A Big Simulation Study¹ STA2053 Fall 2022

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Design

A big simulation study (Brunner and Austin, 2009) with six factors:

- Sample size: n = 50, 100, 250, 500, 1000
- $Corr(X_1, X_2)$: $\phi_{12} = 0.00, 0.25, 0.75, 0.80, 0.90$
- Proportion of variance in Y explained by X_1 : 0.25, 0.50, 0.75
- Reliability of W_1 : 0.50, 0.75, 0.80, 0.90, 0.95
- Reliability of W_2 : 0.50, 0.75, 0.80, 0.90, 0.95
- Distribution of latent variables and error terms: Normal, Uniform, t, Pareto.

There were $5 \times 5 \times 3 \times 5 \times 5 \times 4 = 7,500$ treatment combinations.

Within each of the $5 \times 5 \times 3 \times 5 \times 5 \times 4 = 7,500$ treatment combinations,

- 10,000 random data sets were generated
- For a total of 75 million data sets
- All generated according to the true model, with $\beta_2 = 0$.
- Fit naive model, test $H_0: \beta_2 = 0$ at $\alpha = 0.05$.
- Proportion of times H₀ is rejected is a Monte Carlo estimate of the Type I Error Probability.
- It should be around 0.05.

Look at a small part of the results

- Both reliabilities = 0.90
- Everything is normally distributed

•
$$\beta_0 = 1, \beta_1 = 1$$
 and of course $\beta_2 = 0$.

Table 1 of Brunner and Austin (2009, p.39)

Canadian Journal of Statistics, Vol. 37, Pages 33-46, Used without permission

Correlation between X_1 and X_2					
N	0.0	0.2	0.4	0.6	0.8
25% of varia	ince in Y is explain	ied by X_1			
50	0.0476†	0.0505†	0.0636	0.0715	0.0913
100	0.0504 [†]	0.0521 [†]	0.0834	0.0940	0.1294
250	0.0467†	0.0533†	0.1402	0.1624	0.2544
500	0.0468†	0.0595 [†]	0.2300	0.2892	0.4649
1,000	0.0505^{\dagger}	0.0734	0.4094	0.5057	0.7431
50% of varia	nce in Y is explair	ied by X_1			
50	0.0460 [†]	0.0520 [†]	0.0963	0.1106	0.1633
100	0.0535†	0.0569 [†]	0.1461	0.1857	0.2837
250	0.0483 [†]	0.0625	0.3068	0.3731	0.5864
500	0.0515 [†]	0.0780	0.5323	0.6488	0.8837
1,000	0.0481^{\dagger}	0.1185	0.8273	0.9088	0.9907
75% of varia	ince in Y is explain	ted by X_1			
50	0.0485†	0.0579 [†]	0.1727	0.2089	0.3442
100	0.0541 [†]	0.0679	0.3101	0.3785	0.6031
250	0.0479 [†]	0.0856	0.6450	0.7523	0.9434
500	0.0445	0.1323	0.9109	0.9635	0.9992
1,000	0.0522 [†]	0.2179	0.9959	0.9998	1.00000

TABLE 1: Estimated Type I error rates when independent variables and measurement errors are all normal, and reliability of W_1 and W_2 both equal 0.90.

[†]Not significantly different from 0.05, Bonferroni corrected for 7,500 tests.

Marginal Mean Type I Error Probabilities

 Base Distribution

 normal
 Pareto
 t Distr
 uniform

 0.38692448
 0.36903077
 0.38312245
 0.38752571

Explained Variance 0.25 0.50 0.75 0.27330660 0.38473364 0.48691232

Correla	tion between	Latent	Independent Va	riables
0.00	0.25	0.75	0.80	0.90
0.05004853	0.16604247	0.5154	4093 0.55050	700 0.62621533

Sample Size n					
50	100	250	500	1000	
0.19081740	0.27437227	0.39457933	0.48335707	0.56512820	

Reliability of W_1					
0.50	0.75	0.80	0.90	0.95	
0.60637233	0.46983147	0.42065313	0.26685820	0.14453913	

Reliability of W_2					
0.50	0.75	0.80	0.90	0.95	
0.30807933	0.37506733	0.38752793	0.41254800	0.42503167	

Poison

- The poison combination is measurement error in the variable for which you are "controlling," and correlation between latent explanatory variables.
- As the sample size increases, the problem gets worse
- For a large enough sample size, no amount of measurement error in the explanatory variables is safe, assuming that the latent explanatory variables are correlated.

Other kinds of regression, other kinds of measurement error

- Logistic regression
- Proportional hazards regression in survival analysis
- Log-linear models: Test of conditional independence in the presence of classification error
- Median splits
- Even converting X_1 to ranks inflates Type I Error probability.

Use models that allow for measurement error in the explanatory variables.

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/2053f22