Sample Space Ω , $\omega \in \Omega$

• Observing whether a single individual is male or female:

$$\Omega = \{F, M\}$$

Pair of individuals and observed their genders in order:

 $\Omega = \{ (F, F), (F, M), (M, F), (M, M) \}$

Select *n* people and count the number of females:

$$\Omega = \{0, \dots, n\}$$

• For limits problems, the points in $\boldsymbol{\Omega}$ are infinite sequences

Random variables are functions from Ω into the set of real numbers

$Pr\{X \in B\} = Pr(\{\omega \in \Omega : X(\omega) \in B\}$

Random sample $X_1(\omega), \ldots, X_n(\omega)$

$$T = T(X_1, \ldots, X_n)$$

 $T = T_n(\omega)$

Let $n \to \infty$

To see what happens for large samples

Modes of Convergence

- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

Almost Sure Convergence

We say that T_n converges almost surely to T, and write $T_n \stackrel{a.s.}{\rightarrow}$ if

$$Pr\{\omega: \lim_{n \to \infty} T_n(\omega) = T(\omega)\} = 1.$$

Acts like an ordinary limit, except possibly on a set of probability zero.

All the usual rules apply.

Strong Law of Large Numbers

 $\overline{X}_n \xrightarrow{a.s.} \mu$

The only condition required for this to hold is the existence of the expected value.

Let X_1 , ..., X_n be independent and identically distributed random variables; let X be a general random variable from this same distribution, and Y=g(X)

So for example

That is, sample moments converge almost surely to population moments.

Convergence in Probability

We say that T_n converges in probability to T, and write $T_n \xrightarrow{P}$ if for all $\epsilon > 0$,

$$\lim_{n \to \infty} P\{|T_n - T| < \epsilon\} = 1$$

- Convergence in probability (say to a constant θ) means no matter how small the interval around θ, for large enough n (n>N₁) the probability of getting that close to θ is as close to one1 as you like.
- Almost sure convergence means no matter how small the interval around θ, for large enough n (n>N₂) the probability of getting that close to θ equals one.
- Almost Sure Convergence => Convergence in Probability
- Strong Law of Large Numbers => Weak Law of Large Numbers

Convergence in Distribution

Denote the cumulative distribution functions of T_1, T_2, \ldots by $F_1(t), F_2(t), \ldots$ respectively, and denote the cumulative distribution function of T by F(t).

We say that T_n converges in distribution to T, and write $T_n \xrightarrow{d} T$ if for every point t at which F is continuous,

$$\lim_{n \to \infty} F_n(t) = F(t)$$

Univariate Central Limit Theorem says

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} Z \sim N(0, 1)$$

Connections among the Modes of Convergence

- $T_n \xrightarrow{a.s.} T \Rightarrow T_n \xrightarrow{P} T \Rightarrow T_n \xrightarrow{d} T.$
- If a is a constant, $T_n \xrightarrow{d} a \Rightarrow T_n \xrightarrow{P} a$.

Consistency

 $T_n = T_n(X_1, ..., X_n)$ is a statistic estimating a parameter θ

The statistic T_n is said to be *consistent* for θ if $T_n \xrightarrow{P} \theta$.

$$\lim_{n \to \infty} P\{|T_n - \theta| < \epsilon\} = 1$$

The statistic T_n is said to be *strongly consistent* for θ if $T_n \stackrel{a.s.}{\rightarrow} \theta$.

Strong consistency implies ordinary consistency.

Consistency of the Sample Variance

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

By SLLN, $\overline{X}_n \xrightarrow{a.s.} \mu$ and $\frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{a.s.} E(X^2) = \sigma^2 + \mu^2$ Because the function $g(x, y) = x - y^2$ is continuous,

$$\widehat{\sigma}_n^2 = g(\frac{1}{n}\sum_{i=1}^n X_i^2, \overline{X}_n) \stackrel{a.s.}{\to} g(\sigma^2 + \mu^2, \mu) = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

Consistency of the Sample Covariance

$$\widehat{\sigma}_{1,2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \overline{X}_n \overline{Y}_n$$

By SLLN, $\overline{X}_n \xrightarrow{a.s.} E(X)$, $\overline{Y}_n \xrightarrow{a.s.} E(Y)$, and $\frac{1}{n} \sum_{i=1}^n X_i Y_i \xrightarrow{a.s.} E(XY)$

Because the function g(x, y, z) = x - yz is continuous,

$$\widehat{\sigma}_{1,2} = g\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}, \overline{X}_{n}, \overline{Y}_{n}\right) \stackrel{a.s.}{\to} g\left(E(XY), E(X), E(Y)\right)$$
$$= E(XY) - E(X)E(Y) = Cov(X, Y)$$
$$= \sigma_{1,2}$$

Convergence of Random Vectors

1. Definitions (All quantities in boldface are vectors in \mathbb{R}^m unless otherwise stated)

*
$$\mathbf{T}_n \xrightarrow{a.s.} \mathbf{T}$$
 means $P\{\omega : \lim_{n \to \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\} = 1.$
* $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ means $\forall \epsilon > 0$, $\lim_{n \to \infty} P\{||\mathbf{T}_n - \mathbf{T}|| < \epsilon\} = 1.$
* $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}$, $\lim_{n \to \infty} F_{\mathbf{T}_n}(\mathbf{t}) = F_{\mathbf{T}}(\mathbf{t}).$

2.
$$\mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{P}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{d}{\to} \mathbf{T}.$$

- 3. If **a** is a vector of constants, $\mathbf{T}_n \xrightarrow{d} \mathbf{a} \Rightarrow \mathbf{T}_n \xrightarrow{P} \mathbf{a}$.
- 4. Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_n \xrightarrow{a.s.} E(\mathbf{X})$.
- 5. Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\mathbf{\overline{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean $\mathbf{0}$ and covariance matrix $\boldsymbol{\Sigma}$.

6. Slutsky Theorems for Convergence in Distribution:

7. Slutsky Theorems for Convergence in Probability:

- (a) If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{P} f(\mathbf{T})$.
- (b) If $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{T}$. (c) If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then $\begin{pmatrix} \mathbf{T}_n \\ \mathbf{Y}_n \end{pmatrix} \xrightarrow{P} \begin{pmatrix} \mathbf{T} \\ \mathbf{Y} \end{pmatrix}$

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be such that the elements of $\dot{g}(\mathbf{x}) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If \mathbf{T}_n is a sequence of *d*-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{g}(\boldsymbol{\theta})\mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \mathbf{Y} \sim N(\mathbf{0}, \dot{g}(\boldsymbol{\theta})\boldsymbol{\Sigma}\dot{g}(\boldsymbol{\theta})')$.