Math Stat Review Assignment

Part 1: Answer each question T for true or F for false.

- 1. ____ Let P(A)>0, and C₁, C₂, ... be disjoint sets. Then P($\bigcup_{n=1}^{\infty} C_n | A \rangle = \sum_{n=1}^{\infty} P(C_n | A)$.
- 2. _____ X~Poisson(λ =2), and Y=X². f_Y(3)=0.
- 3. _____ If X has a binomial distribution, X is a discrete random variable.

4. _____ X~Normal(μ =5, σ^2 =4). P(X>1)=.023.

- 5. _____ X~Binomial(n=20, p=.8). E(X)=3.2.
- 6. ____ Let \mathbb{N} be the set of non-negative integers. If X~Normal(0,1), P(X \in \mathbb{N})=0.

7. ____ The moment–generating function of the random variable X is $M_X(t)=(1-2t)^{-1}$. X~Exponential($\theta=2$).

8. ____ The moment–generating function of the random variable X is $M_X(t)=(1-2t)^{-20}$. X~Chi–squared(r=20).

9. ____ If X has a Gamma distribution with parameters α and β , the density of X is symmetric about the mean $\alpha\beta$.

10. ____ The joint density of X and Y is $f_{XY}(x,y)=x+y$ for $0\le x\le 1$ and $0\le y\le 1$, zero otherwise. X and Y are independent.

11. Let X₁, ..., X_n be a random sample from a Normal (μ, σ^2) population. Then the joint density of the n random variables is $\frac{1}{\sigma^n (2\pi)^{n/2}} Exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\}$.

12. ____ The moment–generating function of the random variable X is $M_X(t)=e^{5t+4t^2}$. X~Normal($\mu=5$, $\sigma^2=8$).

13. ____ You flip a fair coin 10 times. The variance of the number of heads is 5.

14. _____ X~Chi-squared(r=20). P(X<0)=0.

15. _____ X~Binomial(n=20, p=.8). F_X(21)=0.

16. _____ X~Gamma(α =2, β =20). Var(X)=40.

- 17. _____ If X has a Poisson distribution, $P(X \le 0)=0$.
- 18. ____ The moment–generating function of the random variable X is

 $M_X(t)=(.2e^t+.8)^{20}$. X~Binomial(n=20, p=.8).

- 19. _____ If the events A and B are independent, P(A|B)=P(B).
- 20. ____ X~Chi-squared(r=20). E(X)=40.
- 21. ____ Let X represent your weight yesterday, and Y represent your weight today.

X and Y are dependent (not independent).

22. ____ X~Poisson(μ =1). P(X=0)= e^{-1} .

- 23. ____ X~Normal($\mu=0, \sigma^2=1$). P(X>1)=P(X<-1).
- 24. _____ X~Poisson(μ =2). Var(X)=2.
- 25. ____ Let the random variables X and Y be independent. Then E(XY)=E(X)E(Y).

26. _____ X~Poisson(
$$\mu$$
=2). P(X=1)=2e⁻².

- 27. ____ X~Gamma(α =2, β =20). P(X=1)=0.
- 28. ____ For two events A and B, $\underline{\text{if } P(A)=0}$, it is possible for A and B to be both disjoint and independent.

29. _____ X~Exponential(
$$o=2$$
). P(X=1)= $e^{1/2}$.

30. _____ Let the random variables X and Y be independent. Then $P(X \le x, Y \le y)$

$$= F_{\mathbf{X}}(\mathbf{x})F_{\mathbf{Y}}(\mathbf{y}).$$

31. ____ The moment–generating function of the random variable X is

 $M_{X}(t)=(1-2t)^{-20}$. X~Gamma($\alpha=2,\beta=20$).

32. ____ The moment–generating function of the random variable X is $M_X(t)=e^{2(e^t-1)}$ X~Poisson($\mu=2$).

33. ____ The moment–generating function of the random variable X is $M_X(t)=1$. This is impossible.

34. _____ X~Normal(μ =0, σ^2 =1). M_X(t)=e^{.5t²}.

35. ____ If $A \cap B = \overline{\emptyset}$, A and B are said to be independent.

