A.5.3 Convergence of random vectors

- 1. Definitions (All quantities in boldface are vectors in \mathbb{R}^m unless otherwise stated)
 - * $\mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T}$ means $P\{\omega : \lim_{n \to \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\} = 1.$
 - * $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ means $\forall \epsilon > 0$, $\lim_{n \to \infty} P\{||\mathbf{T}_n \mathbf{T}|| < \epsilon\} = 1$.
 - * $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}$, $\lim_{n\to\infty} F_{\mathbf{T}_n}(\mathbf{t}) = F_{\mathbf{T}}(\mathbf{t})$.
- 2. $\mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{P}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{d}{\to} \mathbf{T}.$
- 3. If **a** is a vector of constants, $\mathbf{T}_n \xrightarrow{d} \mathbf{a} \Rightarrow \mathbf{T}_n \xrightarrow{P} \mathbf{a}$.
- 4. Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_n \xrightarrow{a.s.} E(\mathbf{X})$.
- 5. Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean $\mathbf{0}$ and covariance matrix $\boldsymbol{\Sigma}$.
- 6. Slutsky Theorems for Convergence in Distribution:
 - (a) If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{d} f(\mathbf{T})$.
 - (b) If $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{d} \mathbf{T}$.
 - (c) If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{d} \mathbf{c}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{d}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{c} \end{array}\right)$$

- 7. Slutsky Theorems for Convergence in Probability:
 - (a) If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{P} f(\mathbf{T})$.
 - (b) If $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{T}$.
 - (c) If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \xrightarrow{P} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{Y} \end{array}\right)$$

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be such that the elements of $\dot{g}(\mathbf{x}) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If \mathbf{T}_n is a sequence of *d*-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{g}(\boldsymbol{\theta})\mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \mathbf{Y} \sim N(\mathbf{0}, \dot{g}(\boldsymbol{\theta})\boldsymbol{\Sigma}\dot{g}(\boldsymbol{\theta})')$.