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Figure 1.5 OPEN Study data, histograms of energy (calories) using a
biomarker (top panel) and a food frequency questionnaire (bottom panel). Note
how individuals report far fewer calories than they actually consume.



Measurement Error

Exercise

Income

Snack food consumption
Cause of death

Even amount of drug that reaches animal’s
blood stream in an experimental study

Is there anything that is not measured with
error?



Simple additive model for
measurement error: Continuous case

W =X +e

Where E(X) = pu, E(e) =0, Var(X) = 0%, Var(e) = 02, and Cov(X,e) = 0.
Because X and e are uncorrelated,

Var(W) = Var(X) + Var(e) = o5 + o2

How much of the variation in the observed variable comes
from variation in the quantity of interest, and how much comes
from random noise?



Reliability is the squared correlation between the
observed variable and the latent variable (true score).

(Corr(X, VV))2

(gombXm )




The consequences of ignoring
measurement error in the
independent variables



Measurement error in the dependent
variable is a less serious problem

Y is a latent variable; X and V are observable

Y = 0o+ 00X+ e

Vo + A\Y + €9

= v+ ABo+BX +e1)+ e

= (vog+ A0y) + ABX + (Ae1 + €32)

<
|

Re-parameterize



Two Models

e True model

Yi = pPo+ 51 X1+ X0+ €
Wii = Xi1+6€1
Wia = X;a2+e;0

e Naive model

Yi = Bo+BiWi1+ BaWia+ €



True Model (More detail)
Yi = [Oo+01Xi1+ BaXi0 4 €
Wii = Xi1+é€
Wi o

|
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where independently for i = 1,...,n, E(X; 1) = p1, E(X;2) = pe,
E(Ez) = E(ez’,l) == E(Gi’g) — O, VCL?“(Ei) — 0'2, Var(ei,l) = W1,
Var(e; 2) = wa, the errors €;,e; 1 and e; o are all independent,
X, 1 is independent of €;,¢e; ;1 and e; 2,

X, 2 is independent of €;,¢e; ; and e; 2, and

Xi1 | | o111 @12
V‘”{ }_{m cbgz]



Test X, “controlling for” (holding constant) X,

Y = Bo + f171 + Bazxa + €
E(Y) = Bo + Bix1 + Bax2

0
a—xQE(Y) = Do

Need to control Type | error rate



rmvn <- function(nn,mu,sigma)
# Returns an nn by kk matrix, rows are independent MVN(mu,sigma)
{
kk <- length(mu)
dsig <- dim(sigma)
if(dsigl[1] !'= dsigl[2]) stop("Sigma must be square.")
if (dsigl[1] '= kk) stop("Sizes of sigma and mu are inconsistent.")
ev <- eigen(sigma,symmetric=T)
sqrl <- diag(sqrt(ev$values))
PP <- ev$vectors
ZZ <- rnorm(nnxkk) ; dim(ZZ) <- c(kk,nn)
rmvn <- t(PPY/*Y%sqrli*’%ZZ+mu)
rmvn
}# End of function rmvn



mereg <- function(beta0=1, betal=1, beta2=0, sigmasq = 0.5,

mul=0, mu2=0, phill=1, phi22=1, phil2 = 0.80,

rel1=0.80, rel2=0.80, n=200)
HHHHHHHHHBHBHBHBHBHBHHHBHHHFFFFFFF
Y = beta0 + betal X1 + beta2 X2 + epsilon

#
#

H H H OH H HEHEHHHFHHHEHHEHHAEHFH

Model 1is

Wl =
W2 =

Fit naive model
Y = beta0 + betal W1 + beta2 W2 + epsilon

Inputs are

betaO, betal beta2

sigmasq
mul

mu2
phill
phi2?2
phil2

rell
rel?
n

X1 + el
W2 + e2

True regression coefficients
Var (epsilon)

E(X1)

E(X2)

Var (X1)

Var (X2)

Cov(X1,X2) = Corr(X1,X1), because
Var(X1) = Var(X2) =1
Reliability of W1
Reliability of W2

Sample size

Note: This function uses rmvn, a multivariate normal random number
generator I wrote. The rmultnorm of the package MSBVAR does
the same thing but I am having trouble installing it.

