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THE	TRUTH	
(Well,	closer	to	the	truth,	anyway)	



Regression-like	models	

•  Reality	is	massively	non-linear.	
•  We	can	live	with	a	linear	approximation,	as	in	
multiple	regression.	

•  All	the	model	equations	have	unknown	slopes	
and	unknown	intercepts.	

•  Like	D1	=	λ0,1	+	λ1F1	+	e1	
•  Latent	variables	have	unknown	expected	
values	and	variances.	

•  Call	this	the	“original	model.”	



Identifiability	

•  If	there	are	latent	variables,	the	parameters	of	
the	original	model	are	not	identifiable.	

•  In	a	way,	when	we	drop	intercepts	and	ignore	
expected	values,	it’s	like	we	are	assuming	all	
expected	values	=	0,	“centering”	the	model.	

•  Original	Model														Centered	Model	
	



Centering	is	a	re-parameterization	

•  Not	one-to-one.	
•  It	reduces	the	dimension	of	the	parameter	
space,	helping	with	identifiability.	

•  Does	not	affect	slopes,	variances	or	
covariances.	

•  Meaning	is	unaffected.	

•  What	about	Var(Fj)=1?	



Why	should	the	variance	of	the	factors	
equal	one?	

•  Inherited	from	exploratory	factor	analysis,	which	
was	mostly	a	disaster.	

•  The	standard	answer	is	something	like	this:		
“Because	it’s	arbitrary.		The	variance	depends	
upon	the	scale	on	which	the	variable	is	
measured,	but	we	can’t	see	it	to	measure	it	
directly.		So	set	it	to	one	for	convenience.”	

•  But	saying	it	does	not	make	it	so.		If	F	is	a	random	
variable	with	an	unknown	variance,	then		

•  Var(F)=ϕ	is	an	unknown	parameter.	



Centered	Model	

D1 = �1F + e1

D2 = �2F + e2

D3 = �3F + e3

D4 = �4F + e4

e1, . . . , e4, F all independent
V ar(ej) = !j V ar(F ) = �
�1,�2,�3 6= 0



Covariance	Matrix	
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Passes	the	Counting	Rule	test	with	10	equations	in	9	unknowns	



But	for	any	c	≠	0	
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The choice � = 1 just sets c =
�

�: convenient but seemingly arbitrary.



You	should	be	concerned!	

•  For	any	set	of	true	parameter	values,	there	
are	infinitely	many	untrue	sets	of	parameter	
values	that	yield	exactly	the	same	Sigma	and	
hence	exactly	the	same	probability	
distribution	of	the	observable	data.	

•  There	is	no	way	to	know	the	full	truth	based	
on	the	data,	no	matter	how	large	the	sample	
size.	

•  But	there	is	a	way	to	know	the	partial	truth.	



Certain	functions	of	the	parameter	
vector	are	identifiable	

At points in the parameter space where �1,�2,�3 6= 0,
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• And so if �1 > 0, the function �j�1/2 is identifiable
for j = 1, . . . , 4.

• �11 � �12�13
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= !1, and so !j is identifiable for j = 1, . . . , 4.

• �13
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, so ratios of factor loadings
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Reliability	
•  Reliability	is	the	squared	correlation	between	
the	observed	score	and	the	true	score.	

•  The	proportion	of	variance	in	the	observed	
score	that	is	not	error.	

•  For	D1	=	λ1F	+	e1	it’s	
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So	reliabilities	are	identifiable	too.	



What	can	we	successfully	estimate?	

•  Error	variances	are	knowable.	
•  Factor	loadings	and	variance	of	the	factor	are	
not	knowable	separately.	

•  But	both	are	knowable	up	to	multiplication	by	
a	non-zero	constant,	so	signs	of	factor	
loadings	are	knowable	(if	one	sign	is	known).	

•  Relative	magnitudes	(ratios)	of	factor	loadings	
are	knowable.	

•  Reliabilities	are	knowable.	



Testing	Model	Fit	
•  Note	that	all	the	equality	constraints	must	
involve	only	the	covariances:	σij	for	i	≠	j.	

•  In	the	original	model,	the	covariances	are	all	
multiplied	by	the	same	non-zero	constant.	

•  So,	the	equality	constraints	of	the	original	model	
and	the	pretend	model	with	ϕ=1	are	the	same.		

