Homework 11: Quiz Dec. 2 You may bring the convergence handout.

- 1. Show that a collection of i.i.d. random variables with finite mean and variance satisfies the Lindeberg condition.
- 2. Regression through the origin: Let $Y_i = \beta x_i + e_i$, i = 1, ..., n, where x_i values are known fixed constants, β is an unknown constant, and the e_i values are i.i.d. random variables with expected value zero and variance σ^2 . A *least squares estimate* of some parameter θ is defined as follows. Suppose $E[Y_i] = g_i(\theta)$. The least squares estimate is the value of θ that gets the Y_i values as close to their expected values as possible, in the sense of minimizing $Q = \sum_{i=1}^{n} (Y_i g_i(\theta))^2$. Find the least-squares estimate of β . Under what conditions does it have a limiting normal distribution? Show your work.
- 3. Show that a sufficient condition for $X_n \xrightarrow{a.\$} X$ is $\forall \epsilon > 0$, $\sum_{k=1}^{\infty} P\{|X_k X| \ge \epsilon\} < \infty$. Hint: Do not be tempted by Markov's inequality, because the expected values might not exist. Start with the second item on the convergence handout.
- 4. Let $P(X_n = n^2) = \frac{1}{n^2}$, and $P(X_n = 0) = 1 \frac{1}{n^2}$.
 - (a) Is it clear that $X_n \xrightarrow{P} 0$?
 - (b) Does $X_n \stackrel{a.s.}{\rightarrow} 0$? Why or why not?
- 5. Suppose X_1, X_2, \ldots, X_n are continuous uniform random variables on the interval $(0, \theta)$. Let $T_n = 2\overline{X}_n$, and let Y_n be the maximum of X_1, X_2, \ldots, X_n . Last week you showed both T_n and Y_n are consistent.
 - (a) Why can we say $T_n \theta = O_p(n^{-\frac{1}{2}})?$
 - (b) Find the limiting distribution of $n(\theta Y_n)$. Just find the distribution function explicitly and take the limit.
 - (c) Why does this establish that Y_n is going to θ faster than T_n ?
 - (d) Clearly $T_n \xrightarrow{a.s.} \theta$. Prove $Y_n \xrightarrow{a.s.} \theta$ as well. Hint: One approach may be found elsewhere on this assignment, but perhaps it is more satisfying to use the seond item on the convergence handout directly.

- 6. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with expected value μ and variance σ^2 .
 - (a) Show $e^{\overline{X}_n}$ is asymptotically normal.
 - (b) Let $f_{\mu}(x)$ be the density of a normal with mean μ and variance 1. Show that with suitable scaling, $f_{\mu}(\overline{X}_n)$ is asymptotically chi-square.
 - (c) Let $F_{\mu}(x)$ be the cdf of a normal with mean μ and 1. Show that $F_{\mu}(\overline{X}_n)$ is asymptotically normal. Take an extra term in the Taylor expansion to see that it happens faster than usual.
- 7. This is a repeat from last week, with a better hint. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with finite fourth moment; denote their common expected value by μ and their variance by σ^2 . Show that $\sqrt{n}(S_n^2 \sigma^2)$ (where S_n^2 is the common sample variance) converges in distribution to a normal random variable. Hint: Start by letting $Y_i = (X_i \mu)^2$; later, show $\sqrt{n}(\overline{Y}_n \sigma^2) \sqrt{n}(\frac{n-1}{n}S_n^2 \sigma^2) \xrightarrow{P} 0$. Simplify, then complete the square. You're almost done.
- 8. Adapt an example from lecture to show that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ need not imply $X_n + Y_n \xrightarrow{d} X + Y$, even though g(x, y) = x + y is continuous. Why does this not contradict the Slutsky theorem?