HHH BB HHHH B R HHHH B R HHH R HHH R R R #



{
# Calculate SD(el) and SD(e2)

sdl <- sqrt((phill-rell)/rell)
sd2 <- sqrt((phi22-rel2)/rel2)
# Random number generation
epsilon <- rnorm(n,mean=0,sd=sqrt(sigmasq))
el <- rnorm(n,mean=0,sd=sdl)
e2 <- rnorm(n,mean=0,sd=sd2)
# X1 and X2 are bivariate normal. Need rmvn function.
Phi <- rbind(c(phill,phil2),
c(phil2,phi22))
X <- rmvn(n, mu=c(mul,mu2), sigma=Phi) # nx2 matrix
X1 <- X[,1]; X2 <- X[,2]
# Now generate Y, W1 and W2

Y = beta0 + betal*X1l + beta2x*X2 + epsilon
Wl =X1 + el
W2 = X2 + e2

# Fit the naive model

mereg <- summary(lm(Y W1+W2))$coefficients

mereg # Returns table of beta-hats, SEs, t-statistics and p-values
} # End function mereg



> mereg() # All the default values of inputs

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.9704708 0.05423489 17.893845 3.692801e-43
Wi 0.6486972 0.06336434 10.237576 5.385982e-20
W2 0.2079601 0.06201811 3.353216 9.578634e-04

>

> mereg() [3,4] # Just the p-value for HO: beta2=0
[1] 0.0006340172

>

> # HO rejected twice. Is the function okay?

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.03946133

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.2582209

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.08474088

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.5182614

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.2889913



> mereg(rell=1,rel2=1) [3,4]
[1] 0.1667587

> mereg(rell=1,rel2=1) [3,4]
[1] 0.4414364

> mereg(rell=1,rel2=1) [3,4]
[1] 0.2268087

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8298779

> mereg(rell=1,rel2=1) [3,4]
[1] 0.3508289

> mereg(rell=1,rel2=1) [3,4]
[1] 0.05173589

> mereg(rell=1,rel2=1) [3,4]
[1] 0.243059

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8818203

> mereg(rell=1,rel2=1) [3,4]
[1] 0.3430994

> mereg(rell=1,rel2=1) [3,4]
[1] 0.4860574

> mereg(rell=1,rel2=1) [3,4]
[1] 0.9644776

> mereg(rell=1,rel2=1) [3,4]
[1] 0.09245873

> mereg(rell=1,rel2=1) [3,4]
[1] 0.04757209

> mereg(rell=1,rel2=1) [3,4]
[1] 0.7947851

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8039931
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No
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No
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measurement
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error

error

error

error

error

error

error

error

error

error

error

error
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Try it with measurement error

> mereg() [3,4] #
[1] 0.01080889

> mereg() [3,4] #
[1] 0.0007349183
> mereg() [3,4] #
[1] 0.01884786

> mereg() [3,4] #
[1] 0.003615565
> mereg() [3,4] #
[1] 0.003421935
> mereg() [3,4] #
[1] 3.895541e-07
> mereg() [3,4] #
[1] 3.328842e-07
> mereg() [3,4] #
[1] 0.0754436

> mereg() [3,4] #
[1] 0.0001274642
> mereg() [3,4] #
[1] 6.900713e-05

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

Reliabilities

both equal
both equal
both equal
both equal
both equal
both equal
both equal
both equal
both equal

both equal

0

.80

.80

.80

.80

.80

.80

.80

.80

.80

.80
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A Big Simulation Study (6 Factors)

