
STA 2053 Assignment 3 (Random vectors and
measurement error)1

cov(x) = E
{

(x− µx)(x− µx)>
}

cov(x,y) = E
{

(x− µx)(y − µy)
>}

Thesel questions are not to be handed in. They are practice for the quiz on October 31st.

1. Let x be a random vector, and let A and B be matrices of constants (of the right
dimensions).

(a) Show cov(Ax) = AΣxA
>

(b) Show cov(Ax,Bx) = AΣxB
>.

2. Let x be a p × 1 random vector and let y and z be q × 1 random vectors. Show that
cov(x,y + z) = cov(x,y) + cov(x, z).

3. Let

xi =

 xi,i
...
xi,p

 and x =
1

n

n∑
i=1

xi =

 x1
...
xp

 .

Let the p × p matrix Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)>. Give a scalar formula for element

(2, 3) of Σ̂. If you get stuck, an example with p = 3 should help.

4. Let x and y be random vectors, and let A and B be matrices of constants. Starting
from the definition, find cov(Ax,By). Show your work. Of course we are assuming that
the matrices are the right size.

5. Denote the centered version of a general random vector y by
c
y= y − µy. Let L =

A1x1 + · · · + Amxm + b, where the Aj are matrices of constants, and b is a vector of

constants. Show
c

L= A1
c
x1 + · · ·+ Am

c
xm.

6. Let x and y be p× 1 random vectors. State whether the following is true or false, and
show your work. cov(x + y) = cov(x) + cov(y) + 2cov(x,y).

7. Suppose we have two equivalent measurements with uncorrelated measurement error:

W1 = X + e1

W2 = X + e2,

where E(X) = µx, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X,
e1 and e2 are all independent. What if we were to measure the true score X by adding
the two imperfect measurements together? Would the result be more reliable?

1This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto.
It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/2053f22
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(a) Let S = W1 + W2. Calculate the reliability of S. Recall that reliability is defined
as the squared correlation between the true score and the surface measurement.

(b) Suppose you take n independent measurements (in psychometric theory, these
would be called equivalent test items). What is the reliability of S =

∑n
i=1Wi?

Show your work.

(c) What is the reliability of W n = 1
n

∑n
i=1Wi? Show your work.

(d) What happens to the reliability of S and W n as the number of measurements
n→∞?

8. This question explores the consequences of ignoring measurement error in the explana-
tory variable when there is only one explanatory variable. Independently for i = 1, . . . , n,
let

Yi = βXi + εi

Wi = Xi + ei

where all random variables are normal with expected value zero, V ar(Xi) = φ > 0,
V ar(εi) = ψ > 0, V ar(ei) = ω > 0 and εi, ei and Xi are all independent. The variables
Wi and Yi are observable, while Xi is latent. Error terms are never observable.

(a) What is the parameter vector θ for this model?

(b) Denote the covariance matrix of the observable variables by Σ = [σij]. The unique
σij values are the moments, and there is a covariance structure equation for each
one. Calculate the variance-covariance matrix Σ of the observable variables, ex-
pressed as a function of the model parameters. You now have the covariance struc-
ture equations.

(c) Does this model pass the test of the parameter count rule? Answer Yes or No and
give the numbers.

(d) Are there any points in the parameter space where the parameter β is identifiable?
Are there infinitely many, or just one point?

(e) The naive estimator of β is

β̂n =

∑n
i=1WiYi∑n
i=1W

2
i

.

Is β̂n a consistent estimator of β? Why can you answer this question without doing
any calculations?

(f) Go ahead and do the calculation. To what does β̂n converge?

(g) Are there any points in the parameter space for which β̂n converges to the right
answer? Compare your answer to the set of points where β is identifiable.

(h) Suppose the reliability of Wi were known, or to be more realistic, suppose that a
good estimate of the reliability were available; call it r2wx. How could you use r2wx

to improve β̂n? Give the formula for an improved estimator of β.
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9. The improved version of β̂n in the last question is an example of correction for attenuation
(weakening) caused by measurement error. Here is the version that applies to correlation.
Independently for i = 1, . . . , n, let

Di,1 = Fi,1 + ei,1

Di,2 = Fi,2 + ei,2
cov

(
Fi,1

Fi,2

)
=

(
φ11 φ12

φ12 φ22

)
cov

(
ei,1
ei,2

)
=

(
ω1 0
0 ω2

)

To make this concrete, it would be natural for psychologists to be interested in the
correlation between intelligence and self-esteem, but what they want to know is the
correlation between true intelligence and true self-esteem, not just the between score on
an IQ test and score on a self-esteem questionnaire. So for subject i, let Fi,1 represent
true intelligence and Fi,2 represent true self-esteem, while Di,1 is the subject’s score on
an intelligence test and Di,1 is score on a self-esteem questionnaire.

(a) Make a path diagram of this model.

(b) Show that |Corr(Di,1, Di,2)| ≤ |Corr(Fi,1, Fi,2)|. That is, measurement error weak-
ens (attenuates) the correlation.

(c) Suppose the reliability of Di,1 is ρ21 and the reliability of Di,2 is ρ22. If you knew these
values, how could you apply ρ21 and ρ22 to Corr(Di,1, Di,2), to obtain Corr(Fi,1, Fi,2)?

(d) You obtain a sample correlation between IQ score and self-esteem score of r = 0.25,
which is disappointingly low. From other data, the estimated reliability of the IQ
test is r21 = 0.90, and the estimated reliability of the self-esteem scale is r22 = 0.75.
Give an estimate of the correlation between true intelligence and true self-esteem.
The answer is a number.