36. ____ X~Poisson(µ=6.5). Var(X)=42.25.

- 37. _____ X~Exponential(θ =2). E(X)=2
- 38. ____ X~Normal(μ =5, σ^2 =16). Var(X)=4.
- 39. _____ X~Normal(μ =5, σ^2 =16). P(X>5)=1/2.
- 40. ____ Let X₁, ..., X_n be a random sample from a Poisson distribution with

parameter μ . Then the joint density of the n random variables is $\frac{e^{-n\mu}\mu^{nx_i}}{nx_i!}$, for $x_i = 0$,

1, ...; i= 1, ..., n; and zero otherwise.

Review Assignment Part 2

1. Derive the means, variances and moment–generating functions in the table below. Obtain each mean and variance from the Moment–generating function, and also directly from the definition.

Distribution	f(x)	μ	σ2	M _X (t)
Bernoulli	$\theta^{x}(1-\theta)^{1-x} I\{x=0,1\}$	θ	θ(1-θ)	$\theta e^t + 1 - \theta$
Binomial	$ \begin{pmatrix} n \\ x \end{pmatrix} \theta^{x} (1-\theta)^{n-x} $ $ I\{x=0, \dots, n\} $	nθ	ηθ(1-θ)	$(\theta e^{t}+1-\theta)^{n}$
Poisson	$\frac{e^{-\lambda} \lambda^{x}}{x!} I\{x=0, 1,\}$	λ	λ	$e^{\lambda(e^t-1)}$
Exponential	$\frac{1}{\theta} e^{-x/\theta} I(x>0)$	θ	θ^2	$(1-\Theta t)^{-1}$
Gamma	$\frac{1}{\beta^{\alpha} \Gamma(\alpha)} e^{-x/\beta} x^{\alpha-1}$ I(x>0)	αβ	αβ ²	$(1-\beta t)^{-\alpha}$
Chi–square	$\frac{1}{2^{\nu/2} \Gamma(\nu/2)} e^{-x/2} x^{\nu/2-1}$ I(x>0)	ν	2v	$(1-2t)^{-v/2}$
Normal	$\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ ²	$e^{\mu t} + \frac{1}{2}\sigma^2 t^2$

2. Let the random variable X have an exponential distribution with mean θ . Let $Y = \frac{2X}{\theta}$. Derive the probability density function $f_{y}(y)$. Show your work.

3. Let the random variable X have a normal distribution with mean μ and variance σ^2 . Let $Y = \frac{X - \mu}{\sigma}$. Derive the probability density function $f_Y(y)$. Show your work.

4. Let X have a normal distribution with mean μ and variance σ^2 ; that is, $X \sim N(\mu, \sigma^2)$. Let $Y = e^X$. (This means $X = \ln(Y)$, so Y has a log-normal distribution) Find the density $f_Y(y)$. Don't forget the support!

5. Let $X_1, ..., X_n$ be independent random variables with moment–generating functions $M_{X_i}(t)$, i = 1, ..., n. Let $Y = \sum_{i=1}^{n} X_i$. Starting from the definition of a moment–generating function and then using a convenient expression for $E[g(X_1, ..., X_n)]$, find $M_Y(t)$. Assume $X_1, ..., X_n$ are continuous, so you'll integrate. Show all your work.

6. Let $X_1, ..., X_n$ be independent Poisson random variables, all with the same parameter $\lambda > 0$. Let $Y = \sum_{i=1}^{n} X_i$. Give $f_Y(y) = P(Y=y)$. Show your work. Remember, the support counts for half marks.

of W has a name. Name the distribution and give the value of the parameter.) Show your work.

