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Binary outcomes are common 
and important 

•  The patient survives the operation, or does not. 
•  The accused is convicted, or is not. 
•  The customer makes a purchase, or does not. 
•  The marriage lasts at least five years, or does not. 
•  The student graduates, or does not. 



Logistic Regression 

Response variable is binary (Bernoulli): 
1=Yes, 0=No 

Pr{Y = 1|X = x} = E(Y |X = x) = ⇡



Least Squares vs. Logistic 
Regression 



The logistic regression curve arises from an indirect  
representation of the probability of Y=1 for a given set  
of x values. 
 
Representing the probability of an event by  



•  If P(Y=1)=1/2, odds = .5/(1-.5) = 1 (to 1) 
•  If P(Y=1)=2/3, odds = 2 (to 1) 
•  If P(Y=1)=3/5, odds = (3/5)/(2/5) = 1.5 

(to 1) 
•  If P(Y=1)=1/5, odds = .25 (to 1) 
 



The higher the probability, the 
greater the odds 



Linear regression model for 
the log odds of the event Y=1 

for i = 1, …, n 
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Note ⇡ is a conditional probability.
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•  A distinctly non-linear function 
•  Non-linear in the betas 
•  So logistic regression is an example of 

non-linear regression. 

E(Y |x) = ⇡ =
e�0+�1x1+...+�p�1xp�1

1 + e�0+�1x1+...+�p�1xp�1



F (x) = ex

1+ex is called the logistic distribution.

•  Could use any cumulative distribution 
function:  

•  CDF of the standard normal used to be 
popular 

•  Called probit analysis 
•  Can be closely approximated with a 

logistic regression. 
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In terms of log odds, logistic 
regression is like regular 

regression 
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In terms of plain odds,  

•  (Exponential function of) the logistic 
regression coefficients are odds ratios 

•  For example, “Among 50 year old men, 
the odds of being dead before age 60 
are three times as great for smokers.” 



Logistic regression 

•  X=1 means smoker, X=0 means non-
smoker 

•  Y=1 means dead, Y=0 means alive 

•  Log odds of death =  

•  Odds of death =  





Cancer Therapy Example 

x is severity of disease 



For any given disease severity x, 



In general, 

•  When xk is increased by one unit and all other 
explanatory variables are held constant, the 
odds of Y=1 are multiplied by 

•  That is,       is an odds ratio --- the ratio of 
the odds of Y=1 when xk is increased by one 
unit, to the odds of Y=1 when everything is 
left alone. 

•  As in ordinary regression, we speak of 
“controlling” for the other variables. 



The conditional probability of Y=1 

This formula can be used to calculate a predicted 
P(Y=1|x).  Just replace betas by their estimates  

It can also be used to calculate the probability of getting 
the sample data values we actually did observe, as a 
function of the betas. 
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Likelihood Function 
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Maximum likelihood estimation 
•  Likelihood = Conditional probability of getting 

the data values we did observe, 
•  As a function of the betas 
•  Maximize the (log) likelihood with respect to 

betas. 
•  Maximize numerically (“Iteratively re-weighted 

least squares”) 
•  Likelihood ratio, Wald tests as usual 
•  Divide regression coefficients by estimated 

standard errors to get Z-tests of H0: βj=0. 
•  These Z-tests are like the t-tests in ordinary 

regression. 
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