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Abstract

The union-intersection principle yields a class of multiple comparison tests that
include the classical Scheffé tests for analysis of variance, and are easily applied to
any likelihood ratio test. Examples are given.

1 Introduction

This document describes a class of multiple comparison procedures that generalize some
essential features of the classical Scheffé tests for analysis of variance (Scheffé 1953, 1959)
so that they apply to an arbitrary hypothesis test. As in the Scheffé procedures, once a
null hyothesis is rejected using an overall test, one can indulge in unlimited exploration
within a family of component tests that are simultaneously protected against Type One
error at joint signficance level «, the significance level of the overall test. In practice
the method is sequential; the overall test is performed first, and if the null hypothesis
is rejected, one explores with the component tests to see where the effect comes from.
Consequently, in this document the overall test will be called the initial test, and the
component tests will be called follow-up tests.

The main result is a method that can be used to construct a family of follow-up tests
for any likelihood ratio test. The follow-ups are also likelihood ratio tests. If the null
hypothesis of each follow-up test is implied by the null hypothesis of the initial test and
if one uses the critical value of likelihood ratio statistic from the initial test, then all the
follow-ups will be protected against Type One error at joint signficance level a.

This is not new at all. Roy (1953) is responsible for the union-intersection method
of constructing overall tests from a family of component tests, and Roy and Bose (1953)
note that the component tests are simultaneously protected at the significance level of
the overall test . Gabriel (1969) is responsible for the result on likelihood ratio tests,
and Hochberg and Tamhane (1987) provide an admirable account of multiple comparison
methods in general, including the material presented here.

The present treatment may be accessible to a broader audience. The development
is singlemindedly on tests rather than confidence regions, keeping in mind the image of
a scientist who is only allowed to discuss findings that are statistically significant, and
who is therefore much more interested in testing than in estimation. This focus makes it
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possible to ignore a large amount of extraneous material that might be distracting to those
who want to use the methods to explore a dataset using significance tests. In addition,
details — trivial details, from the viewpoint of statistical research — are worked out for
important tools such as multiple regression, multivariate analysis of variance (including
repeated measures) and logistic regression. There is a collection of “recipies” that may be
followed by scientists who use statistical methods as tools, but whose primary expertise
is not in Statistics. Examples refer explicitly to the SAS statistical software package, and
sample output is included.

One peculiarity of the examples is that they reflect a personal opinion. I believe
that all significance tests based on a particular model should be simultaneously protected
against Type One error. So, for example, in a three-factor analysis of variance, tests for
the main effects, the two-way interactions and the three-way interaction should all be
follow-ups to an initial test that indicated an overall difference among cell means. The
examples include this sort of application as well as more traditional ones.

In spite of the applied intent of this document, the development is relatively complete,
with most relevant definitions and proofs (there are not many) supplied in Section 2.
Then go on to say what’s in the other sections.

2 Union-Intersection Theory
We begin with the following general hypothesis-testing framework.

Y ~F, 0c€0,

Hy:0€0yvs. Hy:0€0nNOy,

and critical region C' = {y : Hy is rejected when Y € C'}
with Pp{Y € C} <a for all € ©,

(1)

Of course the random quantity Y, the corresponding set of fixed values y and the param-
eter 6 can be very large vectors. For example, in testing the parameters of a multivariate
normal we might have Y =Y1,...,Y,, 0 = (u,X) and P wuld posess a density f(y;0),
the product of n multivariate normal densities.

The null hypothesis Oy and test C' in (1) will be called the initial null hypothesis
and the initial test respectively. They will be used to generate a family of follow-up null
hypotheses and tests. All of these tests will be protected against Type One error at joint
significance level «, and it will be impossible for any of them to be significant unless the
initial test is significant.

Definition 1 Assume a null hypothesis Hy : 0 € Oy and critical region C. A family
of null hypotheses {Hy : 0 € O,} and corresponding family of tests with critical regions
{Cy}, where ¢ belongs to some index set L, is said to obey the union-intersection principle
provided

Oy =(6and C = | J C

teL te L
for each ¢ € L.

It may be helpful to restate this in words.



Definition 2 Given an initial null hypothesis and test, a family of tests is said to obey
the union-intersection principle provided

e The null hypothesis of the initial test is true if and only if the null hypotheses of all
the follow-up tests are true.

e The null hypothesis of the initial test is rejected if and only if the null hypothesis of
at least one follow-up test is rejected.

In 1 below, we see that if an initial test and family of follow-ups obey the union-
intersection principle, then all the follow-ups are simultaneously protected against Type
One Error at the significance level of the initial test. Note that in the proof, it is not
necessary for the critical region of the initial test to exactly equal the union of the critical
region of the follow-up tests. Containment is enough; that is, all we need is that rejection
of the initial null hypothesis is implied by rejection of any follow-up null hypothesis.