Review Assignment: Part 3

- 1. Let X be a *continuous* random variable and let a be a constant. Prove E[a] = a. You may use the "definition" $E[g(X)] = \int g(x)f(x) dx$.
- 2. Let X and Y be continuous random variables that are *independent*. Prove that E[XY] = E[X]E[Y]. Be very clear about where you are using the assumption of independence.
- 3. Let X and Y be continuous random variables. Prove E[X + Y] = E[X] + E[Y]. You may use the "definition" $E[g(X,Y)] = \int \int g(x,y)f(x,y) dx dy$, and you may exchange order of integration without comment. However, do not assume that X and Y are independent.
- 4. Let X and Y be random variables. Derive a formula for Var(X + Y). You may use the formulas $Var(X) = E[X^2] (E[X])^2$ and Cov(X, Y) = E(XY) E(X)E(Y) if you wish.
- 5. Let $f_{X,Y}(x,y) = e^{-x-y}I(x>0)I(y>0)$. What is Cov(X,Y)? There is a short quick way to do this problem, or you can do it the long way.
- 6. Let X have a Rayleigh distribution. That is, $f_X(x) = 2\alpha x e^{-\alpha x^2} I(x > 0)$, and let $Y = \alpha X^2$.
 - (a) (20 points) Find $f_Y(y)$. Make sure it is correct for all real y.
 - (b) (5 points) Identify the distribution by name and give the values of its parameters.
- 7. Chebyshev's inequality states that for any random variable X with $E(X) = \mu$ and $Var(X) = \sigma^2$ and for any k > 0, $P(|X \mu| \ge k\sigma) \le \frac{1}{k^2}$. Use this result to prove the following. Let X_1, \ldots, X_n be a random sample from a population with expected value μ and variance σ^2 . Then for all $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu| \ge \epsilon) = 0.$$

8. The cumulative distribution function of the random variable X is $F_X(x) = \frac{x+1}{2}I(-1 < x < 1) + I(x \ge 1).$

- (a) Find P(-2 < X < 0)
- (b) Find $f_X(x)$. Make sure your answer is correct for all real x.
- 9. Let X have distribution function $F(x) = 1 (1+x)e^{-x} I(x > 0)$.
 - **a.** Find P(-4 < X < 3).
 - **b.** Give a formula for the density function f(x). Make sure it is correct for all real x.
- 10. Let the random variable X satisfy $P(X = \mu) = 1$.
 - (a) Derive the moment-generating function of X.
 - (b) Sketch the cumulative distribution function of X.
- 11. The random variable X has density $f_X(x) = 4e^{x-4e^x}I(-\infty < x < \infty)$. (The indicator is not really necessary but it may be helpful to you.) Find the density of $Y = e^X$. Make sure $f_Y(y)$ is correct for all real y.
- 12. Let X have an exponential distribution with $\theta = 1$, and let Y = X + 4. Find the density of Y. The support is very important.
- 13. Let U be distributed as U(0,1); that is, $f_U(u) = I(0 < u < 1)$. Let $Y = -\theta \log(1 U)$, where $\theta > 0$, and of course it's the natural log. Find the density $f_Y(y)$; be sure to indicate where it's non-zero.
 - (a) Use the Distribution Function Technique.
 - (b) Use the Moment-generating Function Technique. You will "recognize" the answer.
 - (c) Suppose you had a computer program that generated good pseudorandom numbers from a uniform distribution. How would you simulate values from the distribution of Y?
- 14. Let the distribution function F be differentiable and strictly increasing on $(-\infty, \infty)$, so that F has a density f, and the inverse of the distribution function F^{-1} exists. Let the random variable U have density $f_U(u) = I(0 < u < 1)$, and let $Y = F^{-1}(U)$. Find the density $f_Y(y)$.
 - (a) Use the Distribution Function Technique.

