continuity-
corrected’ points as defined by (B.2). The distribution function is
constant over intervals of the form [z — ﬁ, z+ ﬁ)

Note that the correction terms in (B.3) are identical to the
correction terms in (B.1). The only difference is the correction
for continuity and the adjustment of the argument. The continu-
ity correction has an effect of order O(n~%2) and the Sheppard
correction has an effect of order O(n™1).

The discrete Edgeworth approximation may be used for the
binomial distribution where ¥ ~ B(m,w), provided that m is
sufficiently large. The relevant coefficients are

(y—mnm+ 5 /\/m7r (1-m)

T = 1+1/{24m7r (1-m)}

p3 = (1-2m)/y/mr(l—mn)

ps = {1 —6n(1 —m)}/{mnr(1 —)}.

The sample size, n, is built into these coefficients through the
binomial index, m. Thus we may take n = 1in (B.1) and (B.3). In
this case, the approximation seems to be quite accurate if max(1—)
exceeds 2.0.

Approximation (B.3) is a simplified version of a series expansion
given by Esseen (1945), who gives the expansion to higher order
than that considered here.



APPENDIX C

Likelihood-ratio statistics

The deviance or deviance difference is just a log-likelihood ratio
statistic. In this appendix, we derive the approximate distribution
of the log likelihood-ratio statistic for testing a simple null hypoth-
esis concerning a scalar parameter. The corresponding derivations
when there are several parameters of interest or when there are
nuisance parameters follow similar lines but are considerably more
complicated than the proofs presented here.

Suppose that the log likelihood for § based on data y can be
written in the exponential family form

1(6;y) = n{t0 — K(6)},

where t = #(y) is the sufficient statistic and 6 is called the canonical
parameter. The cumulants of the random variable T' = t(Y") are

rr(T) = K (0) /L.
The maximum-likelihood estimate of 8 satisfies
K'(@)=t or 6 = g(t), say.
Hence the log likelihood-ratio statistic for testing Hy : 8 = 6 is
W2 = 21(d) — 21(6y) = 2n{tg(t) — tg(po) + h(t) — h(po)} (C1)

where h(-) = K(g(-)) and po = K'(6o) is the null mean of T'. Thus
h(t) = K(6) and h(u) = K(6).

Under Hy, the statistic W2 has an approximate x? distribution
and hence it is reasonable to expect that the signed version

W = +£{21(8) — 20(60)}?
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might have an approximate Normal distribution. The sign of W
is taken to be the same as that of ¢ — o and, in fact, W is a
monotone increasing function of ¢ — ug. To the crudest first-order
of approximation, W is the standardized version of T', namely

X = (T ~ po) /53",

If we expand W as a power series in X and keep together terms
that are of the same asymptotic order in n, we find after a little
effort that

W =X ~ }psX? + (803 — 3p4) X3 + Op(n~%2), (C.2)

where p3 and p; are the standardized cumulants of T or the
unstandardized cumulants of X. Note that p3 = O(n~%2) and
P4 = O(n_l).

It is readily verified that the first two moments of W are
E(W) = pa/6 + O(n™%?)

var(W) = 1 + (14p3 — 9p4)/36 + O(n™?) (©3)

If we define the adjusted statistic or re-standardized statistic
W' = (W + 3ps} {1+ (9ps ~ 14¢3)/72},
it is easily checked that, with error O,(n=%2),
W' =X —1p3(X%—1) - Lpa(X3 - 3X) + $p3(4X3 ~ 7X).

This series can be recognized as the inverse Cornish-Fisher ex-
pansion or the polynomial normalizing transformation. See, for
example, Kendall and Stuart (1977, (6.54)) or McCullagh (1987,
section 5.7 and Exercise 5.15). Provided that X has an Edgeworth
expansion, it follows that

W' ~ N(0,1) + O(n=%?)

in the Edgeworth sense. This conclusion also follows from the
observation that W, as given in (C.2), has third and fourth
cumulants of orders O(n~%2) and O(n~2) respectively.
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In the discrete case, the support points of the distribution of T
are usually equally spaced and the discrete Edgeworth approxima-
tion given in Appendix A may be used to approximate the distribu-
tion of T. The support points of W are only approximately equally
spaced. It appears therefore, that the normal approximation with
continuity correction for the distribution of W’ has an error of order
O(n~1). The Sheppard correction does not appear to eliminate the
O(n~1) error term entirely, though it may reduce it substantially.

As a corollary in the continuous case, it follows directly that

W2~ (14 )y} + O(n~%2)

where 1 + b is the sum of the variance and the squared bias of W.
The adjustment
b/n = (503 — 3ps)/12 (C4)

is known as the Bartlett adjustment factor. Its use greatly improves
the accuracy of the chi-squared approximation for the likelihood-
ratio statistic. In both the discrete and the continuous case, the
cumulants of W%/ (1 + b) differ from those of x? by terms of order
O(n~2).

Although the derivations in general are considerably more com-
plicated than that presented here, these results can be extended in
the following ways:

1. to models not in the exponential family provided that the
usual regularity conditions are satisfied.

2. to multi-parameter problems.

3. to problems involving nuisance parameters.

Computational details for generalized linear models are dis-
cussed in section 15.2. For proofs and additional information,
see Lawley (1956), Barndorff-Nielsen and Cox (1984), McCullagh
(1984a, 1987 Chapter 7) and McCullagh and Cox (1986).
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