Result 1 Let the family £ of null hypotheses and tests obey the union-intersection prin-
ciple. Then Py{Y € U Co} < a forall 6 € ﬂ Oy.
te teL

Proof. Let 0 € (., 0, =0p. Then | JC, CC=P{YV e |JC}<PR{yeC}<a
le L le L

The intersection part of the union-intersection principle says that if the null hypothesis
of the initial test is true, then the null hypotheses of all the follow-up tests are true.
Therefore, if even one follow-up null hypothesis is false, then the initial null hypothesis is
false also. Therefore, union-intersection follow-up tests are very well suited for exploring
ways in which an initial null hypothesis might be false.

Most of the time, the class of follow-ups to an initial test is very large, typically with
infinitely many members. But here is an interesting exception.

Example: two-sided tests Consider a t-test, say for a regression coefficient [;. Sup-
pose |t| exceeds some critical value t1—a/2, S0 that Hy : By = 0 is rejected. This conclusion
actually does not tell us whether 8, > 0 or §x < 0. It is tempting to just look at the sign
of the computed t-statistic and decide that way — but is such a practice justified? As
evidence that this is a serious matter, Lehmann (1986, p.152) raises the question with-
out providing a direct answer, instead referring the reader to literature on three-decision
problems.

Union-intersection follow-up tests provide reassurance with very little effort. The
follow-up family has two members, with null hypotheses H; : S < 0 and Hy : (6, > 0.
Immediately we have ©g = ©;[)0,. Obtaining C' = C;|JC; is also quite easy; just
rejecting H if t > t,_, /o and rejecting Hy if t < —t;_, /5. Thus, the union-intersection
follow-ups to a two-sided test are the corresponding one-sided tests, but they use the
critical values of the two-sided test.

Recipie 1 Suppose a two-sided t-test leads to the conclusion that a regression coefficient
or a difference between means is different from zero. Look at the sign of the t statistic to
decide whether the difference is positive or negative.



This is what people do anyway, implicitly doing a very quick follow-up to a significant
two-sided t-test. The union-intersection argument establishes that this does not inflate
Type One error. It also holds so-called “Type Three Error” to level a.

We will now see that any likelihood ratio test has a natural set of union-intersection
follow-ups, and in practice it is easy to construct them.

Result 2 Let the initial null hypothesis and test be as in (1), with the critical region C
based on a likelihood ratio test. Define the family of follow-up null hypotheses to be all
the statements about 0 that are implied by the null hypothesis of the initial test, and let
the corresponding tests be likelihood ratio tests. If all the follow-up tests use the same
critical value for the likelihood ratio that the initial test uses, the family will have joint
significance level .

Proof Let {Hy:0 € ©y,¢ € L} be the set of null hypotheses implied by Hy. That is,
Oy C Oy for each ¢ € L, and we have 6y C meec Oy. Since the initial null hypothesis
implies itself (the initial test is a member of the family), we also have 0 € (.. O/ =
§ € Oy, so that (),c, O, C Oy, yielding ©g = (e Or. Thus the intersection part of
Definition 1 is satisfied. It remains to establish the union part. Denoting by f(y;#) the
(Radon-Nikodym) derivative of Py, the critical region of the initial test has the form

' SUPgeco f(y; 9) = k} N {y : )\(y) = k}

Now let

. . SUDgco, f(y;0) . ]
= { - Supgeo f(y;0) : k} =) < RE

Since ©g C Oy, supgeg, f(¥;0) < supgee, f(y; ). Therefore,

SuPgeo, f(¥;0) < SUPseco, f(y;0)
SUPpeo f(¥;0) ~ supgee f(y;0)’

that is, A(y) < M(y). Now let y € Cr = N(y) < k = AMy) < k =y € C, so that
Cy C C. Because the initial test is in the family, we have equality (though we don’t need
it). The conclusion now follows by Result 1. B

Recipie 2 Suppose one is using large-sample likelihood ratio tests, in which -2 times the
natural log of the likelihood ratio has a chi-square distribution — say with k degrees of
freedom for the initial test. Then one would just use the critical value of a chi-square with
k degrees of freedom for all the follow-up tests. This covers generalized linear models (in-
cluding logistic regression), log-linear models for categorical data and structural equation
models of the LISREL variety, among other methods.