•  The	chi-square	test	for	goodness	of	fit	applies	to	
the	original	model.		This	is	a	great	relief!	

•  Likelihood	ratio	tests	comparing	full	and	reduced	
models	are	mostly	valid	without	deep	thought.	
–  Equality	of	factor	loadings	is	testable.	
–  Could	test	H0:	λ4	=	0,	etc.	



Re-parameterization	
•  The	choice	ϕ=1	is	a	very	smart	re-
parameterization.	

•  It	re-expresses	the	factor	loadings	as	multiples	of	
the	square	root	of	ϕ.	

•  It	preserves	what	information	is	accessible	about	
the	parameters	of	the	original	model.	

•  Much	better	than	exploratory	factor	analysis,	
which	lost	even	the	signs	of	the	factor	loadings.	

•  This	is	the	second	major	re-parameterization.	The	
first	was	losing	the	the	means	and	intercepts.	



Re-parameterizations	

Original	model	
	
	
Surrogate	model	1	
	
	
Surrogate	model	2	



D1	 D6	D5	D4	D3	D2	

F1	 F2	

Add	a	factor	to	the	centered	model	



Add	a	factor	to	the	centered	model	

D1 = �1F1 + e1

D2 = �2F1 + e2

D3 = �3F1 + e3

D4 = �4F2 + e4

D4 = �5F2 + e5

D6 = �6F2 + e6
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Parameters	are	not	identifiable	



Variances	and	covariances	of	factors	

•  Are	knowable	only	up	to	multiplication	by		
positive	constants.	

•  Since	the	parameters	of	the	latent	variable	
model	will	be	recovered	from	Φ=cov(F),	they	
also	will	be	knowable	only	up	to	multiplication	
by	positive	constants	–	at	best.	

•  Luckily,	in	most	applications	the	interest	is	in	
testing	(pos-neg-zero)	more	than	estimation.	



Cov(F1,F2)	is	un-knowable,	but	
•  Easy	to	tell	if	it’s	zero	
•  Sign	is	known	if	one	factor	loading	from	each	
set	is	known	–	say	lambda1>0,	lambda4>0	

•  And,	

•  The	correlation	between	factors	is	
identifiable!	
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The	correlation	between	factors	is	
identifiable	

•  Furthermore,	it	is	the	same	function	of	Sigma	
that	yields	ϕ12	under	the	surrogate	model	
with	Var(F1)	=	Var(F2)	=	1.	

•  Therefore,	Corr(F1,F2)	=	ϕ12	under	the	
surrogate	model	is	equivalent	to		Corr(F1,F2)	
under	the	original	model.	

•  Estimates	and	tests	of	ϕ12	under	the	
				surrogate	model	apply	to		
				under	the	original	model.																	

�12�
�11
�

�22



Setting	variances	of	factors	to	one	

•  Is	a	very	smart	re-parameterization.	
•  Is	excellent	when	the	interest	is	in	correlations	
between	factors.	

•  Allows	estimation	of	classical	path	coefficients	
for	the	latent	variable	model.	

•  (That	last	remark	was	just	for	the	record.)		

	



Re-parameterization	as	a	change	of	variables	

•  Var(Fj’)	=	1	
•  The	new	factor	loading	is	in	units	of	the	standard	
deviation	of	Fj.	

•  This	applies	to	all	observable	variables	connected	
to	Fj.	

•  Puts	factor	loadings	for	different		factors	on	a	
common	scale.	
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Covariances	

•  Covariances	between	factors	in	the	surrogate	
model	equal	correlations	in	the	original	model.	

•  Latent	variable	parameters	are	strongly	affected.		
•  Parameters	in	the	latent	surrogate	model	are	the	
original	parameters	times	positive	constants.	
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What	happens	if	there	is	a	latent	
variable	model?	

Yi = �1Xi + ✏i

V ar(Yi) = �2
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What	does	it	mean?	

Y 0
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1X
0
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i, Y

0
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Because	covariances	under	the	surrogate	model	equal	correlations	under	the	original	model.	



Factor	Loadings	are	affected	too	
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Cascading	effects	

•  Understand	the	re-parameterization	as	a	
change	of	variables	

•  Not	just	an	arbitrary	restriction	of	the	
parameter	space.	

•  It	shows	there	are	widespread	effects	
throughout	the	model.	

•  Also	shows	how	the	meanings	of	other	model	
parameters	are	affected.	



