Convergence of Sequences of Random Variables

- Definitions
 - * $X_n \stackrel{a.s.}{\to} X$ means $P\{s : \lim_{n \to \infty} X(s) = X(s)\} = 1.$
 - * $X_n \xrightarrow{P} X$ means $\forall \epsilon > 0$, $\lim_{n \to \infty} P\{|X_n X| < \epsilon\} = 1$.
 - * $X_n \xrightarrow{d} X$ means for every continuity point x of F_X , $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$.
- $X_n \xrightarrow{a.s.} X$ if and only if $\forall \epsilon > 0$, $\lim_{n \to \infty} P(\bigcap_{k=n}^{\infty} \{ |X_k X| < \epsilon \}) = 1$.
- $X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X.$
- If a is a constant, $X_n \xrightarrow{d} a \Rightarrow X_n \xrightarrow{P} a$.
- If $\lim_{n\to\infty} f_{X_n}(x) = f_X(x)$ for each $x, X_n \xrightarrow{d} X$.
- Let **X** and **X**_n be random vectors in \mathbb{R}^k . **X**_n \xrightarrow{d} **X** if and only if $\lim_{n\to\infty} E[g(\mathbf{X}_n)] = E[g(\mathbf{X})]$ for every bounded continuous function $g: \mathbb{R}^k \to \mathbb{R}$.
- Slutsky Theorems for Convergence in Distribution:
 - 1. If $\mathbf{X}_n \in \mathbb{R}^m$, $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{X} \in C) = 0$, then $f(\mathbf{X}_n) \xrightarrow{d} f(\mathbf{X})$.
 - 2. If $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and $(\mathbf{X}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{d} \mathbf{X}$.
 - 3. If $\mathbf{X}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and $\mathbf{Y}_n \xrightarrow{d} \mathbf{c}$, then $\begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} \mathbf{X} \\ \mathbf{c} \end{pmatrix}$
- Slutsky Theorems for Convergence in Probability:
 - 1. If $\mathbf{X}_n \in \mathbb{R}^m$, $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{X} \in C) = 0$, then $f(\mathbf{X}_n) \xrightarrow{P} f(\mathbf{X})$.
 - 2. If $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ and $(\mathbf{X}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{X}$.
 - 3. If $\mathbf{X}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then $\begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix} \xrightarrow{P} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$

- Let g(x) have a second derivative that is continuous at $x = \theta$, and let $\sqrt{n}(T_n \theta) \xrightarrow{d} T$. Then $\sqrt{n}(g(T_n) g(\theta)) \xrightarrow{d} g'(\theta)T$.
- Strong Law of Large Numbers (SLLN): Let $X_1, \ldots X_n$ be i.i.d. random variables with finite first moment. Then $\overline{X}_n \xrightarrow{a.s.} E(X_1)$.
- Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors in \mathbb{R}^k with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean $\mathbf{0}$ and covariance matrix $\boldsymbol{\Sigma}$.
- Lindeberg Central Limit Theorem: Consider the triangular array of random variables

where the random variables in each row are assumed independent with $E(X_{ij}) = 0$ and $Var(X_{ij}) = \sigma_{ij}^2$. Let $S_n = \sum_{j=1}^n X_{nj}$, and let $v_n^2 = Var(S_n) = \sum_{j=1}^n \sigma_{nj}^2$. Then $\frac{S_n}{v_n}$ converges in distribution to a standard normal provided, for all $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{v_n^2} \sum_{j=1}^n E[X_{nj}^2 I(|X_{nj}| \ge \epsilon v_n)] = 0$$

• $U_n = O_p(V_n)$ means $\forall \epsilon > 0$, $\exists M = M(\epsilon)$ and $N = N(\epsilon)$ such that if n > N, $P\{\frac{U_n}{V_n} \le M\} - P\{\frac{U_n}{V_n} \le -M\} > 1 - \epsilon$. Usually, $V_n = n^{-t}$ for some t > 0.