Poisson Regression

Poisson Process

- Events happening randomly in space or time
- Independent increments
- For a small region or interval,
 - Chance of 2 or more events is negligible
 - Chance of an event roughly proportional to the size of the region or interval
- Then (solve a system of differential equations), the probability of observing x events in a region of size t is

$$\frac{e^{-\lambda t} (\lambda t)^x}{x!} \text{ for } x = 0, 1, \dots$$

Regression: Outcomes are Counts

- Poisson process model roughly applies
- Examples: Relationship of explanatory variables to
 - Number of children
 - Number of typos in a short document
 - Number of workplace accidents in a short time period
 - Number of marriages
- For large λ a normality assumption is okay, but not constant variance

Linear Model for log λ

- $\log \lambda = \beta_0 + \beta_1 x_1 + ... + \beta_{p-1} x_{p-1}$
- Implicitly for i = 1, ...N
- Everybody in the sample has a different $\lambda = \lambda_i$
- Take exponential function of both sides
- Substitute into Poisson likelihood
- Maximum likelihood as usual
- Likelihood ratio tests, Wald tests, etc.