The	other	standard	trick	

•  Setting	variances	of	all	the	factors	to	one	is	an	
excellent	re-parameterization	in	disguise.	

•  The	other	standard	trick	is	to	set	one	factor	
loading	equal	to	one	for	each	factor.	

•  D	=	F	+	e		is	hard	to	believe	if	you	take	it	
literally.	

•  It’s	actually	a	re-parameterization.	
•  Every	model	you’ve	seen	with	a	factor	loading	
of	one	is	a	surrogate	model.	



Back	to	a	single-factor	model	with	λ1>0	

D1 = �1F + e1

D2 = �2F + e2

D3 = �3F + e3
...
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Under	the	surrogate	model	

• It looks like �j is identifiable, but actually it’s �j/�1.

• Estimates of �j for j �= 1 are actually estimates of �j/�1.

• It looks like ⇥ is identifiable, but actually it’s �2
1⇥.

• ⇥ is being expressed as a multiple of �2
1.

• Estimates of ⇥ are actually estimates of �2
1⇥.

Everything	is	being	expressed	in	terms	of	λ1.	

Make	D1	the	clearest	representative	of	the	factor.	



Add	an	observable	variable	

•  Parameters	are	all	identifiable,	even	if	the	factor	
loading	of	the	new	variable	equals	zero.	

•  Equality	restrictions	on	Sigma	are	created,	
because	we	are	adding	more	equations	than	
unknowns.	

•  These	equality	restrictions	apply	to	the	original	
model.	

•  It	is	straightforward	to	see	what	the	restrictions	
are,	though	the	calculations	can	be	time	
consuming.	



Finding	the	equality	restrictions	

•  Calculate	Σ(θ).	
•  Solve	the	covariance	structure	equations	
explicitly,	obtaining	θ	as	a	function	of	Σ.	

•  Substitute	the	solutions	back	into	Σ(θ).	
•  Simplify.		



Example:	Add	a	4th	variable	

D1 = F + e1

D2 = �2F + e2

D3 = �3F + e3

D4 = �4F + e4

e1, . . . , e4, F all independent
V ar(ej) = !j V ar(F ) = �
�1,�2,�3 6= 0
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Solutions
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Substitute	solutions	into	expressions	
for	the	covariances	

�12 = �12

�13 = �13

�14 =
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Equality	Constraints	

�14�23 = �24�13

�12�34 = �24�13

These	hold	regardless	of	whether	factor	loadings	are	zero	(1234).	

�12�34 = �13�24 = �14�23



Add	another	3-variable	factor	
•  Identifiability	is	maintained.	
•  The	covariance	ϕ12	=	σ14	
•  Actually	σ14	=		λ1	λ4	ϕ12	under	the	original	
model.	

•  The	covariances	of	the	surrogate	model	are	
just	those	of	the	surrogate	model,	multiplied	
by	un-knowable	positive	constants.	

•  As	more	variables	and	more	factors	are	
added,	all	this	remains	true.	



Comparing	the	surrogate	models	
•  Either	set	variances	of	factors	to	one,	or	set	one	
loading	per	factor	to	one.	

•  Both	arise	from	a	similar	change	of	variables.	
•  Fj’	=	cjFj	,	where	cj	>	0.	
•  cj	is	either	a	factor	loading	or	one	over	a	standard	
deviation.	

•  Interpretation	of	surrogate	model	parameters	is	
different	except	for	the	sign.	

•  Mathematically	the	models	are	equivalent:	

•  The	true	model	and	both	surrogate	models	share	the	
same	equality	constraints,	and	hence	the	same	
goodness	of	fit	results	for	any	given	data	set.	

Exchange �j and 1p
�jj

.



Which	re-parameterization	is	better?	
•  Technically,	they	are	equivalent.	
•  They	both	involve	setting	a	single	un-knowable	parameter	to	one,	

for	each	factor.		
•  This	seems	arbitrary,	but	actually	it	results	in	a	very	good	re-

parameterization	that	preserves	what	is	knowable	about	the	true	
model.	

•  Standardizing	the	factors	(Surrogate	model	2A)	is	more	convenient	
for	estimating	correlations	between	factors.	

•  Setting	one	loading	per	factor	equal	to	one	(Surrogate	model	2B)	is	
more	convenient	for	estimating	the	relative	sizes	of	factor	loadings.	