Sample size: n =50, 100, 250, 500, 1000
Corr(X,,X,): ¢,, =0.00, 0.25, 0.75, 0.80, 0.90
Variance in Y explained by X;: 0.25, 0.50, 0.75
Reliability of W,: 0.50, 0.75, 0.80, 0.90, 0.95
Reliability of W,: 0.50, 0.75, 0.80, 0.90, 0.95

Distribution of latent variables and error
terms: Normal, Uniform, t, Pareto

5x5x3x5x5x4 = 7,500 treatment combinations



Within each of the

5x5x3x5x5x4 = 7,500 treatment combinations
10,000 random data sets were generated
For a total of 75 million data sets

All generated according to the true model,
with 3,=0

Fit naive model, test H,: 3,=0 at a = 0.05

Proportion of times H, is rejected is a Monte
Carlo estimate of the Type | Error Rate



Look at a small part of the results

* Both reliabilities = 0.90
* Everything is normally distributed
* B,=1, B;=1, B,=0 (H, is true)



Weak Relationship between X; and Y: Var = 25%

Correlation Between X; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04760 0.05050 0.06360 0.07150 0.09130
100 0.05040 0.05210 0.08340 0.09400 0.12940
250 0.04670 0.05330 0.14020 0.16240 0.25440
500 0.04680 0.05950 0.23000 0.28920 0.46490
1000 0.05050 0.07340 0.40940 0.50570 0.74310

Moderate Relationship between X, and Y: Var = 50%

Correlation Between X,; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04600 0.05200 0.09630 0.11060 0.16330
100 0.05350 0.05690 0.14610 0.18570 0.28370
250 0.04830 0.06250 0.30680 0.37310 0.58640
500 0.05150 0.07800 0.53230 0.64880 0.88370
1000 0.04810 0.11850 0.82730 0.90880 0.99070

Strong Relationship between X; and Y: Var = 75%

Correlation Between X,; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04850 0.05790 0.17270 0.20890 0.34420
100 0.05410 0.06790 0.31010 0.37850 0.60310
250 0.04790 0.08560 0.64500 0.75230 0.94340
500 0.04450 0.13230 0.91090 0.96350 0.99920
1000 0.05220 0.21790 0.99590 0.99980 1.00000



Marginal Mean Type | Error Rates

Base Distribution

normal
0.38692448

Explained Variance

0.25
0.27330660

Pareto

0.36903077

0.50
0.38473364

t Distr
0.38312245

0.75
0.48691232

uniform
0.38752571

Correlation between Latent Independent Variables

0.00
0.05004853

50
0.19081740

0.50
0.60637233

0.50
0.30807933

0.25
0.16604247

0.75
0.515440093

Sample Size n

100
0.27437227

Reliability of W,

0.75
0.46983147

Reliability of W,

0.75
0.37506733

250
0.39457933

0.80
0.42065313

0.80
0.38752793

0.80
0.55050700

500
0.48335707

0.90
0.26685820

0.90
0.41254800

0.90
0.62621533

1000
0.56512820

0.95
0.14453913

0.95
0.42503167



Summary

* |[gnoring measurement error in the
independent variables can seriously inflate
Type | error rates.

* The poison combination is measurement error
in the variable for which you are “controlling,”
and correlation between latent independent
variables. If either is zero, there is no
problem.

* Factors affecting severity of the problem are
(next slide)



Factors affecting severity of the problem

As t
the

As t
the

As t

ne correlation between X, and X, increases,
oroblem gets worse.

ne correlation between X, and Y increases,
oroblem gets worse.

ne amount of measurement error in X,

increases, the problem gets worse.

As the amount of measurement error in X,
increases, the problem gets less severe.

As the sample size increases, the problem gets
worse.

Distribution of the variables does not matter
much.



As the sample size increases, the
problem gets worse.



The problem applies to other kinds of regression, and
various kinds of measurement error

* Logistic regression

* Proportional hazards regression in survival
analysis

* Log-linear models: Test of conditional
independence in the presence of classification
error

* Median splits

* Even converting X, to ranks inflates Type |
Error rate



If X, is randomly assigned

Then it is independent of X,: Zero correlation.