3 Univariate Linear Models: The Scheffé Tests

3.1 Detalils

This section is concerned with the usual univariate linear model with independent normal
errors. That is, let Y = X8 + €, where X is an n X p matrix of known constants, 3
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is a p X 1 vector of unknown constants, and € is multivariate normal with mean zero and
covariance matrix o?I,, with 02 > 0 an unknown constant. It will be assumed that the
rank of X is p, so the maximum likelihood estimate (MLE) of 3 is 8 = (X'X)"*X'Y, and
the MLE of o2 is 62 = (X8 (Y-XP)

The null hypothesis of the initial test will be Hy : L3 = v, where L is a d X p matrix

of row rank d < p. Denoting by B the MLE of 3 subject to the constraint of Hy, we have

52 _ (Y-XB)(Y-Xp)
n
and the model constrained by Hy the “reduced model.” Thus we may write 62 =

A2
and 6 = szﬂ* Here “SSE” stands for Sum of Squares Error.
The critical region of the likelihood ratio test is

. It is convenient to call the unconstrained model the “full model,”
SSEp
n

T s exp — 2 (v — xiB)?
) /
(2

where A = A(y) = gggi is the multivariate test statistic Wilks’ Lambda for this univariate
1—

case. Defining g(z) by g(x) = =%, we continue to write the critical region as follows:

C = {y:9(Aly)) > g(k2) = k3}

LA SSEp _ SSEp
- SS SS
— {y P > kg} = {y : —ERSSEF Er > kg}

SSEgr
SSER—SSEF (SSER—SSEF)/d n—p
{ SSEr —k?’} {y SSErf(n—p) = d =h
_ : SSER — SSEp >k b
dMSEp

Choosing k4 to be the 1 — « quantile of the F' distribution with d and n — p degrees of
freedom, we have the usual test based on
_ SSER— SSEF 2)
~ dMSEF
One benefit of going through all these details is that we have the relationship between
the F' statistic and Wilks’ lambda, which will come in handy later when we want to per-
form univariate tests as union-intersection followups to multivariate tests. It is recorded
here for future reference.

e COIC
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If the initial null hypothesis Hy : LB = « is rejected, we will follow up with tests
whose null hypotheses are all implied by the initial null hypothesis. Here, attention
will be confined to null hypotheses of the form H, : C,3 = hy, where C, = A/,L and
h, = Ayy. The matrix Ay is a ¢ X d matrix of row rank ¢ = 1,...,d, and ¢ € L, an index
set corresponding to the set of all such matrices. Thus, Hy implies H, in a particularly
simple way: L3 =~ = A/LB = Ayvy. Note that each row of Cy is a linear combination
of the rows of L, making it easy to formally verify that a follow-up null hypothesis is
implied by the initial null hypothesis — if formal verifiation is necessary.

The class of linear follow-ups just described corresponds exactly to the classical Scheffé
tests for multiple regression. This class is enormously rich, and sufficient for almost any
imaginable application. For example, the typical textbook account of Scheffé procedures
is confined to confidence intervals and tests for single linear combinations of treatment
means in a one-way design, leaving the practitioner in the dark about what to do if
there are covariates. Here, however, we can easily perform tests on collections of linear
combinations, and do so in the presence of covariates.

Incidentally, there are uncountably many nonlinear follow-ups that are also auto-
matically protected at the same joint significance level along with the Scheffé tests,
but these appear to be mostly curiosities. For example, 6o = (3 = (4, = 0 implies
log(1 + 32) = (14 — 33)P* — 1, and we could obtain maximum likelihood estimates of the
parameters subject to this odd constraint, but who cares?

Derivation of the likelihood ratio test of H, proceeds exactly as in the case of the
initial test. Again we arrive at test statistic (2), with the understanding that the quantity
SS Egr now refers to sum of squares error from a reduced model in which 3 is constrained
by H, rather than Hy. The quantity MSFEF is, of course, the same, since follow-ups
always assume the same model as the initial test. Following Result 2, the critical value
of the follow-up test will also be the same as that of the primary test. To clarify, the
union-intersection follow-up test has the form

_ SSER— SSEp n
 dMSEg

Fy

(the s in F§ stands for Scheffé).

Using statistical software such as SAS, it is routine to produce a test of H, (in some
contexts it might help to think of it as a “planned comparison”). But what the software
will produce is not (4), but the test statistic F;, = %&%—i&”, and a p-value that is
appropriate for an initial test. However, it is easy to compute

F,=2F, (5)
and compare the result to the 1 —a quantile of an F' distribution with d and n — p degrees
of freedom.

This illustrates the main advantage of having gone through the derivation of the
likelihood ratio test. A careless application of Result 2 might have suggested comparing
Fy to the F'(d,n — p) critical value, but the correct Scheffé test statistic is Iy = Fy. It is
encapsulated in the following recipie.

Recipie 3 Suppose the initial test is an F'-test from multiple regression, based on d and
n —p degrees of freedom. All the follow-up tests will employ the same critical value as the



initial test. For any potential follow-up test, first verify that its null hypothesis is implied
by the null hypothesis of the initial test. Then use statistical software to calculate the F
statistic for the followup test in the usual manner; call this quantity Fy,. It will appear
to be based on q and n — p degrees of freedom, where q¢ < d. Compute Fy = $F, with a
calculator, and declare the Scheffé test significant if Fy is greater than the critical value
of F with d and n — p degrees of freedom.