10. This is a simplified version of the situation where one is attempting to “control” for
explanatory variables that are measured with error. People do this all the time, and it
doesn’t work. Independently for i = 1, . . . , n, let

Yi = β1Xi,1 + β2Xi,2 + εi

Wi = Xi,1 + ei,

where cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
, V (εi) = ψ, V (e1) = ω, all the expected values are

zero, and the error terms εi and ei are independent of one another, and also independent
of Xi,1 and Xi,2. The variable Xi,1 is latent, while the variables Wi, Yi and Xi,2 are
observable. What people usually do in situations like this is fit a model like Yi =
β1Wi + β2Xi,2 + εi, and test H0 : β2 = 0. That is, they ignore the measurement error in
variables for which they are “controlling.”

(a) Suppose H0 : β2 = 0 is true. Does the ordinary least squares estimator

β̂2 =

∑n
i=1W

2
i

∑n
i=1Xi,2Yi −

∑n
i=1WiXi,2

∑n
i=1WiYi∑n

i=1W
2
i

∑n
i=1X

2
i,2 − (

∑n
i=1WiXi,2)2

converge to the true value of β2 = 0 as n→∞ everywhere in the parameter space?
Answer Yes or No and show your work.
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(b) Under what conditions (that is, for what values of other parameters) does β̂2
p→ 0

when β2 = 0?

11. Finally we have a solution, though as usual there is a little twist. Independently for
i = 1, . . . , n, let

Yi = βXi + εi

Vi = Yi + ei

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2

where

• Yi is a latent variable.

• Vi, Wi,1 and Wi,2 are all observable variables.

• Xi is a normally distributed latent variable with mean zero and variance φ > 0.

• εi is normally distributed with mean zero and variance ψ > 0.

• ei is normally distributed with mean zero and variance ω > 0.

• ei,1 is normally distributed with mean zero and variance ω1 > 0.

• ei,2 is normally distributed with mean zero and variance ω2 > 0.

• Xi, εi, ei, ei,1 and ei,2 are all independent of one another.

(a) Make a path diagram of this model.

(b) What is the parameter vector θ for this model?

(c) Does the model pass the test of the Parameter Count Rule? Answer Yes or No and
give the numbers.

(d) Calculate the variance-covariance matrix of the observable variables as a function
of the model parameters. Show your work.

(e) Is the parameter vector identifiable at every point in the parameter space? Answer
Yes or No and prove your answer.

(f) Some parameters are identifible, while others are not. Which ones are identifiable?

(g) If β (the paramter of main interest) is identifiable, propose a Method of Moments
estimator for it and prove that your proposed estimator is consistent.

(h) Suppose the sample variance-covariance matrix Σ̂ is

W1 W2 V

W1 38.53 21.39 19.85

W2 21.39 35.50 19.00

V 19.85 19.00 28.81

Give a reasonable estimate of β. There is more than one right answer. The answer
is a number. (Is this the Method of Moments estimate you proposed? It does not
have to be.) Circle your answer.
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(i) Describe how you could re-parameterize this model to make the parameters all
identifiable, allowing you do maximum likelihood.

12. Here is a one-stage formulation of the double measurement regression model. Indepen-
dently for i = 1, . . . , n, let

wi,1 = xi + ei,1

vi,1 = yi + ei,2

wi,2 = xi + ei,3,

vi,2 = yi + ei,4,

yi = βxi + εi

where

yi is a q × 1 random vector of latent response variables. Because q can be greater
than one, the regression is multivariate.

β is an q×pmatrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

xi is a p × 1 random vector of latent explanatory variables, with expected value
zero and variance-covariance matrix Φx, a p × p symmetric and positive definite
matrix of unknown constants.

εi is the error term of the latent regression. It is a q×1 random vector with expected
value zero and variance-covariance matrix Ψ, a q×q symmetric and positive definite
matrix of unknown constants.

wi,1 and wi,2 are p×1 observable random vectors, each representing xi plus random
error.

vi,1 and vi,2 are q×1 observable random vectors, each representing yi plus random
error.

ei,1, . . . , ei,4 are the measurement errors in Wi,1,Vi,1,Wi,2 and Vi,2 respectively.
Joining the vectors of measurement errors into a single long vector ei, its covariance
matrix may be written as a partitioned matrix

cov(ei) = cov


ei,1

ei,2

ei,3

ei,4

 =


Ω11 Ω12 0 0

Ω>
12 Ω22 0 0
0 0 Ω33 Ω34

0 0 Ω>
34 Ω44

 = Ω.

In addition, the matrices of covariances between Xi, εi and ei are all zero.

Collecting Wi,1, Wi,2, Vi,1 and Vi,2 into a single long data vector Di, we write its
variance-covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,
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where the covariance matrix of Wi,1 is Σ11, the covariance matrix of Vi,1 is Σ22, the
matrix of covariances between Wi,1 and Vi,1 is Σ12, and so on.

(a) Write the elements of the partitioned matrix Σ in terms of the parameter matrices
of the model. Be able to show your work for each one.

(b) Prove that all the model parameters are identifiable by solving the covariance struc-
ture equations.

(c) Give a Method of Moments estimator of Φx. There is more than one reasonable an-
swer. Remember, your estimator cannot be a function of any unknown parameters,
or you get a zero. For a particular sample, will your estimate be in the parameter
space? Mine is.

(d) Give a Method of Moments estimator for β. Remember, your estimator cannot be
a function of any unknown parameters, or you get a zero. How do you know your
estimator is consistent? Use Σ̂

p→ Σ.

13. For the double measurement regression model of Question 12,

(a) How many unknown parameters appear in the covariance matrix of the observable
variables?

(b) How many unique variances and covariances are there in the covariance matrix of
the observable variables? This is also the number of covariance structure equations.

(c) How many equality constraints does the model impose on the covariance matrix of
the observable variables? What are they?

(d) Does the number of covariance structure equations minus the number of parameters
equal the number of constraints?
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