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Seeking identifiability

We have seen that in simple regression, parameters of a model
with measurement error are not identifiable.

Yi = Bo+/iXi+e
Wi = v+ X;+e,

For example, X might be number of acres planted and Y
might be crop yield.

Plan the statistical analysis in advance.

Take 2 independent measurements of the explanatory
variable.

e Say, farmer’s report and satellite photograph.
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Model

Independently for i = 1,...,n, let
Wi,l = v+ Xi + €i1
Wia = 1+ X;+e2
Y; Bo + B1X; + €,

where

o X, is normally distributed with mean p, and variance
¢ >0

@ ¢; is normally distributed with mean zero and variance
Y >0

@ ¢;1 is normally distributed with mean zero and variance
w1 >0

@ ¢;2 is normally distributed with mean zero and variance
wo >0

o Xj,e;1,€;2 and ¢; are all independent.



Does this model pass the test of the Parameter Count

Rule?

Wiin = m+X;+ei
Wia = 1+ X;+e2
Y; Bo + L1 X; + €,

0 = (v1,v2, Bo, ta, 1, P, Y, w1, we): 9 parameters.

o Three expected values, three variances and three
covariances: 9 moments.

@ Yes. There are nine moment structure equations in nine
unknown parameters. Identifiability is possible, but not
guaranteed.



What is the distribution of the sample data?

Calculate the moments as a function of the model parameters

The model implies that the triples D; = (W; 1, W 2, Yi)—r are
independent multivarate normal with

Wia M1 He + V1
EDy)=E| Wix | =1 pn | = fz + 12 ,
Y; 3 Bo + B1piz

and variance covariance matrix cov(D;) = X =

011 012 013 ¢+ w1 ¢ B1¢
099 093 = ¢+w2 51¢
033 Bio+ 1



Are the parameters in the covariance matriz

identifiable?

Six equations in five unknowns
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Yes.
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What about the expected values?

Model equations again:
Wi 1
Wi,2
Y;

Expected values:
241
2]
u3

r+ X +ein
vo+ X +ei2
Bo + L1 X + €,

V1 + g
Vo + g
Bo + B1pz

Four parameters appear only in the expected values: vy, va, iy, Bo.

@ Three equations in four unknowns, even with 3y identified from

the covariance matrix.

@ Parameter count rule applies.

@ But we don’t need it because these are linear equations.

@ Re-parameterize.



Re-parameterize
p1=vi+pe  p2=v2+pe  p3 = Po+ Piie

Absorb v1,va, tiz, o into .

Parameter was 0 = (v1, v2, Bo, iz, B1, ¢, 0, w1, w2)

Now it’s @ = (1, p2, 43, B1, ¢, ¥, w1, w2).

Dimension of the parameter space is now one less.

We haven’t lost much.

Especially because the model was already re-parameterized.

Of course there is measurement error in Y. Recall

Y = Bo+piX+e
Vv w+Y +e

= w+Bo+HX+e)+e
(o + Bo) + 1 X + (e +e)
= Bo+BX+¢



Re-parameterization

o Re-parameterization makes maximum likelihood possible.
@ Otherwise the maximum is not unique and it’s a mess.

o Estimate p with D and it simply disappears from

—1 _

L, ) = [2]72m) 2 exp 5 {ir(E2 ) + (D - ) 27! (D - )
o This step is so common it becomes silent.
@ Model equations are often written without intercepts.

@ It’s more compact, and we don’t have to look at
parameters we can’t estimate anyway.

10 /21



Back to the covariance structure equations

011 012 013 ¢+ w1 ¢ P19
oo 093 | = p+twr  Bio
033 B+

@ Notice that the model dictates 01,3 = 02 3.

@ There are two ways to solve for (:
fr =32 and By = 22

ag g
@ Does tllfls mean the ;?)lution for 1 is not “unique?”
e No; everything is okay. Because 01,3 = 023, the two
solutions are actually the same.
o If a parameter can be recovered from the moments in any
way at all, it is identifiable.



Testing goodness of fit.

011 012 013 ¢+ w1 ¢ P19
oo 023 | = p+twe  Bio
033 B+

01,3 = 023 is a model-induced constraint upon X.
It’s a testable null hypothesis.

If rejected, the model is called into question.

Likelihood ratio test comparing this model to a completely

unrestricted multivariate normal model:
L (D,=(8)
G? = —2log ( — )
L(D,)

Widely used even if the data are not normal.



The Reproduced Covariance Matrix

° 2(@) is called the reproduced covariance matriz.

o It is the covariance matrix of the observable data, written
as a function of the model parameters and evaluated at the
MLE.

¢+ Oy A<ZA5 Br¢
3(0) = ¢+ Pio

@ The reproduced covariance matrix obeys all model-induced
constraints, while 3 does not.
o But if the model is right they should be close.

o This is a way to think about the likelihood ratio test for
goodness of fit.



General pattern for testing goodness of fit

@ Suppose there are £ moment structure equations in p
parameters, and all the parameters are identifiable.

o If p < k, call the parameter vector over-identifiable.
@ Only needed p equations to solve for 6.

e Substituting the solutions (in terms of o;;) back into the
unused equations would yield & — p equality constraints on

3.
. . 9 L(D,x(8))
o Test those constraints with G* = —2log I3
edf=k—p

@ Don’t need to actually derive the constraints unless asked —
just count them.



With the same number of equations and parameters

o If the parameter is identifiable, call it just identifiable.

o Parameters are 1-1 with those of an unrestricted
multivariate normal.

o Call the model “saturated.”

@ There are no equality constraints on 3.

L(D,x(9))
L(D,X)

e This is what happens in regression with all observed
variables.

e No likelihood ratio test because G? = —2log =0.



How to proceed

Verify identifiability.
If the model is over-identified, test goodness of fit.
If it passes (non-significant), proceed.

Now think of your model as the “full,” or unrestricted
model.

Compared to some (even more) reduced model that is
restricted by a null hypothesis like 51 = 0.

Fit the reduced model.
Subtract G2 goodness of fit statistics to test Hy.
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Subtract goodness of fit statistics

G? tests the full model against the saturated model, and G
tests the reduced model against the saturated model.

PR L(D,=(®)) 1 L(D,=®))
Gy —G° = —2log L(ﬁ,i]) QOgL(ﬁi,fl)
- 2 <logL (ﬁ, 2(50)) “log L(D, ) — log L (ﬁ, 2(6))
+log L(D, %)
. _2logL(D,2(§0))



Further comments

o Models with non-identifiable parameters can imply testable
equality constraints, but testing them is not automatic.

@ Models can imply inequality constraints on 3, too.

o Using the solutions

¢ = o012
wi = 011 —012
wp = 0922 — 012
013
B = —
012
2 0%3
Y = o033—[{¢p =033~ —
o12

We get four inequality constraints.



Four inequality constraints on 3

011 012 013
022 023
033

¢+ w1 o B1o
p+wr P
Bio+

o192 >0
011 —o12>0

022 — o012 > 0
2
g
Ugg—ﬁ >0
012
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Inequality constraints

o Inequality constraints arise because variances are positive.
@ Or more generally, covariance matrices are positive definite.

o Could inequality constraints be violated in numerical
maximum likelihood?

o Definitely.
o But only a little by sampling error if the model is correct.

@ So maybe it’s not so dumb to test hypotheses like
HO W1 = 0.

@ Since the model says wi = 011 — 012 and 011 — 012 > 0
might not be true.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
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freely. The IXTEX source code is available from the course
website:
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