So even if an experimentally manipulated
variable is measured (implemented) with error,
there will be no inflation of Type | error rate.

If X, is randomly assigned and X is a covariate
observed with error (very common), then again
there is no correlation between X, and X,, and so
no inflation of Type | error rate.

Measurement error may decrease the precision
of experimental studies, but in terms of Type |
error it creates no problems.

This is good news, but there is a lot of bad news.



Single Independent Variable

* True model Y = Bo+ B X; + €
W; = X;+e;

* Naive model

Yi = Po+HiWi+e

where independently for ¢ = 1,..., n, Var(X;) = o%, Var(e;) = o2, and
X;,e;, € are all independent.



Least squares estimate of 3, for the Naive Model

31 _ Z?:1(Wi _ W)(E _ 7)
Z?:1(Wi _ W)2
p— gw’y
O

as. Cov(W,Y)
Var(W)

2
_ Ox
¢ <a%<+az>




~ 0'2
51 Cﬁ.@( S )

2 2
UX +Ue

Goes to the true parameter times reliability
of W.

Asymptotically biased toward zero, because
reliability is between zero and one.

No asymptotic bias when ,=0.
No inflation of Type | error rate
Loss of power when 3, 20

Measurement error just makes relationship seem
weaker than it is. Reassuring, but watch out!



Two Independent variables, 3,=0

Yi = [Oo+01Xi1+ BaXi0 4 €
Wii = Xi1+¢€1

Wi o

|
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where independently for i = 1,...,n, E(X; 1) = p1, E(X;2) = pe,
E(Ez) = E(ez’,l) == E(Gi’g) — O, VCL?“(Ei) — 0'2, Var(ei,l) = W1,
Var(e; 2) = wa, the errors €;,e; 1 and e; o are all independent,
X, 1 is independent of €;,¢e; ;1 and e; 2,

X, 2 is independent of €;,¢e; ; and e; 2, and

Xi1 | | o111 @12
var| X0 = | o b2



Least squares estimate of 3, for the Naive Model
when true 3,=0

51¢1,2w1
(P11 + wi)(P2,2 + w2)

W1 51¢1,2
®1.1 + w1 ®2.2 + wo

Combined with estimated standard error going almost surely to zero,
Get t statistic for Hy: B, =0 going to +e°, and p-value going almost
Surely to zero, unless ....



Combined with estimated standard error going
almost surely to zero, get t statistic for Hy: B,=0
going to oo, and p-value going almost surely to

zero, unless ....

* There is no measurement error in W,, or
* There is no relationship between X, and Y, or

* There is no correlation between X, and X..

B as( W1 )( B1¢1,2 >
: ®1,1 + w1 $2.2 + wo

And, anything that increases Var(W,) will decrease the bias.




Need a statistical model that
includes measurement error



Perhaps the simplest case

Y = /X +e€
W = X+e
X ~ N(0, ¢)
e v (o] 2)

X, €, e independent
All expected values zero

X 1s a latent variable; W and Y are observable



W = X+e
Y = (/X +e€

LW e+w B¢
==V|y ‘( 6¢6%+w>

e Observable data are bivariate normal with
mean zero and covariance matrix Sigma.

 With increasing sample size, all you can get is
a better and better estimate of Sigma.

Cannot recover 0 = (¢, w, 3,v) from (011,012, 022).



Cannot recover 0 = (¢, w, B,v) from (011, 012,0922).

> 011 012 O+ w Bo

o12 022 ) Bo 20+

Let 3 = |0;;] be any 2 x 2 positive definite symmetric matrix,
and let the other parameters be functions of ¢ as follows.

® W=011 — ¢
° 6207152
® 1) =093 — 0120

Every ¢ € (0,011), yields the same 3.