- (b) Use the Moment-generating Function Technique. You will "recognize" the answer (or look at Part 1).
- (c) Suppose you had a computer program that generated good pseudorandom numbers from a uniform distribution. How would you simulate values from the distribution of Y?
- 15. Let X_1, \ldots, X_n be a random sample from a probability distribution with common distribution function F(x) and density f(x). Find the density of
 - (a) $X_{(1)} = \text{Minumum}(X_1, \dots, X_n)$
 - (b) $X_{(n)} = \text{Maximum}(X_1, \dots, X_n)$
- 16. The joint density of X_1 and X_2 is $f_{X_1,X_2}(x_1,x_2) = e^{-x_1-x_2}I(x_1 > 0)I(x_2 > 0)$. Find the density of $Y = X_1 + X_2$ any way you wish (more than one way will work). Make sure $f_Y(y)$ is correct for all real y.
- 17. Let $f_{X,Y}(x,y) = c xy I(x = 1,2,3) I(y = 1,...,x)$
 - (a) Find the constant c
 - (b) Find $f_Y(y)$. You don't need to use indicator functions. Just give $f_Y(y)$ for the y values with non-zero probability, and say "Zero for all other y."
 - (c) Find $f_{X|Y}(x|2)$. You don't need to use indicator functions. Just give the values of $f_{X|Y}(x|2)$ for the x values with non-zero probability, and say "Zero for all other x."
 - (d) Find E[X|Y=2]
- 18. Let $f_{X,Y}(x,y) = k x y^2 I(0 < x < 1) I(-x < y < x).$
 - (a) Sketch the support of $f_{X,Y}(x,y)$.
 - (b) Find k.
 - (c) Find $f_X(x)$. Make sure it is correct for all real x. Find $f_{Y|X}(y|x)$; your answer must apply to any x between 0 and 1, and must be correct for all real y.
 - (d) Find E[Y|X = x], for some arbitrary fixed x between 0 and 1.

- 19. Let $f_{X_1,X_2}(x_1,x_2) = \frac{1}{2}I(x_1 > 0)I(x_2 > 0)I(x_1 + x_2 < 2)$. Let $Y_1 = X_2 X_1$ and $Y_2 = X_1$.
 - (a) Sketch the support of $f_{X_1,X_2}(x_1,x_2)$.
 - (b) Find $f_{Y_1,Y_2}(y_1,y_2)$. Make sure it is correct for all pairs of real numbers (y_1,y_2) .
 - (c) (10 points) Sketch the support of $f_{Y_1,Y_2}(y_1,y_2)$.
- 20. Let X_1, \ldots, X_n be a random sample from a *normal* population with $\mu = 0$ and $\sigma^2 = 1$, and let $Y = \sum_{i=1}^n X_i^2$. Find $f_Y(y)$. Make sure it is correct for all real y.
- 21. Let X_1, \ldots, X_n be a random sample from an *exponential* population with parameter $\theta > 0$. Find the probability density function of the sample mean. Don't forget the support.

Review Assignment: Part 4

1. Let the continuous random variables X_1 and X_2 be independent and normal, both with $\mu = 0$ and $\sigma^2 = 1$.

a. Find the joint density of $Y_1 = X_1/X_2$ and $Y_2 = X_2$. The ratio of two real numbers is real, so for once you don't need to worry about the support. The support of Y_1 and Y_2 is the whole plane \mathbb{R}^2 .

b. Find the marginal density of Y_1 . Again you don't need to indicate the support, because it's the whole real line. Hint: To get rid of the absolute value sign, split the integral at zero and realize that for $y_2 < 0$, $|y_2| = \equiv y_2$.

2. Let X_1 and X_2 be independent N(0,1) random variables. Show that (contrary to what you might expect) $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ are independent random variables.

3. Let $X_1 \sim \text{Gamma}(\alpha_1, 1)$ and $X_2 \sim \text{Gamma}(\alpha_2, 1)$ be independent. Let $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$.

- a. Sketch the support of Y_1 and Y_2 .
- b. Derive the joint density of Y_1 and Y_2 .
- c. Find the marginal density of Y₂. Include an indicator function for the support.

4. Let $X_1 \sim \text{Normal}(0,1)$ and $X_2 \sim \text{Chi-square}(v)$ be independent. Find the density of $Y_1 = X_1 / \sqrt{\frac{X_2}{v}}$; compare your result to the t density with v degrees of freedom.

5. Let $X_1 \sim \text{Chi-square}(v_1)$ and $X_2 \sim \text{Chi-square}(v_2)$ be independent. Find the density of $Y_1 = \frac{X_1 / v_1}{X_2 / v_2}$; compare your result to the F density with v_1 and v_2 degrees of freedom.

6. Let G_n have a Gamma distribution with parameters $\alpha = n$ and β , where $\beta > 0$ is not a function of n. Let $Y_n = G_n/n$. Find the limiting distribution of Y_n . Hint: Find the limiting moment–generating function.