Most textbook treatments of multiple comparisons, including classics like Miller (1981)
and Hochberg and Tamhane (1987) follow Scheffé’s original argument, and present con-
fidence intervals for single linear combinations of regression parameters. But by going
back to first principles, we have been able to obtain Scheffé tests for collections of lin-
ear combinations. These tests were part of the same family as the tests for single linear
combinations, and are simultaneously protected at the same significance level at no ex-
tra expense.Therefore, we are able, for example, to easily treat the test of a main effect
in a multi-factor ANOVA as a union-intersection (Scheffé) followup to an initial test for
equality of all the treatment means.

Usually, it is obvious when the initial null hypothesis implies a given follow-up null
hypothesis. Most of the time, the initial null hypothesis is that some collection of regres-
sion coefficients all equal zero, and the follow-up null hypothesis is that members of some
subset of the collection are zero, or that some subset of the collection of regression coef-
ficients are all equal to each other. In such cases, no formal demonstration is necessary.
In rare cases it may not be so clear, and a formal proof may be desirable. Alternatively,
software may be used to check that each row of C, is linearly dependent upon the rows
of L. An example using SAS will be given later.

Penalty %, projection

3.2 A Textbook One-Factor Example
3.3 A Regression with Quantitative Measured Variables
3.4 An Unbalanced Two-factor Example

3.5 Power and Sample Size

The relation Fy, = 4F, (Equation 5) means that the Scheffé procedure exacts a severe
penalty for small ¢ (like the very common g = 1), especially if d is large. What this means
is that if a null hypothesis H, is false, a Scheffé test will be less likely to reject it than an
ordinary one-at-a-time F'-test. That is, the power of Scheffé tests is lower.

4 Multivariate Linear Models

4.1 Detalils

The multivariate linear model is Y = X3 4 €, where X is an n X p matrix of
known constants, 3 is a p X m vector of unknown constants, and the rows of the n x m
random matrix € are independent multivatiate normals with mean zero and unknown
variance-covariance matrix 3. The rank of X is p, the maximum likelihood estimate



of Bis B = (X'X)'X"Y, and the MLE of X is 3 = w SAS proc reg
allows testing null hupotheses of the form Hj : LGM = 0, so that will be our initial null
hypothesis. The matrlx of regression coefficients estlmated under the constraints of Hy

will be denoted by B, and the restricted MLE of X is E w
Tests will be based on Wilks’ lambda:

= _ B -
1211E+HW

where
— (LAM) (L(X'X)'L/)"Y(LBM) and E = M'(Y'Y - 3 (X'X)3)M

This is a very direct likelihood ratio statistic; in fact it is just the I root of the
likelihood ratio. This means every union-intersection follow-up test will reject its the null
hypothesis if Wilks’ lambda is less than the critical value for the initial test (yes, we are
using the left tail of the distribution).

So we need to determine the critical value of Wilks’ lambda for the initial test. Tables
are available in some older books, but it would be necessary to interpolate in the tables;
it is better to use software. The p-values that SAS gives for multivariate tests are based
on F' approximations — approximations that are very good, and quite often exact in the
case of Wilks’ lambda.

Now I will transcribe the formulas from the SAS manual (need the reference). This
is complex enough so that I will just use their notation (that of Rao 1973, I believe),
employing script-style (calligraphic) letters to minimize incompatibilites and overlaps with

the symbols in the rest of this document. Let
e 7 be the rank of (E + H) (< number columns of M)

e o be the rank of L(X'X)™'L’ (the number of rows in L, if L is of full row rank and
X is of full column rank)

v be the degrees of freedom for error

o R =y =il
_ PQ-2
o Y = 1
2092 . .
o7 sz +QQ2_45 if 72 4+ o? > 5, or one otherwise.

Then under the null hypothesis,

1 —AYT [rT —2u
F = s (7)
A/ PQ

has an approximate F' distribution with degrees of freedom Po and =7 —2u. If min(p, @) <
2 it’s exact (Rao 1973).

For the case of a single dependent variable, the matrix M has just one column, con-
taining a one corresponding to the dependent variable of interest, and all the rest zeros.
Thus, =1, 0=d,v=n—p, R=n—p— 1+ £ 7=1, and (7) agrees with (3).
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To get an (approximate) critical value for A, denote by Fi_,(Po, RT — 2u) the 1 — «
quantile of the F' distribution with Po and RT — 2u degrees of freedom. Setting this equal
to F'in (7) and solving for A, we arrive at a critical value for Wilks’ Lambda equal to

RT — 2U

Acrit = (8)

RT — 2u + POF)_o(PQ, RT — 2u)
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