•  Hand	calculations	with	Surrogate	model	2B	can	be	easier.	
•  If	there	is	a	serious	latent	variable	model,	Surrogate	model	2B	is	

much	easier	to	specify	with	SAS.	
•  Mixing	Surrogate	model	2B	with	double	measurement	is	natural.	
•  Don’t	do	both	restrictions	for	the	same	factor!	



Why	are	we	doing	this?	
•  The	parameters	of	the	original	model	cannot	be	
estimated	directly.	For	example,	maximum	
likelihood	will	fail	because	the	maximum	is	not	
unique.	

•  The	parameters	of	the	surrogate	models	are	
identifiable	(estimable)	functions	of	the	
parameters	of	the	true	model.		

•  They	have	the	same	signs	(positive,	negative	or	
zero)	of	the	corresponding	parameters	of	the	
true	model.	

•  Hypothesis	tests	mean	what	you	think	they	do.	
•  Parameter	estimates	can	be	useful	if	you	know	
what	the	new	parameters	mean.			



The	Crossover	Rule	
•  It	is	unfortunate	that	variables	can	only	be	
caused	by	one	factor.		In	fact,	it’s	unbelievable	
most	of	the	time.	

•  A	pattern	like	this	would	be	nicer.	



When	you	add	a	set	of	observable	variables	to	a	
measurement	model	whose	parameters	are		

already	identifiable	

•  Straight	arrows	with	factor	loadings	on	them	may	
point	from	each	existing	factor	to	each	new	variable.	

•  	You	don’t	need	to	include	all	such	arrows.	
•  Error	terms	for	the	new	set	of	variables	may	have	
non-zero	covariances	with	each	other,	but	not	with	
the	error	variances	or	factors	of	the	original	model.	

•  Some	of	the	new	error	terms	may	have	zero	
covariance	with	each	other.		It’s	up	to	you.	

•  All	parameters	of	the	new	model	are	identifiable.	



Proof	
•  Have	a	measurement	(factor	analysis)	model	
with	p	factors	and	k1	observable	variables.	The	
parameters	are	all	identifiable.	

•  Assume	that	for	each	factor,	there	is	at	least	
one	observable	variable	with	a	factor	loading	
of	one.	

•  If	this	is	not	the	case,	re-parameterize.	
•  Re-order	the	variables,	putting	the	p	variables	
with	unit	factor	loadings	first,	in	the	order	of	
the	corresponding	factors.		

	



The	first	two	equations	belong	to	the	initial	model	

D1 = F + e1

D2 = �2F + e2

D3 = F + e3�3
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Solve	for	it	and	it	becomes	black	
	



Comments	
•  There	are	no	restriction	on	the	factor	loadings	of	
the	variables	that	are	being	added	to	the	model	

•  There	are	no	restriction	on	the	covariances	of	
error	terms	for	the	new	set	of	variables,	except	
that	they	must	not	be	correlated	with	error	terms	
already	in	the	model.	

•  This	suggests	a	model	building	strategy.		Start	
small,	perhaps	with	3	variables	per	factor.	Then	
add	the	remaining	variables	–	maximum	
flexibility.	

•  Could	even	fit	the	one-factor	sub-models	one	at	a	
time	to	make	sure	they	are	okay,	then	combine	
factors,	then	add	variables.	



Add	an	observed	variable	to	the	factors	
•  Often	it’s	an	observed	exogenous	variable	(like	sex	or	

experimental	condition)	you	want	to	be	in	a	latent	
variable	model.	

•  Suppose	parameters	of	the	existing	(surrogate)	factor	
analysis	model	(p	factors)	are	all	identifiable.	

•  X	is	independent	of	the	error	terms.	

•  Add	a	row	(and	column)	to	Σ.	
•  Add	p+1	parameters	to	the	model.	
•  Say	Var(X)=Φ0,	Cov(X,Fj)=Φ0,j	
•  Dk	=	λkFj	+	ek,	λk	is	already	identified.	
•  E(XDk)	=	λkE(XFj)	+	0		=	λkΦ0,j	

•  Solve	for	the	covariance.	
•  Do	this	for	each	factor	in	the	model.	Done.	



We	have	some	identification	rules	

•  Double	Measurement	rule.	
•  Three-variable	rule	for	standardized	factors.	
•  Three-variable	rule	for	unstandardized	factors.	
•  Cross-over	rule.	
•  Error-free	rule.	
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