For every possible (bivariate normal)
distribution
* |Infinitely many sets of different parameter
values yield that distribution
* MLE is not unique
* Lots of trouble



ldentifiability

Suppose a statistical model implies D ~ FPy,0 € ©. If no two points in
O yield the same probability distribution, then the parameter @ is said to be
identifiable. On the other hand, if there exist 68; and 0, in © with FPg, = Py,
the parameter 0 is not identifiable.

Parameter Space Distribution Space

o/ ANy




Consistent Estimation is Impossible

Suppose 01 # 02 with Py, = Py,



Need more information

Bigger sample size will not help

Sometimes, information from other studies
may help. Recall simple naive regression:

~ 0'2
b1 a°—8>°51( A >

2 2
OX +Oe

If you knew the reliability of W you could
correct the estimator.

Or, more variables can sometimes solve the
problem.



Double measurement

)/z — 60 + 61X’L + €;
Wii = 1+ X;+en
Wz’,Q = Vg + X; + €i.2,




Double Measurement Regression: A
Two-Stage Model
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Observable variables are D, ; and D, ,: both p+q by 1



Even with knowledge of B,, identifying the expected values and intercepts is hopeless.

Bo + 81X + €

(v)

v +F;+e
vo+F; +e;o
i1 _ vig+ Lk
M2 vipg+FE
Mo 1 _ vo1+E
Moo Voo + B



Y, = By+B8:Xite

X
r - (3
Dip = vi+F,+en
Do = vao+F;+eo

V(Xi) =®11, V(ei) =¥, V(e 1) =, V(ei2) = Qs

Xi, €, €;1 and e; o independent.

The main idea is that D, and D, are independent measurements
of F, perhaps at different times using different methods.

Measurement errors may be correlated within occasions (even
For IV and DV), but not between occasions.



Y, = By+B8:Xite

X,
w - (V)
D;1 = vi+F;+e
Di2 = va+F;,+ep

V(Xi) =®11, V(ei) =¥, V(e 1) =, V(ei2) = Qs
Xi, €, €;1 and e; o independent.

Stage One
P, Py P, P13 )
(F:) < P, P ) ( B1®11 B1P1B + P

®,,, 3, and ¥ can be recovered from P



The Measurement Model (Stage 2)

Y, = By+B.Xi+e€
X
r o= (3
D1 = vi+F;+e1
Do = vo+F;+e

_ (D _(®+t @
- D> ) & B+

P, (2, and (25 can easily be recovered from X



All the parameters in the covariance
matrix are identifiable

®, Q, and Q, may be recovered from 2
®,,, B, and W may be recovered from @

Correlated measurement error within sets is
allowed (a big plus), because it’s reality

Correlated measurement error between sets
must be ruled out by careful data collection

No need to do the calculations ever again



The BMI Health Study

Body Mass Index: Weight in Kilograms divided
by Height in Meters Squared

Under 18 means underweight, Over 25 means
overweight, Over 30 means obese

High BMI is associated with poor health, like
high blood pressure and high cholesterol

People with high BMI tend to be older and
fatter

BUT, what if you have a high BMI but are in
good physical shape — low percent body fat?



The Question

* |f you control for age and percent body fat, is
BMI still associated with indicators for poor
health?

e But percent body fat (and to a lesser extent,
age) are measured with error. Standard ways
of controlling for them with regression are
highly suspect.

e Use the double measurement design.



True variables (all latent)

X, =Age

X, = BMI

X5 = Percent body fat

Y, = Cholesterol

Y, = Diastolic blood pressure



Measure twice with different personnel at
different locations and by different methods

_ Measurement Set One Measurement Set Two

Age Self report Passport or Birth Certificate

BMI Dr. Office Measurement Lab technician, no shoes, gown
% Body Fat Tape and calipers Submerge in water tank
Cholesterol Lab 1 Lab 2

Diastolic BP Blood pressure cuff, Dr. Office Digital readout, mostly automatic

Set two is of generally higher quality

Correlation of measurement errors is less likely between sets



