Homework 10: Quiz Nov. 25

You may bring the convergence handout.

- 1. Let X_1, X_2, \ldots, X_n be i.i.d. random variables whose distribution depends on a parameter θ . The statistic $T_n = T_n(X_1, X_2, \ldots, X_n)$ is said to be *consistent* for θ if $T_n \xrightarrow{P} \theta$. It is *unbiased* if $E[T_n] = \theta$. Suppose X_1, X_2, \ldots, X_n are continuous uniform random variables on the interval $(0, \theta)$.
 - (a) Let $T_n = 2\overline{X}_n$. Is T_n unbiased? Is it consistent? Show your work.
 - (b) Let Y_n be the maximum of X_1, X_2, \ldots, X_n . Is Y_n unbiased? Is it consistent? Show your work.
 - (c) Define a statistic W_n that is a one-to-one function of Y_n and is unbiased. Is it also consistent? Show your work.
- 2. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with expected value μ and variance σ^2 . Show $\frac{\sqrt{n}(\overline{X_n}-\mu)}{S_n} \stackrel{d}{\to} N(0,1)$, where S_n is the sample standard deviation. Don't do it from scratch; use the convergence handout.
- 3. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with expected value μ and variance σ^2 . Define $Y_n = \sqrt{n}(\overline{X}_n \mu)$. What is the asymptotic distribution of e^{Y_n} ? What is $\lim_{n\to\infty} P(e^{Y_n} < 1)$?
- 4. Let $\sqrt{n}(T_n \theta) \xrightarrow{d} T$. Prove $T_n \xrightarrow{P} \theta$.
- 5. Let $T_n \xrightarrow{d} T$. Prove $\frac{T_n}{\log n} \xrightarrow{P} 0$.
- 6. Using Stirling's formula, show that a t-distribution with n degrees of freedom converges to a standard normal. Stirling's formula for gamma functions is just what you might think.
- 7. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . Let $T_n = \frac{\sum_{i=1}^n X_i}{n-237.6}$. Show $\sqrt{n}(T_n \mu)$ has a limiting normal distribution. What is the variance of the limiting distribution?
- 8. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with finite fourth moment; denote their common expected value by μ and their variance by σ^2 . Show $\sqrt{n}(S_n^2 - \sigma^2)$ (where S_n^2 is the common sample variance) converges in distribution to a normal random variable. What is the variance of this normal target? Don't bother to simplify. Hint: Start by letting $Y_i = (X_i - \mu)^2$; later, seek asymptotic equivalence.