STA 2201s06 Assignment 2

Do this assignment in preparation for Quiz Two on Thursday Jan. 26th. The handwritten parts are preparation for the quiz, and are not to be handed in. Question 4 asks for calculations with R. For this question, please bring your printout to the quiz. It may be handed in.

- 1. Let X_1 be Normal (μ_1, σ_1^2) , and X_2 be Normal (μ_2, σ_2^2) , independent of X_1 . What is the joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$? What is required for Y_1 and Y_2 to be independent?
- 2. Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ random vectors, and let $\boldsymbol{\Sigma}$ be fixed and *known*. Derive the maximum likelihood estimate of $\boldsymbol{\mu}$ without differentiating. Where do you use the fact that $\boldsymbol{\Sigma}^{-1}$ is positive definite? Indicate this clearly.
- 3. Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times p$ matrix of known constants, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown constants, and $\boldsymbol{\epsilon}$ is multivariate normal with mean zero and covariance matrix $\sigma^2 \mathbf{I}_n$, with $\sigma^2 > 0$ an unknown constant. This is classical multiple regression.
 - (a) What is the distribution of \mathbf{Y} ?
 - (b) The maximum likelihood estimate of **X** is $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$. You could get this using the same approach as in Problem 2, but don't bother. What is the distribution of $\hat{\boldsymbol{\beta}}$? Show the calculations.
 - (c) The vector of predicted Y values is $\widehat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. What is the distribution of $\widehat{\mathbf{Y}}$? Show the calculations.
 - (d) Let the vector of residuals $\mathbf{e} = (\mathbf{Y} \widehat{\mathbf{Y}})$. What is the distribution of \mathbf{e} ? Show the calculations; simplify.
- 4. Let X_1, \ldots, X_n be a random sample from a normal distribution with $\mu = \sigma^2 = \theta > 0$. Using R's nlm function, find the MLE of θ for the data in normsamp.dat (see link on course web page). Your final answer is a single number. Bring a printout listing your program and illustrating the run on normsamp.dat. On your printout, please circle the MLE.

By the way, an explicit formula for $\hat{\theta}$ is possible here. I used it to check my numerical answer; you may do the same if you wish.

Note: In this course, the computer assignments are *not* group projects. Please do them yourself, though of course you may discuss general principles with anybody.