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Seeking identifiability

We have seen that in simple regression, parameters of a model
with measurement error are not identifiable.

Yi = β0 + β1Xi + εi

Wi = ν +Xi + ei,

For example, X might be number of acres planted and Y
might be crop yield.

Plan the statistical analysis in advance.

Take 2 independent measurements of the explanatory
variable.

Say, farmer’s report and satellite photograph.
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Model

Independently for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

Xi is normally distributed with mean µx and variance
φ > 0

εi is normally distributed with mean zero and variance
ψ > 0

ei,1 is normally distributed with mean zero and variance
ω1 > 0

ei,2 is normally distributed with mean zero and variance
ω2 > 0

Xi, ei,1, ei,2 and εi are all independent.
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Does this model pass the test of the Parameter Count
Rule?

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

θ = (ν1, ν2, β0, µx, β1, φ, ψ, ω1, ω2): 9 parameters.

Three expected values, three variances and three
covariances: 9 moments.

Yes. There are nine moment structure equations in nine
unknown parameters. Identifiability is possible, but not
guaranteed.
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What is the distribution of the sample data?
Calculate the moments as a function of the model parameters

The model implies that the triples Di = (Wi,1,Wi,2, Yi)
> are

independent multivarate normal with

E(Di) = E

 Wi,1

Wi,1

Yi

 =

 µ1
µ2
µ3

 =

 µx + ν1
µx + ν2
β0 + β1µx

 ,

and variance covariance matrix cov(Di) = Σ = σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .
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Are the parameters in the covariance matrix
identifiable?
Six equations in five unknowns

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

φ = σ12

ω1 = σ11 − σ12

ω2 = σ22 − σ12

β1 =
σ13
σ12

ψ = σ33 − β21φ = σ33 −
σ213
σ12

Yes.
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What about the expected values?

Model equations again:

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

Expected values:

µ1 = ν1 + µx

µ2 = ν2 + µx

µ3 = β0 + β1µx

Four parameters appear only in the expected values: ν1, ν2, µx, β0.

Three equations in four unknowns, even with β1 identified from
the covariance matrix.

Parameter count rule applies.

But we don’t need it because these are linear equations.
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Re-parameterize
µ1 = ν1 + µx µ2 = ν2 + µx µ3 = β0 + β1µx

Absorb ν1, ν2, µx, β0 into µ.

Parameter was θ = (ν1, ν2, β0, µx, β1, φ, ψ, ω1, ω2)

Now it’s θ = (µ1, µ2, µ3, β1, φ, ψ, ω1, ω2).

Dimension of the parameter space is now one less.

We haven’t lost much.

Especially because the model was already re-parameterized.

Of course there is measurement error in Y . Recall

Y = β0 + β1X + ε

V = ν0 + Y + e

= ν0 + (β0 + β1X + ε) + e

= (ν0 + β0) + β1X + (ε+ e)

= β′0 + βX + ε′
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Re-parameterization

Re-parameterization makes maximum likelihood possible.

Otherwise the maximum is not unique and it’s a mess.

Estimate µ with D and it simply disappears from

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)>Σ−1(D− µ)

}

This step is so common it becomes silent.

Model equations are often written without intercepts.

It’s more compact, and we don’t have to look at
parameters we can’t estimate anyway.
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Back to the covariance structure equations

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

Notice that the model dictates σ1,3 = σ2,3.

There are two ways to solve for β1:
β1 = σ13

σ12
and β1 = σ23

σ12
.

Does this mean the solution for β1 is not “unique?”

No; everything is okay. Because σ1,3 = σ2,3, the two
solutions are actually the same.

If a parameter can be recovered from the moments in any
way at all, it is identifiable.

11 / 21



Testing goodness of fit.

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

σ1,3 = σ2,3 is a model-induced constraint upon Σ.

It’s a testable null hypothesis.

If rejected, the model is called into question.
Likelihood ratio test comparing this model to a completely
unrestricted multivariate normal model:

G2 = −2 log
L
(
D,Σ(θ̂)

)
L(D, Σ̂)

Widely used even if the data are not normal.
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The Reproduced Covariance Matrix

Σ(θ̂) is called the reproduced covariance matrix.

It is the covariance matrix of the observable data, written
as a function of the model parameters and evaluated at the
MLE.

Σ(θ̂) =

 φ̂+ ω̂1 φ̂ β̂1φ̂

φ̂+ ω̂2 β̂1φ̂

β̂21 φ̂+ ψ̂


The reproduced covariance matrix obeys all model-induced
constraints, while Σ̂ does not.

But if the model is right they should be close.

This is a way to think about the likelihood ratio test for
goodness of fit.
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General pattern for testing goodness of fit

Suppose there are k moment structure equations in p
parameters, and all the parameters are identifiable.

If p < k, call the parameter vector over-identifiable.

Only needed p equations to solve for θ.

Substituting the solutions (in terms of σij) back into the
unused equations would yield k − p equality constraints on
Σ.

Test those constraints with G2 = −2 log
L(D,Σ(θ̂))
L(D,Σ̂)

.

df = k − p

Don’t need to actually derive the constraints unless asked –
just count them.
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With the same number of equations and parameters

If the parameter is identifiable, call it just identifiable.

Parameters are 1-1 with those of an unrestricted
multivariate normal.

Call the model “saturated.”

There are no equality constraints on Σ.

No likelihood ratio test because G2 = −2 log
L(D,Σ(θ̂))
L(D,Σ̂)

= 0.

This is what happens in regression with all observed
variables.
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How to proceed

Verify identifiability.

If the model is over-identified, test goodness of fit.

If it passes (non-significant), proceed.

Now think of your model as the “full,” or unrestricted
model.

Compared to some (even more) reduced model that is
restricted by a null hypothesis like β1 = 0.

Fit the reduced model.

Subtract G2 goodness of fit statistics to test H0.
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Subtract goodness of fit statistics

G2 tests the full model against the saturated model, and G2
0

tests the reduced model against the saturated model.

G2
0 −G2 = −2 log

L
(
D,Σ(θ̂0)

)
L(D, Σ̂)

−−2 log
L
(
D,Σ(θ̂)

)
L(D, Σ̂)

= −2
(

logL
(
D,Σ(θ̂0)

)
− logL(D, Σ̂) − logL

(
D,Σ(θ̂)

)
+ logL(D, Σ̂)

)
= −2 log

L
(
D,Σ(θ̂0)

)
L
(
D,Σ(θ̂)

)
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Further comments

Models with non-identifiable parameters can imply testable
equality constraints, but testing them is not automatic.

Models can imply inequality constraints on Σ, too.

Using the solutions

φ = σ12

ω1 = σ11 − σ12

ω2 = σ22 − σ12

β1 =
σ13
σ12

ψ = σ33 − β21φ = σ33 −
σ213
σ12

We get four inequality constraints.
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Four inequality constraints on Σ

 σ11 σ12 σ13
σ22 σ23

σ33

 =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β21φ+ ψ

 .

φ = σ12 > 0

ω1 = σ11 − σ12 > 0

ω2 = σ22 − σ12 > 0

ψ = σ33 −
σ213
σ12

> 0
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Inequality constraints

Inequality constraints arise because variances are positive.

Or more generally, covariance matrices are positive definite.

Could inequality constraints be violated in numerical
maximum likelihood?

Definitely.

But only a little by sampling error if the model is correct.

So maybe it’s not so dumb to test hypotheses like
H0 : ω1 = 0.

Since the model says ω1 = σ11 − σ12 and σ11 − σ12 > 0
might not be true.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/∼brunner/oldclass/2101f19
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